未来广泛应用的新能源 ---生物质能与核能能源是人类藉以克服困难,维持生存的原动力,譬如太阳给我们光热,风吹动风车可以发电,燃烧汽油可用以推动汽车,使用瓦斯可以烹调、取暖,凡此种种如太阳、风、汽油、瓦斯等都是能源。近年来,无论核分裂、核融合和太阳能的研究发展,均呈现出一片蓬勃景象,但今日能源供应市场燃料其蕴藏量有限且日益枯竭、分布不均,使用时又污染严重,鉴於目前已经投置的生产设备和应用技术,预计主能源维持在能源主流的地位直至本世纪之末,因此人类当务之急便是寻求更好用的燃料,并加紧改良现有能源的利用技术。下面是未来应用较广泛的两种新能源。一、新能源之生物质能 生物质能是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。 而所谓生物质能,就是太阳能以化学能形式贮存在生物质中的能 量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可 转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。生物质能的原始能量来源于太阳,所以从广义上讲,生物质能是太阳能的一种表现形式。目前,很多国家都在积极研究和开发利用生物质能。生物质能蕴藏在植物、动物和微生物等可以生长的有机物中,它是由太阳能转化 而来的。 1、生物质能的特点1) 可再生性生物质属可再生资源,生物质能由于通过植物的光合作用可以再生,资源丰富,可保证能源的永续利用; 2) 低污染性生物质的硫含量、氮含量低; 生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量, 因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应; 3) 广泛分布性 缺乏煤炭的地域,可充分利用生物质能; 4) 生物质燃料总量十分丰富。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的十倍。 2、生物质能的分类依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等。林业生物质资源是指森林生长和林业生产过程提供的生物质能源,包括薪炭林、在森林抚育和间伐作业中的零散木材、残留的树枝、树叶和木屑等。农业生物质能资源是指农业作物;农业生产过程中的 废弃物,如农作物收获时残留在农田内的农作物秸秆。工业有机废水主要是酒精、酿酒、制糖、食品、制药、造纸及屠宰等行业生产过程中排 出的废水等,其中都富含有机物。 城市固体废物主要是由城镇居民生活垃圾,商业、服务业垃圾和 少量建筑业垃圾等固体废物构成。 3、生物质能的利用 生物质能一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居 于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。 目前人类对生物质能的利用,包括直接用作燃料的有农作物的秸秆、薪柴等;间接作为燃料的有农林废弃物、动物粪便、垃圾及藻类等,它们通过微生物作用生成沼气,或采用热 解法制造液体和气体燃料,也可制造生物炭。生物质能是世界上最为广泛的可再生能 源,现代生物质能的利用是通过生物质的厌氧发酵制取甲烷,生物油和生物炭,用生物质制造乙醇和甲醇燃料,以及利用生物工程技术培育能源植物,发展能源农场。 4、生物质能对中国的意义中国是一个人口大国,又是一个经济迅速发展的国家,21 世纪将面临着经济增长和环境保护的双重压力。因此改变能源生产和消费方式,开发利用生物质能等可再 生的清洁能源资源对建立可持续的能源系统,促进国民经济发展和环境保护具有重大意义。开发利用生物质能对中国农村更具特殊意义。