近几年,我国的经济发展速度极快,随着经济的发展,人们的生活水平也不断的提高。对建筑也有更高的要求。建筑结构的设计工作当中,建筑的稳定性是十分重要的。下文是我为大家搜集整理的建筑结构的论文的内容,欢迎大家阅读参考!
浅论建筑结构设计
【摘要】 在建筑设计中,结构的设计有着举足轻重的地位。为此,本文就建筑结构设计遵循的原则,建筑结构的基本要求,多层和高层房屋以及单层大跨度房屋的常见结构型式等有关问题进行分析。
【关键字】 建筑;结构;设计;型式
引言
结构是建筑物赖以存在的物质基础,在一定意义上,结构支配着建筑,这是因为,任何建筑物都要耗用大量的劳力和材料来建造,建筑物首先必须抵抗或承受各种外界的作用如风力、重力、地震等,合理的选择结构材料和结构型式,即可满足建筑物的美学原则,又可以带来经济效益。
一、建筑结构设计遵循的原则
1.满足使用功能要求
由于建筑物所处的环境和使用性质不同,除满足空间尺寸要求外,还要满足某些建筑物的特殊要求,如保温、通风、隔热、吸声等,在构造设计时要综合相关专业的技术知识,优化设计,选择经济合理的构造 措施 ,满足建筑使用功能要求。
2.确保结构安全
正确的结构计算时保证建筑物安全的前提,除对建筑结构、构件进行必要的计算外,对阳台栏杆、楼梯扶手、构件接缝等,要采取必要的措施,保证其在使用过程中的安全和可靠。
3.注重建筑经济的综合效益
建筑构造设计要处处考虑经济合理,采用合理的构造方案,就地取材,节约材料,在保证质量的前提下降低造价,并减少建筑物的运行费用、维护费用。
二、建筑结构的基本要求
新型建筑材料的生产、施工技术的进步、结构分析 方法 的发展,都给建筑设计带来了灵活性和更广阔的空间。但是,这种灵活性并不排除现代建筑结构需要满足的基本要求。其要求包括以下方面:
1.稳定。整体结构或结构的一部分作为刚体不允许发生危险的运动,这种危险可能来自结构自身,也可能来自地基的不均匀沉陷或基土的滑移,例如意大利的比萨斜塔由于地基不均匀沉降引起的倾斜。
2.平衡。平衡的基本要求就是保证结构和结构的任何一部分都不发生运动,力的平衡条件总能得到满足,从宏观上来看,建筑物总是静止的。平衡的要求是结构与“机构”即几何可变体系的根本区别,因此建筑结构的任何部分都应当是几何不变的。
3.经济。现代建筑的结构部分造价通常不超过建筑总造价的30%,因此,结构的采用应当是使建筑的总造价最经济。结构的经济性并不是指单纯的造价,而是体现在多个方面,而且结构的造价受材料和劳动力价格比值的影响,还受施工方法、施工速度以及结构的维护费用的影响。
4.美观。美学对结构的要求有时甚至超过承载能力的要求和经济要求,尤其是象征性建筑和纪念性建筑更是如此,应当懂得,纯粹质朴和真实的结构会增加美的效果,不正确的结构将明显的损害建筑物的美观。
5.优化。应在建筑方案设计的基础上,在满足结构安全的前提下,充分优化结构设计,必要时应委托专业的设计公司进行结构设计和结构的优化设计,降低建筑物的自身荷载,减少主要材料的消耗,通过工程概算及其主要技术经济指标分析结构设计的优化程度。
结构专业的优化设计,不是以牺牲结构安全度和抗震性能来求得经济效益的,而是以结构理论为基础,以工程 经验 为前提,以对结构设计规范实质内涵的理解和灵活运用为指导,以先进的结构分析方法为手段,对设计进行深入调整、改善与提高,对成本进行审核和监控,是对结构设计再加工的过程。“优化”工作是以原设计为基础,在充分尊重原设计的基础上,着眼于结构体系和结构布置的合理性和高新技术的应用,同时,“优化”的过程也是发现差错、纠正不足的过程,通过优化降低不安全因素,从而保证项目的技术质量和经济质量。结构设计优化是精益求精的过程,将会带来合理的设计、带来经济技术效益。
实现上述各项要求,在结构设计中就要贯彻“经济合理、技术先进、安全适用、确保质量”的结构设计原则,保证结构和建筑的和谐统一。
三、建筑结构选型
一个好的建筑设计,需要有一个好的结构型式去实现。而结构型式的最佳选择,要考虑到建筑上的使用功能、结构上的安全合理、艺术上的造型美观、造价上的经济,以及施工上的可能条件,进行综合分析比较才能最后确定。
以下针对多层和高层房屋以及单层大跨度房屋的常见结构型式的受力特点、适用范围进行简单分析。
多层和高层房屋结构的主要承重结构体系有:混合结构体系、框架结构体系、剪力墙结构体系等。
1.混合结构体系
这是多层民用建筑房屋中最常用的一种结构型式,其墙体、基础等竖向构件采用砌体结构,而楼盖、屋盖等水平构件则采用钢筋混凝土梁板结构。结合抗震要求,在进行混合结构房屋设计和选型时,应注意以下一些问题。
(1)层高和房屋最大高宽比
限制房屋的高宽比,是为了保证房屋的刚度和房屋的整体抗弯承载力,普通砖、多孔砖和小砌块砌体房屋的层高不应超过4.5m。
(2)多层房屋的层数和高度限制
