高数论文什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。 17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。因而,一切变量都是流量。 牛顿指出,“流数术”基本上包括三类问题。 (l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。 (2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。 (3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。 牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。 牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。 莱布尼茨使微积分更加简洁和准确 而德国数学家莱布尼茨(G.W.Leibniz 1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。 莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。 牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。
谁让我迷了眼。你让我迷了眼。素手白衣,挥墨纸上。花窗下,太阳笑开了眼。仔细瞧,个个扬着头,诚心祈祷你不要离去。又是谁在拉扯衣角,花了谁的妆。
2017大学数学论文范文
由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。
几类特殊函数的性质及应用
【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。
【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分
1.引言
特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。
由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。
特殊函数定义及性质证明
特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。
特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。
2.伽马函数的性质及应用
2.1.1伽马函数的定义:
伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。
2.1.2Г函数在区间连续。
事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。
2.1.3,伽马函数的递推公式
此关系可由原定义式换部积分法证明如下:
这说明在z为正整数n时,就是阶乘。
由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....
2.1.4用Г函数求积分
2.2贝塔函数的性质及应用
2.2.1贝塔函数的定义:
函数称为B函数(贝塔函数)。
已知的定义域是区域,下面讨论的三个性质:
贝塔函数的性质
2.2.2对称性:=。事实上,设有
2.2.3递推公式:,有事实上,由分部积分公式,,有
即
由对称性,
特别地,逐次应用递推公式,有
而,即
当时,有
此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为
2.2.4
由上式得以下几个简单公式:
2.2.5用贝塔函数求积分
例2.2.1
解:设有
(因是偶函数)
例2.2.2贝塔函数在重积分中的应用
计算,其中是由及这三条直线所围成的闭区域,
解:作变换且这个变换将区域映照成正方形:。于是
通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。
2.3贝塞尔函数的性质及应用
2.3.1贝塞尔函数的定义
贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。
2.3.2贝塞尔函数的'递推公式
在式(5)、(6)中消去则得式3,消去则得式4
特别,当n为整数时,由式(3)和(4)得:
以此类推,可知当n为正整数时,可由和表示。
又因为
以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。
2.3.3为半奇数贝塞尔函数是初等函数
证:由Г函数的性质知
由递推公式知
一般,有
其中表示n个算符的连续作用,例如
由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。
2.3.4贝塞尔函数在物理学科的应用:
频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令
称为的Fourier变换。它的逆变换是
若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,
这就是Shannon取样定理。Shannon取样定理中的母函数是
由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:
以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。
首先建立取样定理
设:
其中是零阶贝塞尔函数。构造函数:
令
经计算:
利用分部积分法,并考虑到所以的Fourier变换。
通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:
类似地
经计算:
经计算得:
则有:设是的Fourier变换,
记则由离散取样值
因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。
例2.4,利用
引理:当
当
因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式
首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:
(1)
其中
函数的幂级数展开式为:
则关于幂级数展开式为: (2)
由引理及(2)可得
(3)
由阶修正贝塞尔函数
其中函数,且当为正整数时,取,则(3)可化为
(4)
通过(1)(4)比较系数得
又由被积函数为偶函数,所以
公式得证。
3.结束语
本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。
参考文献:
[1] 王竹溪.特殊函数概论[M].北京大学出版社,2000.5,90-91.
[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.
[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.
[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)
[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.
[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.
[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.
[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.