中国 80%人口生活在农村,秸秆和薪柴等生物质能是农村的主要生活燃料。尽管煤炭等商品能源在农村的使用迅速增加,但生物质能仍占有重要地位。1998 年农村生活用能总量 3.65 亿吨标煤,其中秸秆和薪柴为 2.07 亿吨标煤,占 56.7%。因此发展生物质能技术,为农村地区提供生活和生产用能,是帮助这些地区脱贫致富,实现小康目标的一项重要任务。 二、新能源之核能 核能是核裂变能的简称。多年以前50科学家在的一次试验中发现铀-235 原子核在吸收一个中子以后能分裂,在放出 2—3 个中子的同时伴随着一种 巨大的能量,这种能量比化学反应所释放的能量大的多,这就是我们今天 所说的核能。核能的获得途径主要有两种,即重核裂变与轻核聚变。核聚 变要比核裂变释放出更多的能量。例如相同数量的氘和铀-235 分别进行聚 变和裂变,前者所释放的能量约为后者的三倍多。被人们所熟悉的原子弹、 核电站、核反应堆等等都利用了核裂变的原理。只是实现核聚变的条件要 求的较高,即需要使氢核处于几千万度以上的高温才能使相当的核具有动 能实现聚合反应。1、核能利用— 核电站目前化石燃料在能源消耗中所占的比重仍处于绝对优势,但此种能源 不仅燃烧利用率低,而且污染环境,它燃烧所释放出来的二氧化碳等有害气体容易造成 "温室效应",使地球气温逐年升高,造成气候异常,加速土地沙漠化过程,给社会经济的可持续发展带来严重影响。与火电厂相比, 核电站是非常清洁的能源,不排放这些有害物质也不会造成"温室效应", 因此能大大改善环境质量,保护人类赖以生存的生态环境。 世界上核电国家的多年统计资料表明,虽然核电站的投资高于燃煤电厂,但是,由于核燃料成本远远地低于燃煤成本,相反核燃料反应所释放 的能量却远远高于化石燃料燃烧所释放出来的能量,而且核燃料取之不皆,这就使得目前核电站的总发电成本低于烧煤电厂。 2、核能发电优点 :1)、核能发电不像化石燃料发电那样排放巨量的污染物质到大气中,因此核能发电不会造成空气污染。2)、核能发电不会产生加重地球温室效应的二氧化碳。3)、核燃料能量密度比起化石燃料高上几百万倍,故核能电厂所使用的 燃料体积小,运输与储存都很方便,一座 1000 百万瓦的核能电厂一年只需 30 公吨的铀燃料,一航次的飞机就可以完成运送。5)、核能发电的成本中,燃料费用所占的比例较低,核能发电的成本较 不易受到国际经济情势影响,故发电成本较其他发电方法为稳定。 3、核能发电缺点 :核能电厂会产生高低阶放射性废料,或者是使用过之核燃料,虽然 所占体积不大,但因具有放射线,故必须慎重处理,且需面对相当大的政 治困扰。 核能发电厂热效率较低,因而比一般化石燃料电厂排放更多废热到 环境裏,故核能电厂的热污染较严重。核能电厂投资成本太大,电力公司的财务风险较高。核能电厂较不适宜做尖峰、高峰之随载运转。兴建核电厂较易引发政治歧见纷争。核电厂的反应器内有大量的放射性物质,如果在事故中释放到外界 环境,会对生态及民众造成伤害。4、中国核能发展的趋势核电站只需消耗很少的核燃料,就可以产生大量的电能,每千瓦时电能的成本比火电站要低20%以上。核电站还可以大大减少燃料的运输量。例如, 一座 100 万千瓦的火电站每年耗煤三四百万吨,而相同功率的核电站每年 仅需铀燃料三四十吨。核电的另一个优势是干净、无污染,几乎是零排放,中国正在加大能源 结构调整力度。积极发展核电、风电、水电等清洁优质能源已刻不容缓。中国能源结构仍以煤炭为主体,清洁优质能源的比重偏低。 中国目前建成和在建的核电站总装机容量为870万千瓦,预计到2010 年中国核电装机容量约为 2000万千瓦,到 2050 年,根据不同部门的估算,中国核电装机容量可以分为高中低三种方案。中国国家发展改革委员会正在制定中国核电发展民用工业规划,准备到2020年中国电力总装机容量预计为9亿千瓦时,核电的比重将占电力总容量的4%,即是中国核电在2020年时将为3600-4000万千瓦。 