一般情况下,房屋的层数和总高度不应超过表中的规定。显然,采用烧结普通砖砌体的混合结构,其层数和总高度均比其他砌体的要好,对医院、教学楼等及横墙较少的多层砌体房屋应比表中规定的降低3m,层数相应减少一层;各层横墙很少的多层砌体房屋,还应根据具体情况再适当降低总高度和减少层数。
(3)纵横墙布置
在进行结构布置时,应优先采用横墙承重或纵横墙共同承重方案;纵横墙的布置宜均匀对齐,沿平面内宜对齐,沿竖向上下连续,同一轴线上的窗间墙宜均匀。楼梯间不宜设置在房屋的尽端和转角处。
2.框架结构体系
与混合结构类似,框架结构也可分为横向框架承重、纵向框架承重及纵横双向框架共同承重等布质形式。一般房屋框架采用横向框架承重,在房屋纵向设置连系梁与横向框架相连;当楼板为预制板时,楼板顺纵向布置,楼板现浇时,一般设置纵向次梁,形成单向板肋形楼盖体系。当柱网为正方形或接近正方形,或者楼面活荷载较大时,也往往采用纵横双向布置的框架,这时楼面长采用现浇双向板楼盖或井字梁楼盖。
框架结构体系包括全框架结构、内框架砖房和底部框架上部砖房几种形式。现浇钢筋混凝土框架结构房屋的适用高度分别为60m、55m、45m和25m。现浇框架结构的整体性和抗震性能都较好,建筑平面布置也相当灵活,广泛用于6――15层的多层和高层房屋,如学校的教学楼、实验楼、办公楼、医院等(其经济层数为10层左右、房屋的高宽比以5――7为宜)。在水平荷载作用下,框架的整体变形为剪切型。
四、结束语
建筑住宅在国家基本建设投资中占有很大的比例,因此在建筑结构设计中必须正确处理适用、经济、美观等几方面的关系。根据不同类型的建筑,正确的把握好结构的类型,更不能忽略建筑设计的经济性,要在满足使用要求下,用较少的投资建造美观、简洁、大方的建筑,让人们居住的更加舒适、健康。
参考文献
1.熊丹安,建筑结构,华南理工大学出版社,2009年版
浅析建筑抗震结构设计
摘要:抗震,是当前建筑施工必须要关注的话题,建筑结构的抗震也就成了房屋设计必须要考量的核心环节。 文章 将就建筑抗震设计的要求、目标、原则,以及相关的内容进行探讨。
关键词 抗震;结构;设计方法
如何能够让建筑在地震中保持安全,不受严重的损害,是当前建筑施工设计必须要考量的一个大问题,特别是近年来地震频繁,人们的生命财产受到严重威胁,建筑安全则成了社会安全的一个重要影响因素,为保证建筑的抗震能力,设计人员必须要根据相关标准,设计出具有相当抗震能力的房屋。
1.抗震设防的目标
我们所说的抗震设防,指的是对建筑物进行抗震设计,同时有针对性的采取一定的抗震构造的措施,最终实现结构抗震的效果和目的。一般来说,抗震设防主要依据的是抗震设防烈度。而抗震设防烈度的依据,是以国家规定权限审批或颁发的文件执行的,其是一个地区作为抗震设防标准。通常情况下,是采用国家地震局颁发的地震烈度区划图中规定的基本烈度的。从当前内外抗震设防目标的发展总趋势来看,其基本要求建筑物在使用期间,可以应对对不同频率和强度的地震,即“小震不坏,中震可修,大震不倒”。这是我国抗震设计规范所采用的抗震设防目标。
建筑工程在施工中的设防的目标如下:1)如果所遭受的是低于本地区设防烈度多遇的常规地震,建筑物不受损坏,不需 修理 仍可继续使用;2)如果遭受到本地区规定的设防烈度的地震,建筑物,包括结构和非结构部分,可能损坏,但不会对人民生命和生产设备的安全造成威胁,经修理仍可使用;3)如果遭受高于本地区设防烈度的罕遇地震,尽量保证建筑物不倒塌。
也就是说,在建筑结构的防震设计上,设计方可以按照多遇烈度、基本烈度和罕遇烈度这三个层次进行考虑。从概率上看,多遇地震烈度是发生机会较大的地震级别。按照现行规范设计的建筑,在设计上要达到这样的防震效果:当遭遇多遇烈度作用时,建筑物处于弹性阶段,通常不会损坏;当遭遇相应基本烈度的地震时,建筑物将进入弹塑性状态,但一般不会发生严重破坏;当遭遇罕遇烈度作用时,建筑物可能会有严重破坏,但不至于倒塌。
2.建筑结构抗震设计方法要点
我国所颁布的《抗震规范》提出了两阶段设计方法,以实现上述3个烈度水准的抗震设防要求。第一阶段的设计方案,必须要符合抗震设计原则,同时根据与基本烈度相对应的众值烈度(相当于小震)的地震动参数,通过采用弹性反应谱法求得结构在弹性状态下的地震作用标准值和相应的地震作用效应,接着与其他荷载效应按一定的组合系数进行组合,同时对结构构件截面,进行具有针对性的承载力验算,如果建筑物较高,还必须要进行变形验算,以保证其侧向变形不要过大。这样,一方面满足了第一水准下必要的承载力可靠度,同时也满足第二水准的设防要求(损坏可修)。当然,最后还必须通过概念设计和构造措施来满足第三水准的设防要求。
对于非地震高发区的大多数建筑结构而言,只进行第一阶段的设计已经足够了,但根据建筑的特点和地区的特征,少部分结构诸如有特殊要求的建筑和地震时易倒塌的结构,还必须要进行第二阶段的设计,也就是按与基本烈度相对应的罕遇烈度(相当于大震)验算结构的弹塑性层间变形是否满足规范要求(不发生倒塌)。如果发现有变形过大的薄弱层,那应该积极修改设计,或者可以采取相应的构造措施,以满足第三水准的设防要求,也就是大震不倒。