[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,1992.2.
[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.
[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.
[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.
query取得iframe中元素的几种方法在iframe子页面获取父页面元素代码如下:$(
高数学习对许多大一学生生来讲, 有些困难,成绩不理想。教师一直在苦苦思考:虽然教师在授课过程中尽了种种努力, 但还是有许多学生学习不好, 这是什么原因?调查显示:这部分学生或者学习兴趣不高,或者学习不得要领。因而, 高数学习必须充分调动学习者的积极性, 掌握合适的学习方法,才能有所收获。1 学习者要意识到学习高数的重要性, 提高学习兴趣, 变被动学习为主动学习据了解, 许多学生意识不到高数学习的重要性,他们对大学课程里学习高数的重要性不甚清楚,也没有学习的热情,更谈不上积极性了。1 . 1 数学教育具有重要的基础性作用与素质教育作用现代信息、空间技术、核能利用、基因工程、微电子、纳米材料等引领的新技术革命, 以及现代人文科学的定量分析需要以数学为主要基础。数学学科严密的定义方式、缜密的逻辑思维、全面的系统分析是辩证唯物主义思想在数学学科中的集中反映, 在大学生素质教育中起着不可替代的作用。素质表现在数学意识、数学语言、数学技能、数学思维四个方面。素质的提高有助于学生形成良好的思想道德素质,科学文化素质,生理心理素质,从而提高人的素质。这是有例子可以验证的。以北京大学地质系为例,一个系就培养了48 位中科院院士, 而这得益于李四光先生的理念——加强数理基础, 原因就是学生的工科数学基础好、逻辑思维强、头脑清晰。1 . 2 培养对高数的兴趣能激发学习热情“兴趣是最好的老师”。心理学家布鲁纳认为:“学习是主动的过程,对学生学习内因的最好的激发是对所学教材的兴趣。”“有了兴趣就会乐此不疲,好之不倦,就会挤时间学习了。”学生只有对学习感兴趣,能把心理活动指向和集中在学习的对象上,感知活跃,注意力集中,观察敏锐,记忆持久而准确,思维敏锐而丰富,强化学习的内在动力,调动学习的积极性,激发智力和创造力,提高学习效率。1.2.1 提高学习高数的兴趣首先从了解数学史做起我们可以首先了解中国数学史,了解中国数学的萌芽、发展、全盛、衰弱的过程和原因;我们还可以从高数中的微积分发明的历史谈起,通过对历史的了解和感受来体会到数学的博大精深,激发探求欲望。
摘要:本文通过对高中生的调查研究发现当前高中生的数学观存在不够全面、不够准确、不够科学的现象,为此提出了通过数学史来影响高中生数学观之假设.经过为期一年多的实验和探索,发现数学史对改变学生的数学观能产生积极的影响,对学生的学习兴趣和学习效果也有明显的作用.因此积极倡导应用数学史来为数学教学服务.关键词:数学观;数学史;对数;复数教学中,经常有学生提出这样的问题:“老师,我怎么对数学就是没兴趣?”“老师,学了这些概念、定理和公式到底将来有什么用?”更有甚者问到:“老师,你为什么要逼我学数学,我将来也不搞数学研究。”……的确,当前不少学生因为想不通数学就认为数学是一门枯燥乏味、难以学习的学科;因为不理解数学就认为数学是一门概念和规则从天而降的游戏;因为没有体会到数学的价值就认为数学是没有实际意义的学科,学数学只是为了应付考试;因为没有领悟数学的思想和精神就认为“概念我会背,公式我会用,定理我会证,题目我会做”是学好数学的最高标准……这些现象表明,学生思想深处的问题已经不能等闲视之了,为此笔者开展了相关研究。一、对高中生数学观的现状分析高中生的数学观主要是指学生关于数学本身的信念,关于数学学习的信念和关于自身的信念。[1]由于个体具有不同的知识背景,或接受了不同哲学观念,或受不同教师的影响,再加上自己的实践经验,因此在数学学习过程中便逐渐产生和形成各自不同的认识和体会。(1)对数学本身的信念学生在数学学习过程中,对数学本身的感受和认识不尽相同。通过对614名高中生的调查发现,约52.5%的人“从未想过数学是什么”;24.9%的人“曾经想过数学是什么,但不清楚是什么”;7.8%的人“曾经听老师说过数学是什么”;14.8%的人“曾经想过数学是什么,所以知道是什么”。但在他们眼中,数学主要是与数字、图形有关的问题;是由概念、公式、定理、法则、符号组成的一门学科;是技巧性和方法性很强但又不易把握的一门学科;是关于计算、解题的一门学科;是讨论空间形式与其数量关系的学科……(2)对数学学习的信念Davis等人的调查(李士锜2001,217-222)表明:学生在学习过程中,对数学学习持有不同观点和看法。笔者调查发现高中生的数学学习信念主要是:①学数学就是要会做题目;②学数学就是为了在考试中取得好成绩;③学数学主要靠记忆、模仿、套公式;④学数学就是要培养一个人的计算能力、思维能力;立体几何主要培养一个人的逻辑推理能力和空间想象能力;⑤学数学就是学会用所学的数学知识解决实际生活中的问题。(3)对自身学习数学的信念学生对自身学习数学的信念差异明显,在调查中发现:①信心十足──有人对数学充满浓厚的兴趣,认为自己在数学方面有一定的天赋和优势,有信心、有能力学好数学。②信心平淡──有人对数学的兴趣一般,认为自己在数学方面没有多少天赋和优势,但是只要自己勤奋努力,刻苦钻研,还是能够达到基本要求的。③信心缺乏──有人对数学不感兴趣,认为自己根本没有学习数学的天赋,没有学好数学的能力。他们经常说自己从小学到现在数学都一直很差,由此来表明自己是学不好数学的。(4)数学观的类型根据调查分析,高中生的数学观不妨可归纳为以下几种:①动态的数学观。在学生眼中,数学是不断变化、发展过程中的知识,从而可能会出现不足和错误,只有通过不断地尝试、改正和改进才会逐渐完善。所以学习数学也是一个循序渐进,不断完善的过程。对自己的困惑和错误能够宽容,同时也知道只有采取积极的态度才会学好数学。②静态绝对主义数学观。他们把数学知识看成自古有之、千年不变的、不容置疑的真理的集合,是一个高度严密、极端抽象的知识体系。因此,他们多强调接受和记忆,模仿和训练,提倡熟能生巧;或认为自己的记忆能力不行,抽象能力又较差,所以数学学习必然困难等想法。③工具主义的数学观。他们认为学数学就是学会处理和解决各类(数学)问题的方法和技巧。所以他们比较重视做应用题,提倡将数学与生活紧密结合,也比较注意积累与数学有关的素材。④文化主义数学观。他们认为数学是与社会性质、阶级意识、民族精神等有一定关系的人类文化,是一种反应人们思维方法、审美意识与文化价值观念的特定的知识体系。当然这种观念在学生中间被发现、被接受的较少。上述各种观念从不同的角度反映了学生对数学本身的理解和领会,对数学价值的认识和判断。当然有些观念对学生的学习起到积极促进作用,而有些则明显会导致消极的负面影响。二、数学观对数学学习的影响分析数学观对学生数学学习究竟有多大的影响,目前尚缺乏确切的数据分析。但从历史材料和当前的研究表明,学生的数学观对其学习方式和学习成果是有相当影响的。Schoenfeld研究表明学生思想观念的发展已经成为数学学习过程中的重要因素,数学信念与数学成绩之间存在明显的相关性。[2]Carlson研究发现一些普遍存在的和持续的数学观念在他们的后继学习中起着决定性作用。[3]郑毓信指出,对于学生来说,观念的重要性在于数学学习不仅是指知识的学习和能力的提高,而且也是一个观点、信念、态度等形成的过程,而后者则将对他们今后的数学学习、乃至整个人生产生重要的影响。[4]事实上,对个体而言,正确的数学观可以统摄个体自身的各种因素,使之积极参与到学习活动之中。