从核电发展总趋势来看,中国核电发展的技术路线和战略路线早已明确并正在执行,当前发展压水堆,中期发展快中子堆,远期发展聚变堆。具体地说就是,近期发展热中子反应堆核电站;为了充分利用铀资源,采用铀钚循环的技术路线,中期发展快中子增殖反应堆核电站;远期发展聚变堆核电站,从而基本上“永远”解决能源需求的矛盾。人口增加,每人耗费的能源用量也不断升高,但自然界的能源蕴藏并非无穷,与传统能源逐渐枯竭之际,对各种形式再生能源的开发研究正被各国重视,现今社会人类终於体悟到能源不容我们的任意挥霍,因此除了积极开发新能源、改善能源利用的效率外,也应研究如何在不降低生活水准、不减缓工业发进步及经济成长的前题下,努力节约能源。
核聚变反应堆的原理很简单,只不过对于人类当前的技术水准,实现起来具有相当大的难度。 物质由分子构成,分子由原子构成,原子中的原子核又由质子和中子构成,原子核外包覆与质子数量相等的电子。质子带正电,中子不带电。电子受原子核中正电的 吸引,在"轨道"上围绕原子核旋转。不同元素的电子、质子数量也不同,如氢和氢同位素只有1个质子和1个电子,铀是天然元素中最重的原子,有92个质子和 92个电子。 核聚变是指由质量轻的原子(主要是指氢的同位素氘和氚)在超高温条件下,发生原子核互相聚合作用,生成较重的原子核(氦),并释放出巨大的能量。1千克氘全部聚变释放的能量相当11000吨煤炭。其实,利用轻核聚变原理,人类早已实现了氘氚核聚变---氢弹爆炸,但氢弹是不可控制的爆炸性核聚变,瞬间能量释放只能给人类带来灾难。如果能让核聚变反应按照人们的需要,长期持续释放,才能使核聚变发电,实现核聚变能的和平利用。 如果要实现核聚变发电,那么在核聚变反应堆中,第一步需要将作为反应体的氘-氚混合气体加热到等离子态,也就是温度足够高到使得电子能脱离原子核的束缚,让原子核能自由运动,这时才可能使裸露的原子核发生直接接触,这就需要达到大约10万摄氏度的高温。 第二步,由于所有原子核都带正电,按照"同性相斥"原理,两个原子核要聚到一起,必须克服强大的静电斥力。两个原子核之间靠得越近,静电产生的斥力就越 大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力(强作用力)才会伸出强有力的手,把它们拉到一起,从而放出巨大的能量。 质量轻的原子核间静电斥力最小,也最容易发生聚变反应,所以核聚变物质一般选择氢的同位素氘和氚。氢是宇宙中最轻的元素,在自然界中存在的同位素有: 氕、氘 (重氢)、氚 (超重氢)。在氢的同位素中,氘和氚之间的聚变最容易,氘和氘之间的聚变就困难些,氕和氕之间的聚变就更困难了。因此人们在考虑聚变时,先考虑氘、氚之间 的聚变,后考虑氘、氘之间的聚变。重核元素如铁原子也能发生聚变反应,释放的能量也更多;但是以人类目前的科技水平,尚不足满足其聚变条件。 为了克服带正电子原子核之间的斥力,原子核需要以极快的速度运行,要使原子核达到这种运行状态,就需要继续加温,直至上亿摄氏度,使得布朗运动达到一个疯狂的水平,温度越高,原子核运动越快。以至于它们没有时间相互躲避。然后就简单了,氚的原子核和氘的原子核以极大的速度,赤裸裸地发生碰撞,结合成1个氦原子核,并放出1个中子和17。6兆电子伏特能量。 反应堆经过一段时间运行,内部反应体已经不需要外来能源的加热,核聚变的温度足够使得原子核继续发生聚变。这个过程只要将氦原子核和中子及时排除出反应 堆,并及时将新的氚和氘的混合气输入到反应堆内,核聚变就能持续下去;核聚变产生的能量一小部分留在反应体内,维持链式反应,剩余大部分的能量可以通过热 交换装置输出到反应堆外,驱动汽轮机发电。这就和传统核电站类似了。 核聚变消耗的燃料是世界上十分常见的元素--氘(也就是重氢)。氘在海水中的含量还是比较高的,只需要通过精馏法取得重水,然后再电解重水就能得到氘。