3.结构选型与结构布置
3.1 结构材料的选择
选择哪一种材料对建筑的结构抗震有着直接的影响,所以材料的选择应该与建筑的方案设计同步,在研究建筑形式的同时进着手进行研究。同时还应该要确定采用什么样的结构体系。这样做的目的,主要是为了能够根据工程的各方面条件,选择既符合抗震要求又经济实用的结构类型。结构选型是较为复杂的一项工作,在选择时必须要考虑建筑的重要性、设防烈度、房屋高度、场地、地基、基础、材料和施工等因素,再加上经技术、经济条件比较后再确定。如果我们单从抗震角度考虑,好的结构型式,应具备以下特点:1)延性系数高;2)“强度/重力”比值大;3)匀质性好;4)正交各向同性;5)构件的连接具有整体性、连续性和较好的延性,并能发挥材料的全部强度。如果只从数据上看,按照上述标准来衡量,常见建筑结构类型,理论上的抗震性能优劣顺序是:1)钢结构;2)型钢混凝土结构;3)混凝土一钢混合结构;4)现浇钢筋混凝土结构;5)预应力混凝土结构等。当然,在这里必须要强调的是,我们说的抗震最好的钢结构,其优越性是相对性的,从优点看,其延性,连接较好,具有可靠的节点,同时拥有在低周往复荷载下有饱满稳定的滞回曲线,从实际的经验看,钢结构建筑的表现都不错。但是,我们说的相对性,是只设计理念即施工方法的到位如果不到位这些建筑同样会在地震中受损。
3.2 抗震结构体系的确定
不同的结构体系,在抗震性能、使用效果和经济指标等方面的效果是不同的。因此,确定适合的抗震结构体系至关重要。《抗震规范》的基本要求:1)必须具备明确的计算简图和合理的地震作用传递途径;2)形成多道抗震防线,避免因部分结构或构件破坏而导致整个体系丧失抗震能力或对重力的承载能力;3)必须具备必要的强度以及良好的变形能力和耗能能力;4)应该具有合理的刚度和强度分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力集中或塑性变形集中;对可能出现的薄弱部位,应采取措施提高抗震能力。
总之,在选择确定建筑的结构体系时,建筑物刚度与场地条件的关系是必须要考虑的。如果建筑物自振周期与地基土的卓越周期接近一致,那就说明建筑可能会产生共振,进而加重建筑物损害。一般来说,建筑物的自振周期与结构本身刚度有关,所以在设计房屋之前,设计单位必须要掌握场地和地基土及其卓越周期,以便在建筑结构的设计中调整结构刚度,最终避开共振周期。
当然,在选择结构体系时,还应该要注意选择合理的基础形式。基础应该有足够的埋深,如果是多层房屋,就应该设置地下室。根据实践调查,设置地下室的房屋,可以减轻整个结构的震害。至于那些地基软弱的,就应该考虑选用桩基、筏板基础或箱形基础。而针对岩层高低起伏不均匀的情况,则可以考虑选择桩基,桩基可以穿入非液化土层,使建筑结构更加稳固。如果建筑物层数不多、地基条件又较好时,也可以采用单独基础或十字交叉带形基础等。
3.3 结构布置的一般原则
3.3.1 平面布置力求对称 通常情况下,对称结构在地面平动作用下只会发生平移振动,各构件的侧移量相等,这样就使得水平地震作用按构件刚度分配,所以各构件受力比较均匀,不会导致力的分布失衡。如果是非对称结构,刚心会偏在一边,质心与刚心不重合,即便只是发生地面平动也可能出现扭转振动。最终会导致远离刚心的构件,侧移量大,承担过度的水平地震剪力。这就很容易发生严重破坏,甚至可能会导致整个结构因一侧构件失效而倒塌。
3.3.2 竖向布置力求均匀 结构竖向布置均匀,可以最大限度的使其竖向刚度、强度变化均匀,这样可以有效的避免出现薄弱层。从建筑结构的特点看,临街的建筑物,往往会因为商业的需要,底部几层有大空间的设置。非临街的建筑物,底部也可能门厅、餐厅或停车场,而出现大空间。在这种结构中,上部的钢筋混凝土抗震墙或竖向支撑或砌体墙体到此被中止,而下部须采取框架体系。也就是说,上部各层为全墙体系或框架一抗震墙体系,而底层或底部两三层则为框架体系,整个结构属“框托墙”体系。地震经验指出,这种体系很不利于抗震。因此,在实际的抗震结构设计中,应该要保持结构竖向布置的均匀。
也就是说,同一楼层的框架柱,必须要具有大致相同的刚度、强度和延性,以此避免地震时,因受力大小悬殊而被各个击破的危险。此外,还必须注意的是,在采用纯框架结构的高层建筑中,楼梯踏步斜梁和平台梁直接与框架柱相连时,应该避免该柱变成短柱的情况,这样才能有效的避免地震时发生剪切破坏。
4.结语
总之,在建筑结构的防震设计中,设计人员必须根据建筑的实际情况,结合地质环境,在经济与安全的综合考量下,设计出科学合理的防震方案,保证建筑物在相应的防震标准下进行施工,保证建筑的安全。
参考文献:
[1]寇秀梅.结构设计中的抗震设计问题[J].中国西部科技,2008(06).