如果学生没有一定的数学观念,那么他将是主动精神缺乏、主体意识单薄、只会按指令被动行事的人;如果学生对数学的看法和课程蕴藏的数学观不一致,那么这种观念便可能成为其学习的障碍;如果学生面对数学处境而未能意识到它与数学有关,那么他就不会着手以数学方法来处理;如果学生把数学看作是与社会生产实践活动无关的概念、定理、符号的集合,那么他们在学习过程中就必然会采取一种静止的、被动的态度来接受“数学真理”;如果学生把数学看作是数学家凭空想象、自由创造的产物,那么一种远离社会、脱离客观、极其严密、高度抽象的刻板印象就会占领他们心灵的上空,使他们在学习过程中必然产生一种兴趣不大、意义不大,或难度太大、敬而远之的心理;如果学生把数学看作思维的体操,认为学数学就要反复用脑,那么数学仿佛就变成了度量一个人聪明与否的标尺,当他们解决不了数学问题而产生挫折感时,便会觉得自己智力不如别人而悲观失望;如果学生认为数学学习就是计算、就是解题,那么在他们眼中,数学与算式、公式﹑列式有着不可分割的关系,或者认为数学就是给出一堆数字、然后通过算式找出答案的活动,那么他们对冗长繁杂的计算、无边无际的题海必然会丧失兴趣;如果学生认为数学学习就是模仿智力超群的数学家或数学教师的思维,那么他们常丧失信心,自叹不如。实践证明,学生的数学观的确影响着他们的学习态度、学习兴趣,影响着他们对认知材料的选取,对认知方式的选择,对学习结果的评价。(李士锜2001,211)对群体而言,数学观可以统摄个体之间的各种力量,使之积极参与到社会建构活动之中。学习是一种社会建构活动,存在着师师、生生、师生以及学生与家庭、学生与社会交往的多种形态。在这些活动中,数学观一方面提供活动的基本准则,以此来调节主体的行为方式,决定交往的程度和范围。另一方面,通过个体数学观的沟通、交流和碰撞,主体间逐渐达成共识、形成合力。尽管同一群体中的数学观存在着个体差异,但总有一种主导的数学观在起作用,也正是这样主导观念使得整个班级对数学的学习目标、学习方式、评价标准趋向一致,从而保证学习活动顺利进行。相反,如果学生之间,师生之间,学生与教材之间的数学观经常抵触、矛盾和冲突,缺乏维系的纽带,就会出现“形聚神散”的状态,学习活动就难以真正有效开展。三、数学史影响高中生数学观的实验探索1、实验目的数学史与数学教育的关系早在1876年丹麦著名数学家和数学史家H. G. Zeuthen就强调,“通过数学史的学习,学生不仅获得了一种历史感,而且,通过从新的角度看数学学科,他们将对数学产生更敏锐的理解力和鉴赏力。” [5] 1977年,美国学者McBride和Rollins发现数学史在提高学生数学学习积极性方面是十分有效的[6].Wilson和Chauvot指出,让学生和教师思考“谁做数学”、“数学怎么做”、“数学是什么”等问题,让学生了解数学与其他学科、数学与社会的广泛联系,能拓宽对数学本质的看法[7].英国数学史家J. Fauvel曾总结了20条将数学史运用于数学教学的理由,其中之一是数学史可以改变学生的数学观[8].Breugel指出有关数学概念是怎样发展的历史知识有助于学生理解概念,并向学生指明了数学是人类在特定历史时期所创造的,而不是历来就有、永恒不变的[9].自从1972年“数学史与数学教育之关系国际研究小组”(International Study Group on the Relations between History and Pedagogy of Mathematics,简称HPM)成立以来,欧美更多的学者对数学史与数学教育的关系进行了大量研究。国内也有一些学者再关注数学史与数学教育的关系。但数学史能否改变学生的数学观,从而影响他们的数学学习,国内外有关实证研究仍不多见。本文既受历史的启发,又拟在前人研究成果的基础上,进一步探索数学史对高中生数学观究竟是否产生影响。2、被试的确定实验班:苏高工校区03预科4班;控制班:苏高工校区03预科3班.实验班和控制班是随机选定的.两个班的数学教学由笔者一人承担.3、实验过程⑴前测.对两个班学生数学成绩进行测试,结果见表3 .对两个班学生数学观进行问卷调查(见附录一),结果见表4.⑵实验方法①结合教学内容,介绍相关历史为期一年的教学过程中,在实验班每周至少介绍一项有关的数学史知识,在控制班以解题和练习代之.②选择部分内容,测试对比研究实验一:对数概念学习对数概念时,在两个班采用了不同的教学方式.一是按课本体系组织教学;另外是结合阅读材料《对数与指数发展简史》,解答学生的各种问题,同时也引发了一堂意想不到的对数课[10].课后测试(见附录二)结果统计如下:表1 两个班对数概念学习前、后测试统计表结果表明:学习“对数发展简史”之后,控制班对“对数”学习的难度明显降低,对学习对数的兴趣明显提高,对学习对数的目的更加明确,对对数产生的过程更加清楚.实验二:复数概念在两个班按不同方式组织教学.在控制班按课本内容和体系组织教学.在实验班从复数发展的历程组织教学.调查(见附录三)结果如下:表2 两个班对复数概念学习测试统计表结果表明:实验班对虚数的接受程度高于控制班,把虚数看成是有意义的、真实存在的数的比例大于控制班;将数系看成是动态发展的比例高于控制班.从课后交流中也了解到:历史过程的引入使学生对数的概念的认识更加充分、更加准确、更加深刻.① 复数是按一定方式构造的.复数的产生是从“运算可以无限制地进行的原理”出发,数学内容的组织化、系统化的过程[11].这是人类构造数系的一种方式,也是学生建构数系认知结构的方式之一.② 复数的产生是一个历史发展过程.通过对复数发展过程的剖析,学生认识到复数是几代人共同努力的产物;是一个从无到有、从疑惑到接受、从模糊到清晰、从片面到完善的过程;是随着社会的发展、数学本身的发展而发展的.复数是对实数理论补充和推广后产生的.这是数学本身内部成果积累,引导新的抽象阶段,向新的概括性概念上升的必然结果 [12].③ 虚数不是神秘莫测、绝对权威的.从虚数概念“生长”过程来看,即使是数学家的认识也是逐步深入的.最初人们对虚数持怀疑和不接受的态度.莱布尼兹称虚数是“理想世界的奇异创造”,是“神灵的美妙的庇护者,几乎介于存在和不存在之间的两栖物”[13].欧拉尽管用它,但也认为虚数只存在于想象之中.直到哈密尔顿把复数建立在实数理论基础之上,以及复数在物理学等领域中的应用加强时,人们才开始真正接受虚数.这与学生学习时,缺乏了解它们的实际应用而造成对概念理解和接受上有一定的心理障碍是一致的.但历史的呈现有助于学生打消神秘的心态和权威的心理,减少排斥的情绪.④ 复数产生和发展是人们思想观念的突破.象这样的方程没有实数解在学生心目中已成定论,既然没有实数解,为什么还要讨论它?既然负数不能开平方,又为什么要承认是有意义的?这是一种心理上的矛盾、认知上的冲突,更是观念上的封闭.辩证法告诉我们:世界上没有任何东西是完全不变和无论如何也不发展的.任何数学概念,不管它是怎样被精确定义,也还是要随着科学的发展而发展的.人们对事物的认识总是螺旋式上升的.通过对历史的考察,大家体会到虚数的引入是一种创造,一种发明,一种思维上突破,一种观念上的更新.⑤辨析古人的数学观,促进学生数学观的形成学习立体几何时,让学生讨论欧几里得的数学观.学习解析几何时,让学生讨论笛卡儿的数学观与解析几何的诞生.⑶后测:一学年结束后,再对两个班统一测试和问卷调查(见附录一),结果如下:表3 两个班期初、期末考试成绩统计表注:⑴实验班与控制班期初成绩,所以两个班学生成绩无显著差异.⑵实验班与控制班期末成绩,故不能认为数学史对学生成绩没有影响.表4 两个班期初、期末问卷调查统计表结果表明:数学史的介绍明显提高了实验班学生数学学习兴趣;加强了学生数学学习动机,转变了数学观念;让学生更加了解了数学的本质,也促进了数学成绩的提高.4 结论通过一年的调研发现,数学史一定程度上能改变学生的数学观,从而影响数学学习.① 通过对历史的了解,学生可以缩短心理上接受某一观念的时间.② 通过对历史的分析,学生可以接受数学是人类社会活动的结果.③ 数学史有助于培养学生动态的数学观.④ 数学史有助于培养学生的创造发明观.⑤ 数学史有助于培养学生的数学文化价值观.⑥ 数学史有助于学生了解数学形式化、抽象化、精确化的过程.⑦ 数学史有助于改变教师的数学观从而影响学生的数学观.5几点建议基于本文的研究,我建议:高度重视学生数学观的培养;认真处理数学史与数学教材的关系;组织编写合适的历史材料;认真组织在职教师的数学史培训;大力开展HPM研究.