新 的问题出现了,仅仅有氘还是不够的,尽管氘-氘反应也是氢核聚变的主要形式,但我们人类现有条件下,根本无法控制氘-氘反应,它太猛烈了,所需要的温度要 高得多,除了在实验室条件下做一次性的实验外,很难让它链式反应下去--那是氢弹一样的威力。还好,人们发现了氘-氚反应的烈度要小很多,它的反应速度仅 仅是氘-氘反应的100分之一,而点火温度反倒低得多,很适合人类现有条件下的利用。 而氚不同于氘,氚是地球上最稀有的元素,由于氚的半衰期只有12。26年,所以在地球诞生之初的氚早已衰变地无影无踪了。现在人类的氚都是人工制造而非天然提取的,人们通常用重水反应堆在发电之余人工制造少量的氚-- 它是地球上最贵的东西之一,一克氚价值超过30万美元,仅在美国保存有30公斤左右的氚。这 么贵的原料,用作核聚变发电显然是无法接受的,幸好上帝给人类又提供了一种好东西--锂。锂元素也是世界上最丰富的资源,有2000多亿吨。一方面海水中 就包含足够的氯化锂,分离出来即可。另一方面,中国是世界锂资源最丰富的国家,碳酸锂矿也不是稀有资源,更容易获得。锂的2种同位素--锂-6和锂-7, 在被中子轰击之后,就会裂变,他们的产物都是氚和氦,目前为止人类在重水反应堆中制造氚,用的就是将锂靶件植入反应堆的方法。 在聚变反应堆内,氚和氘反应后,除了形成一个氦原子核之外,还有一个多余的中子,并且能量很高。我们只需要在核聚变的反应体之内保持一定比例的锂原子核浓 度,那么核聚变产生的中子就会轰击锂核,促使锂核裂变,产生一个新的氚,这个氚则继续参与氚-氘反应,继而产生新的中子,链式反应形成了。所以,理论上我 们只需要给反应体提供两种原料--氘和锂,就能实现氘-氚反应,并且维持它的进行。 看起来很简单是吧,只是还有一个问题,能够承载上亿摄氏度超高温反应体的核反应堆用什么材料来制造呢?要知道,太阳表面的温度也才只有6000万度左右。 迄今为止,人类还没有造出任何能经受1万摄氏度高温的材料,更不要说上亿摄氏度了。以上这些因素就是为什么一槌子买卖的氢弹已经爆炸了50年后,人类还是 没能有效地从核聚变中获取能量的重要原因。 帖子附图: 中国核聚变研究巨大突破:耗资惊人的人造“太阳”计划 作者:柏弧紫 于 2009-08-28 08:19:46 发表 只看该作者 位于四川省成都市双流县白家镇,核工业西南物理研究院聚变研究试验基地的"中国环流器2号A装置" 2006年9月28日,中国耗时6年、耗资3亿元人民币自主设计制造的新一代托卡马克磁约束核聚变装置"EAST"首次成功完成放电实验,获得电流200千安、时间接近3秒的高温等离子体放电;使EAST成为世界上第一个建成并真正运行的"全超导非圆截面托卡马克"核聚变实验装置。这是中国可控核聚变研究的里程碑式突破。 在古希腊神话中,普罗米修斯从太阳神阿波罗处盗下的天火,照亮了人类的黑夜。在人类现代科技中,可控核聚变技术将照亮人类能源的未来之路,由于可控核聚变反应堆产生能量的方式和太阳类似,因此它也被俗称为"人造太阳"。 太阳是热核聚变反应的典型代表,1938年,美国科学家贝特(H。Bethe)和德国科学家魏茨泽克(C。F。v。Weizsacker)推测太阳能源可 能来自它的内部氢核聚变成氦核的热核反应,这甚至早于核裂变模型的提出。太阳的核心温度高达1500万摄氏度,表面有6000度,压力相当于2500亿个 大气压。核心区的气体被极度压缩至水密度的150倍。在这里每时每刻都发生着热核聚变,太阳每秒钟把七亿吨的氢变为氦,在这过程中失去400多万吨的质量,这种聚变反应已经持续了几十亿年,它的辐射能量给地球带来无限生机。 世界能源危机 自人类进入工业化以来,世界能源消耗迅速增长。有数据显示,自1973年以来,人类已经开采了5500亿桶石油(约合800亿吨),按照现在的开采速度, 地球上已探明的1770亿吨石油储量仅够开采50年,已探明的173万亿立方米天然气仅够开采63年;已探明的9827亿吨煤炭还可以用300年到400 年。