[2]李智建,石延明.浅谈建筑结构设计中的抗震设计[J].科技资讯,2009(12).
[3]王翠坤,杨沈.汶川地震对建筑结构设计的启示[J].震灾防御技术,2008(03).
浅谈建筑工程结构加固技术
摘 要:随着时代的不断进步和经济的飞速发展,我国的城市化程度日益加深,这对我国未来的经济社会建设具有重大的意义和深远的影响。但是,随着城市化发展,人们对生活质量的要求越来越高,对房屋建筑的性能要求越来越全面,如舒适性、功能性、节能型等性能都成为建筑工程施工设计过程中不可忽视的问题。其中,建筑工程的质量尤其重要,加强对建筑工程结构加固技术的应用,找出适合的加固方法,提高建筑工程质量已经成为我国建筑工程施工过程中十分重要的环节,因此,我们必须要对其给予高度的重视,满足人们和社会的需求,以促进经济发展、提高人们生活水平。
关键词:建筑工程;结构加固技术;现状;方法
一旦建筑物因为一些原因而不能够继续满足某种功能的要求或者对满足某种功能的要求产生怀疑的时候,我们就必须对建筑物的整体结构或者建筑物结构的某一部分进行检测,当检测结果显示被检测的建筑物存在安全隐患时,就需要对该建筑物进行一定的加固处理,严重时甚至要进行拆除重建。在我国,约有三分之二的大城市都处于地震区,每次发生地震时都会对当地的建筑物造成十分严重的破坏,此外,随着我国城市化进程的发展,人口和建筑物的密集程度越来越高,发生火灾的频率也迅速增加,所引发的后果日益严重,这十分不利于人们的工作和生活。因此,加强对建筑工程加固技术的应用是时代背景下的一项基本要求。
一、我国建筑工程结构加固技术的发展现状
随着我国建筑行业的迅速发展,人们对建筑工程结构加固的要求越来越高,我国政府也对建筑工程施工方面给予了相对较高的关注。目前,我国已经颁布了一些相关的行为规范,包括《建筑抗震加固技术规程》、《混凝土结构加固技术规范》等,都对建筑工程施工过程中所采用的加固方法、所遵循的加固基本原则、所使用的加固材料、以及施工安全和工程验收等环节做出了十分明确的规定和要求。这能够在很大程度上促进和推动我国建筑工程结构加固技术的发展和应用。然而,由于人们大多都习惯了使用传统的加固经验,在混凝土结构加固实践中不能很好的做出改变,也没有从更深的层次对加固技术进行探索分析,导致我国的加固技术进步缓慢。这使得我国建筑工程加固技术仍然处于相对较为落后的传统工艺阶段,技术含量较低。
二、建筑工程结构加固的意义和原因
所谓建筑工程加固技术,就是指通过采用各种技术措施来提高建筑工程的质量和可靠性,使建筑物能够满足安全性、耐久性、适用性等要求。进行建筑工程结构加固的意义在于满足对建筑结构强度的要求,依据我国建筑工程施工规范的规定,建筑工程结构设计应该遵循极限状态设计的原则,混凝土结构必须满足结构应用要求,以确保其符合相关规定的刚性、强度和耐久性标准。
然而,由于各种各样的原因,导致建筑物难以完全符合人们的需求,建筑结构不得不进行加固处理。在我国常见的加固原因包括以下几个方面。第一,设计过程中存在缺陷。建筑工程设计人员设计过程中,虽然已经综合考虑了建筑结构安全及使用的各种影响因素,但在实际应用时,由于各个结构的独特性,使其难以将所有的因素都通过设计中所采用的数学模型表现出来。第二,勘察造成的缺陷。勘察人员在建筑工程施工前期会对建筑场地进行实地勘察,收集建筑基地的实际地形资料,以根据实际情况适当调整施工方法,保证建筑物的质量。但是,若不能真实反映勘察过程中的地基土和地下水情况,那么,将极可能造成建筑工程的缺陷。第三,施工过程中造成的缺陷。主要包括了施工队伍缺少专业系统的培训、人员素质低下、施工管理混乱等原因。此外,建筑物的不当使用、恶劣的环境、自然灾害等因素也会对建筑物造成破坏,使其不得不进行加固处理。
三、我国目前常用的建筑工程结构加固方法
(一)外包钢加固法
外包钢加固法的加固原理是:通过在建筑构件的两角或四角外包上型钢,使建筑构件的受力性能大大增强,从而实现加固的目的。这种加固方法有湿式和干式两种,一般湿式加固法效果更好。外包钢加固法具有操作简便,现场工作量小的优点,适用于不能增大建筑构件截面积却又要较大程度增强承载力的情况,例如钢筋混凝土柱、梁、腹杆的加固等。
(二)加大截面加固法
加大截面加固法,顾名思义,就是在建筑构件的外面外包混凝土,从而使建筑构件的横截面积大大增加,配筋量也大幅度提升,进而使建筑构件的承载能力得到增强的一种加固方法。这种方法在我国较为传统,加固工艺也十分简单,因此应用范围极广。一般在梁、板、柱、墙等混凝土结构的加固中都可使用这种方法。