微积分的基本思想及其在经济学中的应用
摘要: 微积分局部求近似、极限求精确的基本思想贯穿于整个微积分学体系中,而微积分在各个领域中又有广泛的应用,随着市场经济的不断发展,微积分的地位也与日俱增,本文着重研究微分在经济活动中边际分析、弹性分析、最值分析的应用,以及积分在最优化问题、资金流量的现值问题中的应用。
关键词:微分 积分 基本思想 应用
微积分是人类智慧最伟大的成就之一,局部求近似、极限求精确的基本思想是进一步学习高等数学的基础。随着市场经济的不断发展,利用数学知识解决经济问题显得越来越重要,运用微分和积分可以对经济活动中的实际问题进行量化分析,从而为企业经营者的科学决策提供依据。
1. 微积分的产生、发展及其作用
微积分思想的萌发出现的比较早,中国战国时代的《庄子·天下》篇中的“一尺之锤,日取其半,万事不竭”就蕴涵了无穷小的思想。经查阅文献《晏能中.微积分——数学发展的里程牌》得知:到了十七世纪,欧洲许多数学家也开始运用微积分的思想来写极大值与极小值,以及曲线的长度等等。帕斯卡在求曲边形面积时,用到“无穷小矩形”的思想,并把无穷小概念引入数学,为后来莱布尼兹的微积分的产生奠定了基础。
随着数学科学的发展,微积分得到了进一步的发展,其中欧拉对于微积分的贡献最大,他的《无穷小分析引论》、《微分学》、《积分学》三部著作对微积分的进一步丰富和发展起了重要的作用。之后,洛必达、达朗贝尔、拉格朗日、拉普拉斯、勒让德、傅立叶等数学家也对微积分的发展作出了较大的贡献。由于这些人的努力,微分方程、级数论得以产生,微积分也正式成为了数学一个重要分支。
微积分的创立改变了整个数学世界。微积分的创立,极大的推动了数学自身的发展,同时又进一步开创了诸多新的数学分支,例如:微分方程、无穷级数、离散数学等等。此外,数学原有的一些分支,例如:函数与几何等等,也进一步发展成为复变函数和解析几何,这些数学分支的建立无一不是运用了微积分的方法。在微积分创设后这三百年中,数学获得了前所未有的发展。
2. 微积分的基本思想———局部求近似、极限求精确
微积分是微分学和积分学的总称,它的基本思想是:局部求近似、极限求精确。以下我们具体阐述微分学与积分学的思想。
2.1微分学的基本思想
微分学的基本思想在于考虑函数在小范围内是否可能用线性函数或多项式函数来任意近似表示。直观上看来,对于能够用线性函数任意近似表示的函数,其图形上任意微小的一段都近似于一段直线。在这样的曲线上,任何一点处都存在一条惟一确定的直线──该点处的“切线”。它在该点处相当小的范围内,可以与曲线密合得难以区分。这种近似,使对复杂函数的研究在局部上得到简化。
2.2积分学的基本思想
积分学的最基本的概念是关于一元函数的定积分与不定积分。蕴含在定积分概念中的基本思想是通过有限逼近无限。因此极限方法就成为建立积分学严格理论的基本方法。微分与积分虽然是微观和宏观两种不同范畴的问题,但它们的研究对象都是“非均匀”变化量,解决问题的基本思想方法也是一致的。可归纳为两步:a.微小局部求近似值;b.利用极限求精确。微积分的这一基本思想方法贯穿于整个微积分学体系中,并且将指导我们应用微积分知识去解决各种相关的问题。
3.微分在经济学中的应用
随着经济的发展及数学理论的完善,数学与经济学的关系越来越密切,应用越来越广泛.微积分作为数学知识的基础,介绍微积分与经济学的书也越来越多,然而大部分书或者着重介绍经济学概念或者着重介绍数学理论,很少有主要介绍微积分在经济学中的应用的书.本文将通过对一些简单的微积分知识在经济学中的应用,以使人们意识到理论与实际结合的重要性.
3.2弹性分析
在文献《蔡芷.财会数学》中,某个变量对另一个变量变化的反映程度称为弹性或弹性系数。在经济工作中有多种多样的弹性,这决定于所考察和研究的内容,如果是价格的变化与需求反映之间有关系,那么这个反映就称为需求弹性。由于具体商品本身属性的不同以及消费需求的差异,同样的价格变化给不同商品的需求带来的影响是不同的。有的商品反应灵敏,弹性大,涨价降价会造成剧烈的销售变动;有的商品则反应呆滞,弹性小,价格变化对其没什么影响。
4.积分在经济学中的应用
积分学是微分学的逆问题,利用积分学来研究经济变量的变化问题是经济学中的一个重要方法,不定积分是求全体原函数,定积分是求和式的极限。由边际函数求原函数,或求一个变上限的定积分,一般都采用不定积分来解决;如果求原函数在某个范围的改变量,则采用定积分来解决。对企业经营者来说,对其经济环节进行定量分析是非常必要的,不但可以给企业经营者提供精确的数值,而且在分析的过程中,还可以给企业经营者提供新的思路和视角。
5.总结:
微积分局部求近似、极限求精确的基本思想方法贯穿于整个微积分学体系中,在经济日益发展的今天,微积分的地位也与日俱增,贷款、养老金、医疗保险、企业分配、市场需求等等金融问题越来越多地进入普通人的生活,利用微积分的知识有利于我们去解决各种相关的问题。
参考文献:
[1] 祁卫红,罗彩玲.微积分学的产生和发展[J].山西广播电视大学学报,2003,(02). [2] 晏能中.微积分——数学发展的里程牌[J].达县师范高等专科学校学报,2002,(04). [3] 同济大学数学教研室.高等数学(第四版)[M].北京:高等教育出版社,1993. [4] [美]托·道林.数学在经济中的应用[M].福州:福建科学技术出版社,1983,4. [5] 蔡芷.财会数学[M].上海:知识出版社,1982,12.
[6] 赵树嫄.经济应用数学基础(一).微积分.中国人民大学出版社,2002. [7] 杨学忠.微积分[M].中国商业出版社,2001.
[8] 向菊敏.微积分在经济分析活动中的应用[J].科技信息,2009(26). [9] 髙哲.浅谈微积分在经济中的应用[J].中国科技博览,2009(7). [10] 王志平.高等数学大讲堂[M].大连:大连理工大学出版社,2004. [11] 吴赣昌.微积分[M].中国人民大学出版社,2004.
[12] 谭瑞林,刘月芬.微积分在经济分析中的应用浅析[J].商场现代化,2008(4). [13] 张先荣.谈微积分在经济分析中的应用[J].濮阳职业技术学院学报,2009,22(4) [14] 明清河.数学分析的思想与方法[M].山东大学出版社,2004.
[15] Elizabeth George Bremigan.Ball State University 2005.An Analysis of Diagram Modification and Construction in Students’Solutions to Applied calculus problems.Journal for Research in Mathematics Education,2005Vol.36,No.3:48-277.
[16]Sandra Crespo.Cythia Nicol(2006).Challenging Pre-serviceteachers’Mathematical Understanding:The case of Division by zero.School.