核电站发电需要浓缩铀,世界上已探明的铀储量约490万吨,钍储量约275万吨,全球441座核电站目每年需要消耗6万多吨浓缩铀,地球上的铀储量仅 够使用100年左右。世界各国水能开发也已近饱和,而风能、太阳能尚无法满足人类庞大的需求。 随着石油价格上涨,能源危机再次被提起,各国也加快了新能源研发,核聚变能就是重点之一。与传统的裂变式核电站相比,核聚变发电具有明显的优势。核聚变所 用的重要核燃料是氘,理论上,只需1千克氘和10千克锂(通过锂可得到氘)就可以保证一座百万千瓦聚变核电站运转一天,而传统核电站和火力发电站至少需要 100千克铀或1万吨煤。制取1千克浓缩铀的费用是1。2万美元,而制取1千克氘的费用只有300美元。一座100万千瓦的核聚变电站,每年耗氘量只需304千克;而一座百万千瓦裂变式核电站,需要30-40吨核燃料。 氘的发热量相当于同等煤的2000万倍,是海水中大量存在的元素。据测算,海水中大约每600个氢原子中就有一个氘原子,每1公升海水中含有0。03克的 氘,通过核聚变反应产生的能量,相当于燃烧300公升的汽油。就是说,"1升海水约等于300升汽油"。地球上的海水总量约为138亿亿立方米,其中氘的 储量约40万亿吨,足够人类使用百亿年。锂是核聚变实现纯氘反应的过渡性辅助"燃料",地球上的锂储量有2000多亿吨,海水中的氘再加上锂至少够我们地 球用上千亿年。氚虽然在自然界比氘少得多,但可从核反应中制取,也可用于热核反应。科学家们正在以海水中的氘为主要原料,进行核聚变反应试验,以期建立可 以投入商业运营的热核聚变反应堆,彻底解决人类未来的能源问题。 更为可贵的是核聚变反应是清洁能源,中几乎不存在放射性污染,核裂变的原料本身带有放射性,而核聚变反应过程中,在任何时刻都只有一丁点的氘在聚变, 无需担忧失控的危险,而且也不会产生放射性的物质。即使像切尔诺贝利核电站那样发生损坏,核聚变反应堆也会自动立即中止反应,因此受控核聚变产生的能量名 符其实是一种无限、清洁、成本低廉和安全可靠的新能源。在这一系列的动力下,核聚变的研究已经持续了半个多世纪。核聚变反应堆工作原理与其他能源相比,核聚变反应堆有几项显著的优点,因而一直备受媒体的关注。它们的燃料来源十分充足,辐射泄漏也处于正常范围之内,与目前的核裂变反应堆相比,其放射性废物更少。 然而迄今为止,还没有人将这一技术应用到实践中,但建造这种反应堆实际上已为期不远。目前,核聚变反应堆正处于试验阶段,世界各个国家及地区的多个实验室都开展了这项研究。 氘-氘反应——两个氘原子结合,生成一个氦3原子和一个中子。 氘-氚反应——一个氘原子和一个氚原子结合,生成一个氦4原子和一个中子。其中大部分能量以高能中子的形式释放。从概念上讲,利用反应堆中的核聚变十分容易。但为了让这一反应以可控、无害的方式进行,科学家们历经周折。为了了解其中的缘由,我们需要先看一下发生核聚变的必要条件。 当氢原子聚合时,它们的原子核必须结合在一起。然而,由于每个原子核中的质子都带有相同的电荷(正电),因而会互相排斥。如果您曾试着将两块磁铁放在一起并感到它们互相推开,则意味着您已亲身体验了这一原理。 若要实现核聚变,需要创造一些特殊的条件来克服这种排斥力。下面是发生核聚变的一些必要条件: 高温——高温可为氢原子提供足够的能量,以克服质子之间的电荷排斥。 核聚变需要的温度约为1亿开(约是太阳核心温度的六倍)。 在这样的高温下,氢的状态为等离子体,而不是气体。等离子体是物质的一种高能状态,其中所有电子都从原子中剥离出来,并可以自由移动。 太阳的高温是由重力压缩核心的巨大质量而产生的。我们要制造出这样的高温,就必须利用微波、激光和离子粒子的能量。 高压——压力可将氢原子挤在一起。氢原子之间的距离必须在1x10-15米以内,才能进行聚合。 太阳利用其质量和重力将核心内的氢原子挤压在一起。 我们要将氢原子挤压在一起,必须使用强大的磁场、激光或离子束。借助目前的技术,我们只能实现发生氘-氚聚变所需的温度和压力。氘-氘聚变需要的温度更高,这种温度有可能在将来实现。基本上,利用氘氘聚变会更加方便,因为从海水中提取氘比从锂中提取氚要更加容易。另外,氘不具有放射性,而且氘氘反应可释放更多的能量。 有两种方法可实现发生氢聚变所需的温度和压力: 磁约束使用磁场和电场来加热并挤压氢等离子体。法国的ITER项目使用的就是这种方法。