(三)粘贴钢板加固法
这种加固方法的原理是用特制的建筑结构胶在混凝土构件表面粘贴钢板,令它们能够共同工作、整体受力,从而达到加固的目的,结构承载能力大幅度提升。粘贴钢筋加固法对建筑结构胶具有非常高的要求,其必须要满足粘结力强、强度高、耐老化、线膨胀系数小、弹性模量高等要求。
四、建筑工程加固方法的选择要点
目前,在我国常见的建筑工程结构加固技术有很多,它们各具特点,适用于不同的加固情况,对此,在进行加固方法的选择时,要仔细分析,进行可靠性鉴定,依据鉴定的结果和结构功能降低的原因,并综合考虑建筑结构布置特征、建筑主体结构传力承力特征、新增功能要求以及建筑物周围环境等各个方面的影响因素,以确保加固技术应用的结果能满足人们的实际需求。
五、结束语
建筑工程的质量关系到国家的经济发展和人们的生活安全,是社会民生的一个 热点 问题,受到了各界的广泛关注。而建筑结构的科学加固是建筑工程质量安全保障体系中的一个重要组成部分,因此,我们应该对建筑工程加固技术给予高度的重视。首先,严格遵守相关规范是最基本的要求。其次,要加强加固技术在建筑工程中的应用,选择合适的加固方法,确保建筑物的质量能够符合设计要求。最后,还要注重对建筑工程加固技术的创新和发展,这是在经济和科技不断进步的时代背景下促进建筑工程发展的一项基本要求,对我国的长远发展具有重要意义。
参考文献:
[1] 陈钢,饶亚飞.探讨建筑工程结构加固技术[J].城市建设理论研究(电子版),2015,5(12):912-913.
[2] 楚百磊,李智勇.建筑工程结构加固技术的探析[J].建筑工程技术与设计,2015(19):133-133.
[3] 李江涛.简述建筑工程结构加固技术[J].建筑工程技术与设计,2015(21):57-57.
1工程概况本项目位于深圳南山区的后海,坐落于深圳湾西侧、后海商业中心区东侧、深圳湾体育中心南侧、带状海滩公园北侧,占地面积约为38000m2,总建筑面积约为465000m2。其中,总部大楼建筑总高度为400m,地上66层,地下3层,建成后将成为整个项目发展区内最高的办公建筑,塔楼的外形呈现春笋造型,也从根本上引导了结构体系设计的方向。总部塔楼在地面以上未与其他裙楼联系,但由于下沉广场的分布,嵌固层在地下1层,结构分析设计主要参数为:设计基准期为50年,结构安全等级一级,为重点设防类;抗震设防烈度为7度(0.1g),地震分组为第一组,场地类别为Ⅲ类;基本风压为0.75kPa(50年一遇),风响应由风洞试验确定。另外,核心筒剪力墙的抗震等级从嵌固层下一层往上采用特一级,外框柱的抗震等级从嵌固层下一层至地面为特一级,地面以上为钢结构,抗震等级主要为二级。基础采用直径65m整体承台和2.5~4.5m大直径人工挖孔桩。2结构体系2.1结构选型结构选型经历了两个主要阶段。概念设计阶段建筑方案本身尚处于外形研究和比选之中,早期结构工程师配合建筑外形所开展的风工程初步研究。风工程研究比选了14个不同的建筑外形,最终在结合建筑、结构、幕墙及业主等各方考量后,确认采用圆形(春笋)造型进行设计。对春笋造型的结构体系进行了多方案综合比较,研究结果表明,若采用巨型结构设计,则抗侧力体系有效、核心筒墙厚较小等,但存在相应的竖向力的传力效率低、构件尺寸大、需要结构加强层、与建筑外形的协调程度不好、相应的施工周期长和造价较高等问题;而采用常规的疏柱框架设计,则也存在需要结构加强层、外框架无法与建筑纤细的竖向造型匹配、结构造价较高的问题。最终选用密柱框架-核心筒的结构体系。2.2密柱框架-核心筒结构体系本项目主体结构高度为331.5m,结构体系中的外部密柱框架和内部混凝土核心筒通过楼面结构协调而共同作用。竖向传力为通过水平梁将荷载传递到核心筒墙体和外框柱上,再向下传递到基础;水平抗力则由核心筒承担大部分的侧向剪力和抗倾覆力矩;密柱框架在保证柱尺寸满足建筑及幕墙设计要求的情况下可承担相应的侧向剪力及抗倾覆力矩。核心筒在首层的最大墙厚为1350mm,在高区最大墙厚为400mm,混凝土强度等级为C50~C60,局部楼层和墙肢根据设计需要配置型钢。从下至上除常规的墙肢收进外,结构布局经历了“大方形→切角→小方形”的变化,关键的核心筒局部变化三维图。