“数学是美的。”经常有数学家这么讲,那么,数学到底美不美呢?大一第二学期我们接触了高数这门课,本来觉得应该比高中的数学稍微难一点吧,可是一上课才发现并不是难一点,而是难很多很多,比高中的数学更加抽象,更加难理解。但是慢慢的你会发现其实高数是一门学问,而且这门学问也有他的美。仔细想了想,发现数学的美体现在方方面面,就比如自然之美,简洁之美,对称之美,逻辑之美等等,中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样的颜色,这就是数学之美,总之,数学并不像有些人认为的那般鼓噪乏味,他不是定理公式的积累,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。也经常听到有同学发出这样的疑问:“我们为什么要学数学?”不知道这些人当中有没有认真思考过这个问题,我倒是稀里糊涂读到大学才明白一点的。数学,我们学的应该是一种严谨的思维,一种观念。出了学校门,如果我们还能经常使用数学的眼光来观察周围事物,那么,这个数学才没有白学。我一直觉得,如果你把函数真学懂了,对已知和未知的依存关系就会特别敏感,社会上的许多看似纷繁复杂的事件,在你眼里就能看到关键因素,形成函数式。你会有另一种看待万事万物人视野。我们学数学,目的是学解题技巧?是挤进名校的砝码?还是将来能谋份不错的职业?数学的发源地在希腊,注定数学的性格就是超越的,我们把它作为换取利益的工具时,一开始这条路就走岔来的。所以,要培养好我们学数学,最初就要培养我们有良好的数学素养,求真,求美,求善。当然,数学一直是人类文明发展的主要文化力量,同时人类文化的发展又极大地影响了数学的进步;而且,数学还是一种艺术,因此,数学不但具有科学价值,还具有文化和艺术的价值。那么,这就需要我们一步步的认知到数学的各种价值,可以从生活中的数学学得数学思想方法与文化以及数学与人文精神、文化素质间的联系。总之学好高数,此生不后悔。
这篇作文可以这样写,例如数学函数形成要与历史相结合因为函数概念是数学概念中最重要的概念之一,在数学发展300年来函数概念,无数的数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。所以拟通过对函数概念的发展与比较的研究,对函数概念的教学进行一些探索。函数概念的纵向发展早期函数概念——几何观念下的函数十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的。1十八世纪函数概念——代数观念下的函数1718年约翰·贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子。18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号。欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。以上就是函数形成与发展史,也是函数形成的重要原因。
"数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。 一、数学的特点(一) 数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? (二) 学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题2、善于反思与反求
一、函数内容处理方式的分析在整个中学阶段,函数的学习始于义务教育阶段,而系统的学习则集中在高中的起始年级。与以往相比,课程标准关于函数内容的要求发生了比较大的变化。 1. 强调函数背景及对其本质的理解无论是引入函数概念,还是学习三类函数模型,课程标准都要求充分展现函数的背景,从具体实例进入知识的学习。以往教材中,将函数作为一种特殊的映射,学生对于函数概念的理解建立在对映射概念理解的基础上。学生既要面对同时出现的几个抽象概念:对应、映射、函数,还要理清它们之间的关系。实践表明,在高中学生的认知发展水平上,理解这些抽象概念及其相互之间的关系存在很大困难。而从函数的现实背景实例出发,加强概念的概括过程,更有利于学生建立函数概念。一方面,丰富的实例既是概念的背景又是理解抽象概念的具体例证;另一方面,在实例营造的问题情境下,学生能充分经历抽象概括的过程,理解概念内涵。2.加强函数思想方法的应用函数是刻画现实世界变化规律的重要数学模型。因此,函数在现实世界中有着广泛的应用。加强函数的应用,既突出函数模型的思想,又提供了更多的应用载体,使抽象的函数概念有更多的具体内容支撑。比如,新增加的内容“不同函数模型的增长”和“二分法”,前者通过比较函数模型的增长差异,使学生能够更深刻地把握不同函数模型的特点,在面对简单实际问题时,能根据它们的特点选择或建立恰当的函数模型反映实际问题中变量间的依赖关系;后者充分体现了函数与方程之间的联系,它是运用函数观点解决方程近似解问题的方法之一,通过二分法的学习,能使学生加深对函数概念本质的理解,学会用函数的观点看待和解决问题,逐渐形成在不同知识间建立联系的意识。二、函数内容编写的基本想法函数的内容包括:函数概念及其性质,基本初等函数(Ⅰ),函数与方程,函数模型及其应用。以理解函数概念本质为线索,既可以将这些内容有机地组织为一个整体,又可以让学生以它们为载体,逐步深入地理解函数概念1.内容组织的线索:函数概念本质的理解函数概念并非直接给出,而是从背景实例出发采用归纳式的教材组织形式引入。由于函数概念的高度抽象性,学生真正理解函数概念需要一个漫长的过程,需要在不同层次上、从不同角度给学生提供理解和巩固函数概念的机会。首先,在分析典型实例的共同特征的基础上概括出函数定义后,通过讨论函数的表示、基本性质初步理解函数。它们分别是从函数的表现形式和变化规律两个方面丰富对函数概念的认识。然后,以三类基本初等函数为载体巩固函数概念,在学习了函数定义、基本性质之后,从一般概念的讨论进入到具体函数的学习。指数函数、对数函数和幂函数的概念及其性质都是一般函数概念及性质的具体化。以一类具体函数为载体,在一般函数概念的指导下对其性质进行研究,体现了“具体──抽象──具体”的过程,是函数概念理解的深化。最后,从应用的角度再一次巩固并提升对函数的理解。对一个概念真正理解的一个判断标准就是看看是否可以运用概念解决问题。教材最后安排函数的应用,包括二分法、不同函数模型的增长差异以及建立函数模型解决实际问题,就是期望学生能在“用”的过程中提高对函数概念的理解。2.突破难点的主要方法:显化过程,加强联系函数概念的理解贯穿了函数内容学习的始终,同时它也是教与学的一个难点,在教材编写中应采用什么方法突破这个难点,帮助学生更好地理解函数概念?对于形成函数这样抽象的概念,应该让学生充分经历概括的过程。概括就是把对象或关系的某些共同属性区分和固定下来。这就要求我们在编写教材时充分展示概括过程,并要充分调动学生的理性思维,引导他们积极主动地观察、分析和概括。教材选择了三个有一定代表性的实例,先运用集合与对应的语言详细地分析前两个实例中变量间的依赖关系,给学生以如何分析函数关系的示范,然后要求学生仿照着自己给出第三个实例的分析,最后通过“思考”提出问题,引导学生概括三个实例的共同属性,建立函数的概念。在这样一个从具体(背景实例)到抽象(函数定义)的过程中,学生通过自己的思考从分析单个实例上升到概括一类实例具有的共同特征,更能理解概念内涵。作为中学数学的核心概念,函数与中学数学的许多概念都有内在联系,这种联系性为理解函数概念提供了众多的角度和机会,因此加强函数与其他数学知识的联系是函数概念教学的内在要求。例如,函数有多种表示方法,加强不同表示法之间的联系和转换,使学生学会在面临一个具体问题时能根据问题的特点灵活选择表示的方法,就是促进理解的一个手段。教材通过例题给出高一某班三位同学在六次测试中的成绩及相应的班平均分的数据,要求分析三位同学的学习情况。解决这个问题的关键就是根据函数的表格表示法与图象表示法的特点,将表格表示转化为图象表示。又如,函数与现实生活有着密切的联系,所以在编写教材时注重加强函数与现实生活的联系,像由背景实例引入概念,在例题和习题中安排一定量的应用问题(碳14的衰减,地震震级,溶液的酸度等)都体现了函数与实际生活的外部联系。再如,从运用函数观点解决方程问题的角度介绍二分法,体现出函数与方程间的联系等等。三、函数内容编写中的几个关键问题1.实例如何选择无论是加强概念背景,还是突出知识的联系与应用,能达到很好效果的重要因素就是要选择合适的实例。那么,如何选择实例才能有助于学生的学习呢?对于起到不同作用的背景实例和应用实例,标准并不完全相同。但总的来说,一是实例的背景知识应该尽量简单,这样可以避免因背景的复杂性而影响对数学知识本身的理解;二是实例应丰富,这样有利于全面、准确地理解知识,不会产生偏差;三是实例应贴近学生生活、具有一定的时代性,这样才会引起学生的共鸣,激发学习的兴趣。比如,介绍函数概念时,教材选择了用解析式表示炮弹飞行的问题、用图象表示南极臭氧空洞的问题、用表格表示恩格尔系数的问题,第一个问题是学生在物理中就很熟悉的,后两个问题是日常生活中经常提及的,背景相对来说比较简单,学生就不会因为需要了解过多的背景知识而冲淡对函数概念的学习。而且重要的是,这样的三个问题包括了不同的函数表现形式,利用它们概括函数概念,就可以消除初中学习中可能存在的一些认识偏差,使学生认识到无论表示形式如何,只要对于每一个x,都有一个y与之对应,就是函数,而这正是函数的本质特征。再如,根据汽车票价制定规则写出票价和里程间的解析式,并利用解析式为售票员制作出我们在汽车上经常看到的“阶梯形票价表”这类问题,贴近学生生活并具有现实的应用价值,能引发学生的兴趣和学习的积极性。2.概念如何展开对于突破函数概念这个难点,可以在整段函数内容的学习中采用显化过程、加强联系的方法。