当前世界经济正处于新一轮经济周期的上升期。今后5年~10年,世界经济发展速度将快于上世纪80年代~90年代。中国、印度、俄罗斯和巴西等发展中大国的先后崛起,将加速国际经济关系调整与格局演进,多极化趋势将日趋明显。美国经济“双赤字”,使世界经济发展失衡。美元贬值、油价飙升,使全球经济风险加大,但世界经济整体趋势依然向好。去年,世界经济增长近5%,为近30年来最好。今年,受欧元区和日本经济疲软的影响,全球产出增幅将放缓。美国经济依然是世界经济的引擎。国际机构和经济学家普遍认为,美国经济将持续稳健扩张。虽然受到高油价冲击,又面临财政和贸易“双赤字”,但美国经济的内生性强,增长势头不会改变。原因是:1。企业投资强劲复苏,居民消费持续增长。2。低利率时代虽然结束,但宏观环境依然宽松。3。“新经济”虽然缺乏新动力,但活力再现。加之奥巴马政府的持续减税、弱势美元和油价适度回落等等,均有利于美国经济持续扩张。日本受福岛核危机,经济衰退复苏步履维艰。去年,国际机构普遍看好日本经济。今年上半年日本经济处于停止状态,下半年可能恢复增长。然而,日本经济复苏依靠的不是内需而是外贸。因为,目前仅靠内需尚难支撑日本经济复苏。可见,当前日本经济基础依然脆弱。一是油价飙升对经济影响开始显现;二是国内需求依然不旺;三是经济发展严重依赖出口。欧元区经济增长缓慢,但复苏势头尚能维持。欧元区经济在连续两年低迷后,去年增长2%,虽低于IMF估计的2.2%但仍是近4年来最好的欧元的被动持续升值。油价居高难下,开始影响欧元区经济复苏亚洲经济增长触顶回落,但仍是全球最快的地区。该地区宏观经济基本稳定,区内合作效应凸显,互利共赢格局正在形成,发展趋势是:东亚地区将持续较快增长,“四小龙”则适度扩张;东南亚经济将稳步复苏,越南成为佼佼者;南亚经济增长势头不弱,印度成为地区领头羊;中亚经济恢复性高增长,但资源型经济风险将增大。在未来数年中,亚洲将在全球经济中保持较高增长,依然是世界经济的增长中心。发展中国家经济将进入稳定增长期。国际机构对发展中国家经济中长期前景普遍乐观。目前,发展中国家具备空前良好的发展机遇:1。宏观经济环境普遍改善。2。国际原材料价格持续上涨。3。南南经贸合作明显加强。亚洲与拉美、亚洲与非洲,亚、非、拉区域合作步伐加快,带动发展中国家间的泛区域、区域和双边合作蓬勃发展。4。中国、印度、俄罗斯、巴西和南非等发展中大国经济加速发展,在区域经济中起着空前的示范效应和领头作用。当前世界经济形势以及对我国的影响1、世界经济保持增长,我国外贸市场空间仍较大2、世界经济发展不平衡对我加工贸易影响显著,一般贸易保持高速增长。。3、主要经济体失业率高企加剧了世界经济摩擦的风险,欧美等国对我发起的贸易摩擦多由失业部门发起。4、油价高企加剧了我国的进口成本,可能导致成本推动型通货膨胀。5、顺应世界FDI大潮,调整引资政策重点。将重点转向有针对性地发展部分服务行业,优先发展为生产服务的服务贸易以及重点发展与货物贸易相关的运输和商业分销服务业等出口导向性服务业。当前经济运行中存在五个突出问题——粮食进一步增产、农民进一步增收的制约因素仍然较多。粮食收购价格继续上升的空间有限。化肥等农资价格居高不下。洪涝灾害偏重发生。——固定资产投资新开工项目仍然较多,投资结构仍不合理。由于产生投资膨胀的体制性原因并没有从根本上消除,一些地方投资增长仍然过快。