密柱框架从下至上变化形式较为丰富,外框架立面,高67m的钢结构锥顶。其中办公区的外框柱采用梯形箱柱,梯形的最大轮廓尺寸约为400×635~400×480,钢材强度等级为Q390GJC/Q345GJC。关键核心筒局部变化三维图外框架立面本项目塔楼采用钢梁放射状布置的组合楼板体系,既可以减轻塔楼的整体重量,又便于施工,与钢框筒的连接较好,楼板的设计和构造考虑面内受力和传力的设计要求。典型楼层结构布置的bim模型如。3风洞试验及结构分析3.1风洞试验由于各风洞实验室使用不同的试验仪器及分析方法,为确保总部塔楼结构设计安全可靠、经济合理及保证风洞试验结果的合理性及安全性,本项目分别在RWDI和华南理工大学风洞实验室进行了独立试验。RWDI风洞试验在10年回归期、1.5%阻尼比情况下建筑顶部风振加速度为0.24m/s2(考虑台风)和0.09m/s2(不考虑台风);华南理工大学的风洞试验表明,顶部最大风振加速度为0.19m/s2(考虑台风),也可以满足《高层建筑混凝土结构技术规程》(JGJ3—2010)(简称高规)的风振舒适度要求。3.2结构分析本项目采用了ETABS9.7.4与MIDAS/Gen8.0两个不同结构软件进行了整体计算分析复核,各项主要指标基本一致。塔楼的等效重量约为13.5kN/m2,其中结构自重占70%,另外由于外框钢结构较轻,核心筒占结构自重的60%左右。塔楼基本周期为6.62s,小震作用下,结构最小剪重比为1.1%。略不满足1.2%的限值,需通过内力调整进行构件设计。结构最大层间位移角和最大位移,最大层间位移角曲线,由图可见,结构的最大层间位移角可以满足高规的要求。剪重比曲线最大层间位移角曲线小震作用下,密柱框架在结构底部和顶部可分担超过10%的地震剪力,在中部分担的剪力比较少,但分担比例平均超过7%,且分担剪力比例最小(不低于4%)。密柱框架的结构设计按照高规,以不满足最大楼层分担10%地震剪力的要求进行保守设计,保证外框架的设计地震力;同时结构最大层间位移角和最大位移方向X向Y向小震最大层间位移角(所在楼层)1/1145(52层)1/1135(52层)最大位移/mm23122850年风荷载最大层间位移角(所在楼层)1/621(52层)1/628(52层)最大位移/mm437423小震作用下外框架内力分担比例为了保证核心筒的安全,构件验算时将核心筒地震作用下的剪力放大1.1倍进行设计。除了上述计算指标外,弹性分析成果还包括楼层刚度比、刚重比、位移比、构件和楼板受力情况分析及应变能阻尼比方法的研究等,不再一一赘述。结构弹性分析表明:1)塔楼的层间位移角、刚重比、剪重比计算结果证明塔楼的抗侧刚度适宜,可以满足设计要求;2)由周期比和位移比计算结果可知,塔楼的扭转刚度很好;3)根据结构受力的特点及其余各项分析,说明塔楼在竖向及侧向力作用下内力分布明晰,符合力学原理和结构设计概念。后续构件设计及抗震加强措施,也反映了结构分析对于结构在竖向和水平荷载作用下的表现和特征。4结构抗震设计关键问题4.1结构体系论证从结构的弹性分析结果可见,外框架的剪力分担比例比传统的框架-核心筒超高层结构低,特别是密柱框架低区的局部楼层仅分担4%的地震剪力,这是由于在配合建筑方案的过程中要求外框架为小截面的钢结构柱,因此外框架抗剪刚度有限。在本项目的设计和抗震超限审查过程中,主要从以下方面进行设计和论证,并得到了抗震审查专家的认可。4.1.1外框架“尽其所能”的设计由于建筑方案本身的要求,结构需配合建筑和幕墙的造型进行一体化设计,而不是分离开独自考虑,这个前提限制了结构外框柱的尺寸不能太大。因此,外框架的“尽其所能”主要表现为:1)配合建33筑和幕墙对柱的尺寸要求;2)外框柱的承载力尽量充分利用;3)外框梁、柱的抗侧刚度尽量利用。由于一般外框架结构的用钢量占总用钢量的大部分,因此外框架“尽其所能”的设计可大大改善结构的经济性。4.1.2外框架剪力和倾覆力矩分担变化控制根据框剪结构抗震设计多道设防的基本理念:首先,预期大震作用下,核心筒的连梁需要作为第一道防线耗能,从而减小整体的地震力;其次,在整体地震力减小的前提下,外框架承担的地震力不能随之下降,合理的抗震设计可使外框架承担地震力水平与大震弹性计算结果基本相等甚至有所提升;最后,通过连梁及外框架的协助,核心筒剪力墙的受力得到大幅度的降低,从而真正地保护核心筒。大震作用下外框架内力分担见。大震作用下外框架内力分担比例。