那么具体地,在从三个方向巩固函数概念理解时,如何展开像函数的单调性、二分法这些概念,才能让学生掌握它们,从而达到巩固理解函数概念的目的呢?函数的性质就是研究函数的变化规律,这种规律最直观的获得来自于图象,图象的上升、下降就是单调性。问题在于如何帮助学生从几何直观上升到严格的数学定义。同样地,二分法也需要经历一个由直观认识到数学定义的过程。为此,就需要将直观到严格数学定义的过程划分成几个层次,为学生搭建认识的台阶,使他们逐步地获得概念。比如,介绍函数单调性时,首先给出一次函数和二次函数的图象,观察它们的图象特征,即上升或下降;然后用问题“如何描述函数图象的‘上升’‘下降’呢”引导学生用自然语言描述出图象特征;最后思考“如何利用解析式f(x)=x2描述‘随着x的增大,相应的f(x)随着减小’……”,将自然语言的描述转化成数学符号语言的描述,并一般化得到单调性的数学定义。通过这样的三步,利用数形结合的方法展开单调性的概念,既有助于学生通过自己的努力获得概念,而且也从数和形两个方面理解了概念。3.函数内容中使用信息技术的点及方式在数学课程中使用信息技术已经毋庸置疑,同样地,信息技术的使用也是教材编写中最为关注的问题之一。那么,在函数中有哪些适合使用信息技术的内容,如何使用,以及在教材中使用的方式是怎样的?信息技术具有强大的图象功能、数据处理功能和良好的交互环境,利用这些优势,在函数这部分内容中可以使用信息技术的点主要有:求函数值、做函数图象、研究函数性质、拟和函数等。运用常见的一些软件,如excel、几何画板等就可以轻松地作出函数图象,这在讨论不同函数模型增长差异时发挥很大作用,从几幅图就能直观发现增长的差异;运用计算器可以解决二分法中计算量大的问题,从而将更多精力关注到二分法的思想上,认识到函数和方程间的联系;而计算机的交互环境则为学生的自主探究提供了强有力的平台,丰富了学习方式,如讨论指数、对数函数性质时,可以充分演示出图象的动态变化过程,这样就能在变化中寻求“不变性”,发现函数具有的性质。教材编写时一方面在适合使用信息技术的地方给予提示,如“可以用计算机……”等;另一方面通过拓展栏目详细地介绍一些信息技术应用的专题,如“用计算机绘制函数图象”重点介绍使用常用软件做函数图象的方法,“借助信息技术探究指数函数的性质”给出探究的情境,要求学生亲自利用信息技术发现规律,“收集数据并建立函数模型”介绍了如何用信息技术拟合函数,等等。通过这些方式,可以为教师和学生提供使用信息技术的机会和空间。
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。当下我国大数据研发建设应在以下四个方面着力一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。
《大数据技术对财务管理的影响》
摘 要:大数据可以快速帮助财务部门建立财务分析工具,而不是单纯做账。大数据应该不仅仅局限于本单位的微观数据,更为重要的关注其他单位的宏观数据。大数据技术不仅带来了企事业单位财务数据搜集的便利和挑战,而且也衍生出了诸多关于单位人员个人信息保密等问题的积极探索。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。
关键词:大数据;财务管理;科学技术;知识进步
数据是一个中性概念。人类自古以来几千年的辉煌变迁,无外乎就是数据的搜集和使用过程而已。纵观古今中外的人际交流与合作,充满着尔虞我诈和勾心斗角,那么他们在争什么呢?实际上是在争夺信息资源;历史上品相繁多的战争,实际上不是在维持什么所谓的正义和和平,抑或为了人间的正道,而是在争夺数据的使用权;“熙熙攘攘皆为利往、攘攘熙熙皆为利来”的世俗变迁逻辑已经让位于数据游戏的哲学法则。人类自英国产业革命以来所陆续发明的技术,尽管被人们美其名曰“第四次科技革命的前沿技术”,实际上不过就是“0”和“1”两个数字的嬉戏而已。正如有学者指出的,汽车技术、生命科学技术、基因技术、原子能技术、宇宙航天技术、纳米技术、电子计算机技术,看起来美轮美奂,实则隐含着杀机,那就是由于人们把技术当成了目的后,导致了“技术专制”后的“技术腐败”和“技术灾难”。人类一方面在懒惰基因的诱惑下,发明了诸多所谓的机械装置,中国叫“机巧”;另一方面又在勤奋的文化下,发明了诸多抑制懒惰的制度和机制。本来想寻求节俭,结果却越来越奢侈;本来想节约,结果却越来越浪费;本来想善良,结果却越来越邪恶;本来想美好,结果却越来越丑陋。正如拉美特里所说:“人是什么?一半是天使,一半是野兽。当人拼命想成为天使的时候,其实他会逐渐变成野兽;当人想极力崇拜野兽的时候,结果会逐渐接近天使。”我们不是在宣讲宿命的技术,我们只是在预测技术的宿命。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。
一、大数据技术加大了财务数据收集的难度
财务数据的收集是一个复杂的系统工程,国际上一般采用相对性原则,即首先利用不完全统计学的知识对数据进行初步的计算,接着对粗糙的数据进行系统的罗列,最后对类型化的数据进行明分梳理。使用者如果想进入该数据库,就必须拥有注册的用户名和密码。由于国际上对于网络数据的监督均采取了实名注册的模式,所以一旦该用户进入到核心数据库之后想窃取数据,一般都会暴露自己的bug地址源,网管可以循着这一唯一性存留,通过云计算迅速找到该网络终端的IP地址,于是根据人机互动原理,再加上各种网吧所安装的监控平台,可以迅速找到数据库的剽窃者。如果按照上述数据变迁逻辑,那么财务数据的收集似乎变得易如反掌,而事实并非如此。因为:①数据的量化指标受制于云计算服务器的安全性。当云服务器受到不可抗力的打击,如地震、水患、瘟疫、鼠疫、火灾、原子能泄露或各种人为破坏的作用,数据会呈现离散型散落。这时的数据丢失会演变成数字灾难;②各种数据版权的拥有者之间很难实现无缝隙对接。比如在经过不同服务器的不同数据流之间,很难实现现实意义上的自由流通。正如专家所指出的,教育服务器的事业单位的人员数据、行政部门人事管理部门的保密性数据、军事单位的军事数据、医疗卫生事业的数据、工商注册数据、外事数据等在无法克服实际权力的分割陷阱之前,很难实现资源的共享,这时对数据的所谓搜集都会演化为“不完全抽样”的数字假象。由此而衍生的数据库充其量只是一部分无用的质料而已。
二、大数据技术影响了财务数据分析的准确性
对于搞财务管理的人来说,财务数据的收集只是有效实现资源配置的先决条件,真正有价值的或者说最为关键的环节是对财务数据的分析。所谓“财务数据分析”是指专业的会计人员或审计人员对纷繁复杂的单位人力资源信息进行“去魅”的过程。所谓“去魅”就是指去粗取精、去伪存真、由此及彼、由表及里、内外互联,彼此沟通、跨级交流、跨界合作。在较为严格的学术意义上,分析的难度广泛存在与财务工作人员的日常生活中。大数据技术尽管为数据的搜集提供了方便法门,但同时加大了财务人员的工作量和工作难度。原先只是在算盘或者草稿纸上就可以轻松解决的数据计算,现在只能借助于计算机和云图建模。对于一些借助于政治权力因素或者经济利益因素,抑或是借助于自身的人际关系因素上升到财务管理部门的职工来说,更大的挑战开始了。他们不知道如何进行数据流的图谱分析,不知道基于计算机软件技术的集成线路技术的跌级分类,不知道基于非线性配置的液压传动技术的模板冲压技术,不知道逆向网络模型来解决外部常态财务变量的可篡改问题。由于技术不过硬,导致了领导安排的任务不能在规定的时间内完成,即时仓促做完的案例,也会因为数据分析技术的落后而授人以柄,有的脾气不好的领导可能会大发雷霆;脾气好的领导只是强压着内心的怒火,那种以静制动的魄力和安静更是摄魂夺魄。所以说数据分析难度的增加不是由于财务人员的良心或善根缺失,在很大程度上是由于技术的进步和大数据理念给我们带来的尖锐挑战。对于普通的没有家庭和社会背景的财务管理人员来说,能做的或者说唯一可做的就是尊重历史发展的周期律,敬畏生生不息的科学革命,认真领会行政首长的战略意图,提升自己的数据分析技术,升华在自身的“硬实力”。否则觊觎于领导的良心发现和疏忽大意,期望技术的静止或者倒退,抑或是在违法犯罪之后天真的认为可以相安无事,可能都只会落得“恢恢乎如丧家之犬”的境遇。
三、大数据技术给财务人事管理带来了挑战
一个单位的财务人事管理牵扯到方方面面的问题,其意义不可小视。一般来讲,单位在遴选财务管理部门管理人员的时候,大多从德才绩行四个方面全面权衡。然而这种“四有标准”却隐含着潜在的危机和不可避免的长远威胁,这其中的缘由就在于人性的复杂性和不可猜度性。历史和现实一再告诉人们,单纯看眼前的表现和话语的华丽,不仅不能对人才的素质进行准确的评价,而且还会导致官员的远期腐败和隐性腐败。对于中国的腐败,国人大多重视了制度和道德的缘起,却往往忽视了财务管理的因素。试想如果财务管理人员牢牢践行“焦裕禄精神”,不对任何政治权力开绿灯,国有资产又如何流出国库而了无人知晓呢?事实上,中国的所有腐败,不论是国有资产的国外流失抑或是国内流失,都在很大程度上与财务人员有关,可能有些管理人员会强调那不是自己的责任,出纳签字是领导的授意,会计支出费用那是长官的意思清晰表示。实际上,处于权力非法授予的签字、盖章、取现、流转和变相洗钱都是违法的,甚至是犯罪的。间接故意也是应当追究责任的。值得高兴的是,伴随着数字模拟技术的演进,财务管理中的腐败现象和人事管理科学化问题得到了极大的改善,相关领导伸手向财务要钱的行为,不仅会受到数据进入权限的限制,而且还会受到跟数据存留的监控,只要给予单位科技人员以足够的权限,想查找任何一笔资金的走向就变得非常简单,而且对于每一笔资金的经手者的信息也会了如指掌。这在一定程度上减少了只会指挥、不懂电脑的首长的孵化几率。
四、大数据技术加大了单位信息保密的难度