——工业企业利润增幅有所回落。行业效益出现明显分化,煤炭、石油开采、黑色和有色金属等采掘业利润增长较快,建材、石油加工、交通运输设备、化纤行业利润下降较多。——煤电油运总体形势仍然偏紧。由于增长方式没有根本改变,资源利用率低、浪费严重,能源、资源约束的矛盾仍然突出。——安全生产形势仍比较严峻。顶风违规生产的现象依然存在,重特大事故频繁发生,道路交通、危险化学品等事故多发。节能是解决我国能源问题的根本途径我国人口众多,能源资源相对不足,人均拥有量远低于世界平均水平,煤炭、石油、天然气人均剩余可采储量分别只有世界平均水平的58.6%、7.69%和7.05%。目前,我国又处于工业化、城镇化加快发展的重要阶段,能源资源的消耗强度高,消费规模不断扩大,能源供需矛盾越来越突出。今后,随着经济规模的进一步扩大,能源需求还会持续较快增加。因此,能源是我国当前和今后相当长一个时期内,制约经济社会发展的突出瓶颈,直接关系到全面建设小康社会的目标能否顺利实现。节能是科学发展观的本质要求。我国富煤少油。在替代石油的化石资源中,煤炭在近中期内可以满足与千万吨数量级的油品缺口相匹配的需要,即通过煤液化合成油实现我国油品基本自给,是目前最现实可行的途径之一。煤可经直接或间接液化两种方法转化成汽柴油。煤直接液化的操作条件苛刻,对煤种的依赖性强。煤间接液化是将煤首先经过气化制成合成气,合成气再经催化合成转化成汽柴油。煤间接液化的操作条件温和,几乎不依赖于煤种。核裂变能源的使用越来越广泛,相关技术日臻完善,是未来百年内解决能源紧缺问题可行、且可靠的方案。建设、运行、维护核裂变电站及对核材料的开采和核废料的处理等将在未来百年内形成巨大的产业链。核裂变能源的利用受制于地球上有限的核材料蕴藏量和人类对核废料处理的艰难和危险。利用核聚变能可能是人类最终解决能源问题的一种最重要途径。太阳光即是太阳中的氢核聚变释放出来的能量。核聚变的主要原料是浩淼的海水中所蕴藏的用之不竭的氘,其产物是惰性气体氦,因此,核聚变既无原料短缺问题亦无核废料或核泄漏等污染问题。国际环境复杂多变。当前国际环境复杂多变,和平与发展是主流,但是影响和平发展的因素依然存在,例如:强权政治,霸权主义,恐怖主义,地区冲突,核武器扩散,自然灾害,跨国犯罪,疾病,走私贩毒等。因此要加强国际合作。对当前的国际形势做出判断,应酬好与大国的关系,对我国的外交有重大的意义。当前各国之间综合国力的竞争日趋激烈,各国之间呈现出合作与竞争,依赖与牵制等关系。国际局势的总体稳定为我国的发展提供了机遇,但是霸权主义与强权政治依然存在,我国依然面临着严峻的挑战。我国要处理好与大国的关系,尤其是与美、俄、欧盟、日的关系。美国的单边主义政策受挫,正在积极寻求国际合作,但是美国称霸世界的战略并未改变。我国一方面要扩大合作,增加两国外交中的积极因素;另一方面,要坚持原则,维护我国利益。北约不断东扩,严重影响了俄在欧洲的扩展,俄把目光更多的投向了亚洲。同时俄拥有丰富的自然资源,在能源供应与边境问题上对我国有重要的意义。欧盟在积极加强与美国的战略合作,加强与中国的对话,在大国问题上谋求与中国的协作,同时也看到了我国经济快速发展带来的巨大市场。由于日本不能正确面对历史问题,同时在积极扩展和建立其大国地位,积极配合美国牵制中国。中日抗衡比较明显,处理好中日关系决非一件容易的事,但是中日关系的长期僵硬将不利于我国的发展。与此同时,要处理好与周边国家的关系,为我国的经济发展和社会进步创造更为有利的外部环境。
126 浏览 2 回答
356 浏览 2 回答
321 浏览 7 回答
148 浏览 4 回答
123 浏览 4 回答
258 浏览 3 回答
233 浏览 3 回答
231 浏览 3 回答
130 浏览 4 回答
318 浏览 3 回答
189 浏览 4 回答
226 浏览 3 回答
245 浏览 4 回答
87 浏览 4 回答
348 浏览 7 回答