4.1.3外框架及核心筒抗震性能设计虽然本项目外框架的弹性剪力分担比例可以满足高规9.1.11条的规定,即外框架楼层剪力分担比例最大值不小于10%,但实际的构件设计还是按照不能满足该条规定进行外框架和核心筒的加强,同时从抗震性能设计上也有所考虑:1)本工程整体结构的抗震性能目标定为高于性能C的水平;2)结合结构的特点和设计理念,核心筒作为主要的抗侧向力构件,有能力承担所有的侧向力,因此抗震性能水准高于C级对关键构件的要求;3)与传统将外框梁作为耗能构件设计的理念不同,本项目充分利用钢结构后期良好的延性能力,将外框钢梁的性能目标适当提高至关键构件,目的是确保外框架作为一个整体能在大震下分担必要的剪力和倾覆力矩,同时加强对小截面外框柱的约束。4.1.4大震弹塑性分析确认结构抗震性能采用LS-DYNA软件,第三方团队采用ABAQUS软件进行独立的大震弹塑性分析,以对结构的抗震性能进行分析和确认,分析结果表明:在大震作用下,整体结构最大层间位移角小于1/100,可以满足大震不倒的基本要求;主要外框架大部分构件并未屈服,性能水准均能得到满足,外框架在大震作用下整体完好;核心筒连梁充分进入塑性,起到耗能的作用,同时满足性能目标;剪力墙混凝土压应变及分布钢筋的拉应变水平都较低。4.1.5结构抗倒塌分析论证安全性和破坏过程大震弹塑性分析表明,整体结构在预定大震作用下可以实现抗震性能目标,但按照抗震审查专家的意见,补充了风荷载和地震作用两种不同侧向力分布模式下的推覆分析,以分析结构可能的破坏过程和潜在的薄弱部位,进一步论证结构的安全性和结构体系的可靠性。分析结果表明:在两种不同的侧向力作用下,结构的损伤均从连梁开始,严重的破坏均从核心筒受压墙肢的压屈开始,从而导致结构的倒塌,并且受压墙肢被压坏时,外框基本完好。根据弯曲型结构的受力特征,从最终的倾覆力矩看,本项目塔楼具有很大的安全度,可以实现超过7度(0.15g)大震不倒的设计。4.2梁柱偏心设计由于业主以及建筑师对室内使用空间的要求较高,办公室内部需要做到无柱的建筑效果,因此为了配合建筑效果的实现,本项目的梁柱节点采用完全偏心的节点连接形式,即外环梁与外框钢柱连接时,外环梁位于钢柱的内侧。典型的梁柱全偏心节点梁柱完全偏心节点在国外非抗震地区的多层建筑中已有应用,但是在国内抗震区的超高层建筑上尚属首次采用。该偏心节点与常规对心梁柱43节点相比,环梁偏出外框钢柱的范围内节点的连接构造需要针对此特殊的建筑条件进行设计。整个节点的设计,需要采用系统化的理念,除了理论的分析和设计外,后续将开展节点性能的试验以进一步论证。本项目所采用的主要设计理念:1)偏心节点导致节点区应力分布不均匀,节点构造设计应在传力概念的基础上,确保各板件之间的连续性、连接的可靠性以及施工的可行性。满足抗震承载力设计要求的典型偏心节点的构造;2)由于梁偏心布置,梁对柱的约束条件与常规对心梁柱节点有所不同,需要研究偏心节点对柱的整体和局部稳定性进行分析和确认;3)由于塔楼全楼节点均采用此偏心节点,而偏心节点与常规对心节点相比,节点刚度有所削弱,故在塔楼的整体分析时,需要考虑节点刚度对塔楼整体指标的影响。典型偏心节点的构造具体的设计思路是:1)通过整体的模型分析得到每个自由度节点刚度对结构主要分析指标的敏感性曲线,然后通过节点有限元分析确认节点刚度的大致位置,从而评估节点刚度的影响,环梁方向节点刚度敏感性分析。本项目的偏心节点试验已于2014年8月份在清华大学实验室完成,并进行了专家论证,试验结果表明本次节点试验满足结构设计要求,承载力、延性和刚度达到预期目标。4.3核心筒斜墙过渡设计由于本项目特殊,核心筒需要在48~51层收进,考虑到上部结构的重量已经比较小,结构设计采用了四面斜墙过渡的解决方案,为此开展了详细的专题设计和研究,以确保结构设计的安全性。4.3.1斜墙区传力机制研究斜墙区的水平荷载传力机制与常规的设计差别并不大,主要是竖向荷载传递时的水平分量如何设计。经分析,竖向力水平分量的传力机制,竖向力水平分量大部分通过核心筒的内部自平衡传递,而小部分(不到10%)通过楼板传递至外框架,这是由于本项目外框架的抗侧刚度不大,以及外框架本身的环箍约束能力有限所致。4.3.2斜墙区构件承载力设计对于斜墙区的构件,分别从非抗震、小震、中震以及大震各阶段进行详细的应力分析和设计,确保传力途径上主要构件的承载力安全性。