IMA(美国注册会计师协会)研发副总裁Raef・Lawson博士曾经指出:“客观上讲,大数据技术的正面效用是非常明显的,但一个不容回避的事实是大数据技术为财务信息的安全性提出了越来越严峻的挑战。我们已经注意到,在欧洲大陆、美洲大陆已经存在基于数据泄露而产生的各种抗议活动,这些活动牵扯到美国的数据窃听丑闻、俄罗斯对军事数据的强制性战友举动、以色列数据专家出卖阿拉伯世界经济数据的案件、在东方的中国香港一部分利用数据的窃取而发家致富的顶尖级黑客专家。”在数据集成的拓扑领域,大数据技术的保密性挑战肇始于蚁群算法的先天性缺陷。本来数据流的控制是依靠各种所谓的交易密码,实际上这些安全密码只是数据的另一种分类和组合而已。在数据的非线性组合和线路的真空组装模式下,任何密码都只是阻挡了技术侏儒的暂时性举动,而没有超出技术本身的惰性存在。当一个hacker掌握了源代码的介质性接洽技术之后,所剩下的就是信息和数据的搜集了,只要有足够的数据源,信息的户的几乎是轻而易举的。
2003年,北京的一家名为飞塔公司的防火墙安全软件在中关村科技城闪亮上市。该安全控制软件的开发者随机开发了一款名曰MAZE天网的软件,并且采用了“以其之矛攻其之盾”的攻防策略。测试的结果是尽管maze的源代码采用了24进制蝶形加密技术,但 FortiGate防火墙技术仍然能够阻挡住善意木马对电脑终端用户信息的剽窃和非法利用。FortiWeb已经通过全球权威的ICSA认证,可以阻断如跨站脚本、SQL注入、缓冲区溢出、远程文件包含、拒绝服务,同时防止敏感数据库外泄,为企事业单位Web应用提供了专业级的应用安全防护。飞塔公司之所以耗费人力和物力去开发这一新型的换代产品,就在于大数据时代对单位信息保密性的冲击。试想,如果一个单位连职工最起码的个人信息都不能安全存储的话,那么财务管理的科学性和人本性将从何谈起?只能说,即使在人权保护意识相对薄弱的法治环境里,我们也应该尽量提升自己的保密意识,加强对个人信息的保护和合理运用。
作者简介:田惠东(1967- ),女,汉族,河北定兴人,副高级会计师,本科学历,研究方向:财务管理,单位:保定市第一医院
大数据论文【1】大数据管理会计信息化解析
摘要:
在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。
同时也面临着一些问题。
本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。
关键词:
大数据;管理会计信息化;优势;应用现状;问题
在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。
而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。
一、大数据时代下管理会计信息化的优势及应用现状
在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。
而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,
不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,
以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。
需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对
供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。
(一)预算管理信息化
在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。
正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。
这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。
虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。
企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,
从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。
然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,
大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。
所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。
(二)成本管理信息化
企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。
而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。
而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。
企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,
使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。
以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。
同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的
每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。
虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。
然而信息化在成本控制方面的实施效果并不是很理想。
(三)业绩评价信息化
业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,
也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。
而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。
企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。
对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。
然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。
其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。
所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。
二、大数据时代下管理会计信息化存在的主要问题
(一)企业管理层对管理会计信息化不重视
我国企业管理层对企业管理会计信息化建设存在着不重视的问题。
首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。
再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。
(二)管理会计信息化程度较低
大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。
但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。
(三)管理会计信息化理论与企业经管机制不协调
虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。
很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。
三、管理会计信息化建设的措施
(一)适应企业管理会计信息化发展的外部环境
企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。
在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。
管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。
(二)管造合适的管理会计信息化发展内部环境
企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。
树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,
有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。
再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。
同时,为企业管理会计信息化建设提供强大的资金保障。
最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。
(三)开发统一的企业信息化管理平台
在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。
四、结束语
管理会计信息化已经成为企业发展的重要趋势。
同时也面对着一些问题。
因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。
作者:李瑞君 单位:河南大学
参考文献:
[1]冯巧根.
管理会计的理论基础与研究范式[J].
会计之友,2014(32).
[2]张继德,刘向芸.
我国管理会计信息化发展存在的问题与对策[J].
会计之友,2014(21).
[3]韩向东.
管理会计信息化的应用现状和成功实践[J].
会计之友,2014(32).
大数据论文【2】大数据会计信息化风险及防范
摘要:
随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。
但大数据时代下会计信息化的发展也存在一定的风险。
本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计
信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。
关键词:
大数据时代;会计信息化;风险;防范
前言
近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。
大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、
交叉重复使用而形成的智力能力资源和信息知识服务能力。
大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数
据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。
但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。
一、大数据时代对会计信息化发展的影响
(一)提供了会计信息化的资源共享平台
进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。
而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,
提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。
但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。
随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。
一、高等数学在地方高等职业教育中遇到的问题及解决办法
(一)数学师资力量短缺,教师学历偏低
地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。
(二)学生对数学课重要性认识不够,学习热情不高
目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。
(三)高等数学课程设置不合理,教学与实际应用脱节
由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。
二、总结
高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。
一、网络教育高等数学的现状分析
1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。
2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。
二、网络教育高等数学的教学初探
教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面:
1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。
2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。
数学与生活 自从懂事以来,数学就已进入了我们的生活,数学无处不在影响着我们的生活,指引着智慧的方向,陪伴我们度过学习与成长的各个阶段。数学是一门给人智慧、让人聪明的学科,在数学的世界中,我们可以探索以前所不知道的神秘,在这个过程中我们变得睿智、变得聪明。 由于以前选择了文科,所以到大学才接触到危机分的知识,也开始了对微积分的探索,现在可以说是略知一、二了,在此期间间间的了解到微积分的美好,以及新引力的强大。但学习微积分的过程是困难与艰辛的,与此同时,我也了解到——数学是一种寻求众所周知的公理法思想的方法,这种方法包括明确的表述出将要讨论的概念的含义,以及准确的表述出作为推理基础的公设。具有极其严密的逻辑思维能力的人从这些定义和公设出发,推导出结论。同时数学是一门需要创造性的科学,而数学的这些创造性的动力往往来自于生活。反过来,数学的这些创造性地成果往往又作用于生活的各个方面。例如,商业和金融事务、航海和历法的计算、桥梁、水坝、教堂和供电的建造、作战武器和工事的设计,以及许多人类的需要。与此同时,数学又能对这些问题给出最完满的解决。在我们高速发展的社会中,数学被当作普遍工具的事实更是毋庸置疑的。 在我们的日常生活中,微积分确确实实的存在着,只是我们缺少善于发现的精神而已。比如说,我们在养花,而花瓶中水过多了,我们这时就要倒出部分水,这是上活中的公式就产生了,这个问题是:我们要将瓶子倾斜多少度时才能降水倒出一半来?这是微积分就派上用场了。 假设花瓶的纵截面是抛物线 Y=ax^2(a>0) 首先,先算出瓶子直立水满时的体积用一个积分就可以了,结果等于V=πh^2/(2a); 第二步,假设倾斜角为α,正好倒掉了一半的水,重新建立坐标系,令此时瓶的对称轴为y轴,垂直于瓶的对称轴的射线为x轴,然后将坐标系还原为常规正立的图形,此时瓶里水的横截面图像为抛物线和水面所在直线的公共部分,注意此时水面所在直线与x轴的倾角是刚好为题目所提到的倾斜角α(如原图所示,倾斜后的水平面此时与x轴平行,因此水面与瓶的对称轴的夹角为90-α,也即在新建坐标系下,水面所在直线与y轴的夹角也为90-α,因此它与x轴的夹角为α)。所以可以设该直线方程为 y=tanα*x+b 假设直线与抛物线的交点为A(x0,y0),B(sqrt(h/a),h))(左A,右B)(B点的纵坐标显然等于瓶子的高度h),先利用B点坐标求出直线的截距b,然后联立直线与抛物线方程可以求的A点坐标;第三步,就是求此时瓶中水的体积,可以将图像分为两部分,一部分是直线y=y0与抛物线所交部分,第二部分是直线y=y0、直线y=tanα*x+b及抛物线y=ax^2(a>0)相交部分。第一部分体积为V1=∫π*(x^2)dy=∫π*y/ady(积分上下限为0和y0); 第二部分体积为V2=∫π*((sqrt(y/a)-(y-b)/tanα)/2)^2dy(积分上下限为y0和h);因此根据: V1+V2=V/2=π*h^2/(4a)=∫π*y/ady(积分上下限为0和y0)+∫π*((sqrt(y/a)-(y-b)/tanα)/2)^2dy(积分上下限为y0和h)可以解得所求α值。这就是数学于生活紧密联系在一起了,如果数学不能和生活紧密联系在一起,那么数学将变得空洞无力。 著名数学家罗素曾说:“数学如果正确看待他,则具有……至高无上的美——正像雕像的美,是一种冷而严肃的美,这种每部石头和我们的天性的微弱的美,这些煤没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。一种精神上的喜悦,一种精神上的亢奋,一种高于人的意识的,这些是至善至美的标准,能够在诗里得到,也能够在数学里得到”这就表明伟大的人物因为有一双善于发现美的眼睛所以他看到了数学隐藏的魅力。除了创造性和发现,想象也是可以使数学在我们思想中得到升华的。学了很久的数学了,明卖弄百数学的源远流长于高深莫测,他引领着前进的道路。Hankel,Hermann 说:数学沿着他自己的道路而无拘无束的前进着,这并不是因为他有什么不受法律约束之类的种种许可证,而是因为数学本来就具有一种由其本性所决定的并且与其存在相符合的自由无益的是数学在生活中独特而不可或缺,失去了数学科技水平将倒退。这不是耸人听闻,这是对数学这门使人精密学科的肯定,这是不可置否的。 数学不是规律的发现者,因为它不是归纳。数学也不是理论的缔造者,因为它不是假说。但数学确实规律和假说的裁判和主宰者,因为规律和假说都要向数学表明自己的主张,然后等待数学的裁判。如果没有数学的认可,则规律不能起作用,理论也不能解释。(来自数学的文化) 数学是重要的,生活不能离开数学,国防发展与科技进步也不能离开数学。在遥远的古代中国是引领世界的,因为那时的勤劳人民已发现了数学算筹、《九章算术》……这都是历史留下来的论据。一个国家的强大离不开数学的精密计算。21世纪的今天中国已傲然屹立于世界民族之林,为了使国际地位不断提升,我们必须坚定的发展研究数学。