4.3.3斜墙区构件刚度设计对于以钢筋混凝土构件为主的结构设计,除了保证构件传力的承载力安全性,尚应进一步分析构件在受拉情况下的刚度退化对局部区域原定传力机制的影响,从而确保结构内力重分布的程度是安全可控的。对于该区域而言,分析表明,最需要特别设计的为连梁的轴向刚度,为此根据重分布内力可控的原则,对于受拉开裂的构件,如连梁、关键水平梁,以及剪力墙与楼板相连的环向区域等进行了内置钢板的加强设计。4.4超高层建筑剪力墙拉剪分析与设计超高层建筑在受到较大水平荷载作用时,整体主要呈弯曲型的变形和受力,当水平荷载足够大时,结构的竖向荷载就有可能抵消不了因倾覆力矩产生的拉力,从而令柱或者墙体受拉。对于钢筋混凝土构件而言,受拉会产生两个方面的问题:1)局部构件刚度的退化可能导致过大的内力重分布,如果内力重分布无法被合理地估算,那么会影响设计的安全性;2)剪力墙等构件在全截面受拉时,除了斜截面受剪承载力需要设计,全截面开裂有可能影响剪力墙的剪切承载力。4.4.1剪力墙拉剪非线性分析本项目采用LS-DYNA软件进行结构的非线性分析,其中剪力墙单元采用精细壳元模型,混凝土本构则直接采用二维混凝土本构(Darwin-Pecknold模型),该材料本构采用转动裂缝模型,设定合适的剪切传递系数。为联肢墙的测试模型,其中一个墙肢为弹性,另一个为弹塑性,两墙肢通过刚臂连接,分析水平荷载作用下墙肢内的剪力随剪切刚度的变化而变化的情况,联肢墙剪力重分布过程。由测试案例的分析结果可见,在弹性阶段,两个墙肢的剪力相等,但是随着弹塑墙肢进入塑性程度的加深,即开裂后,它所能分担的剪力缓缓下降,减少的剪力以及增加的外力均转移至弹性墙肢上,可联肢墙的测试模型联肢墙剪力重分布过程见LS-DYNA软件对于剪力墙拉剪的模拟与力学概念是一致的。对于本项目的塔楼而言,由于处于7度区,核心筒的开裂情况并不严重,且在大震弹塑性分析过程中,采用敏感性分析的理念,通过研究钢筋、型钢等对剪力墙弥散裂缝模型剪力传递系数的影响,论证了结构本身的抗震性能是可以保证的,并且拉剪墙肢开裂的内力重分布效应得到了充分地考虑。4.4.2拉剪剪力墙设计问题根据文献,钢筋混凝土构件受拉弯作用时,拉力对构件的抗剪承载力有影响,且对于大偏拉构件,高规的计算公式已经考虑拉力的影响,对于小偏拉构件,试验和理论分析表明,由轴拉力引起的斜截面抗剪强度降低值不会超过纯弯构件混凝土抗剪承载力的70%,现有偏心受拉构件的抗剪承载力机制和计算是可行的,但是需要特别指出的是,设计公式适用于裂缝宽度不太大的情况。对于小偏拉水平开裂通缝的抗剪滑移验算,通常可以采用两种方法考虑:1)水平滑移的剪切由剪力墙内置的钢板或部分剪力由X形交叉钢筋承担;2)考虑型钢和纵向钢筋的作用,包括暗栓作用。这两种方式都可以实现水平截面的抗滑移设计,但尚应考虑钢材和钢筋的纵向应力水平的影响。另外,剪力墙为小偏拉构件时,控制合理的拉应力水平确保纵筋不被拉断,以及采用适合剪力墙拉剪内力重分布的分析方法是有必要的。4.4.3中震标准组合下墙肢拉应力本项目塔楼所有墙肢在小震和50年风荷载作用下截面无平均拉应力,在中震标准的组合下,墙肢仅底部和顶部少量具有拉力,且平均拉应力水平小于混凝土受拉开裂应力ftk,本项目塔楼的核心筒拉应力水平较低。本项目由于建筑方案本身的特点和要求,对结构设计提出了很高的挑战,结构设计和技术研究也与常规超高层建筑对于抗震不规则的设计要求不同,为此创新性地采用了内外结构整体共同协调作用的抗震理念进行结构体系设计,同时用系统性结构设计的方法进行抗震关键点的专题设计和论证。由于篇幅有限,不能对结构设计中其余的技术重难点如地基和基础设计、大型空间斜交节点设计、塔冠结构方案和设计、外框钢结构的整体和局部稳定性分析、楼板应力分析、施工方案模拟、结构分析和构件设计及抗震措施等展开详细介绍。以上结构体系下的高层建筑论文由中达咨询搜集整理更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
247 浏览 4 回答
221 浏览 2 回答
88 浏览 3 回答
330 浏览 5 回答
291 浏览 4 回答
245 浏览 3 回答
326 浏览 2 回答
227 浏览 3 回答
290 浏览 3 回答
309 浏览 3 回答
108 浏览 5 回答
119 浏览 2 回答
205 浏览 3 回答
216 浏览 3 回答
81 浏览 2 回答