医学影像技术是高新技术与医学的结合,自20世纪70年代起,以CT问世为标志,伴随计算机技术的进步,现代医学影像学取得了突飞猛进的发展,由传统单一普通X线加血管造影检查形成包括超声、放射性核素显像、X线CT、数字减影血管造影(DSA)、MRI、普通X线检查的数字化成像(CR和DR)以及图像存储和传输系统(PACS)多种技术组成的医学影像学体系。医学影像学已经由传统的形态学检查发展成为组织、器官代谢和功能诊断手段,医学影像学技术已经由既往"辅助检查手段"转变为现代医学最重要的临床诊断和鉴别诊断方法,使多种疾病的诊断更准确、及时。由于介入医学的兴起,医学影像学已经集诊断和治疗为一体,成为与外科手术、内科化学药物治疗并列的现代医学第3大治疗手段。目前,医学影像学科是现代化医院的支柱之一,影像学设备的价值占医院固定资产50%以上,医学影像学为临床医学的主要研究手段和推动现代医学不断发展的动力。
医学影像学是高新技术与医学的结合点,21世纪医学影像学发展首先依赖于以计算机为主导的高新技术的进步。由于计算机的性能以几何级数升级,必将带动多种医学影像学设备向小型化、专门化、高分辨率和超快速化方向发展,医学影像学检查亦将由大体水平逐渐深入至细胞、受体、分子和基因水平。近年来,美、欧、日等发达国家和地区在医疗影像诊断产业加强战略布局,旨在带动多种医学影像设备向小型化、专门化、高分辨率和快速化方向发展。目前,数字医疗影像技术的发展主要有如下几大趋势:
现代医学影像设备的发展将由最开始的形态学分析发展到携带有人体生理机能的综合分析。通过发展新的工具、试剂及方法,探查疾病发展过程中细胞和分子水平的异常。这将会为探索疾病的发生、发展和转归,评价药物的疗效以及分子水平治疗开启崭新的天地。同时,由于造影剂是影像诊断检查和介入治疗时所必需的药品,未来针对特定基因表达、特定代谢过程、特殊生理功能的多种新型造影剂也将逐步问世。
党福星
(航空物探遥感中心,北京100083)
多光谱遥感技术是一种根据地表地物的电磁波谱特征,利用多光谱扫描仪从空中探测地面信息的技术。多光谱遥感资料的多波谱特性,是识别地物和提取地表信息的重要依据之一,利用遥感波谱信息进行地物识别和信息提取,不但信息量大,而且信息处理可以定量化。目前,应用多光谱遥感资料所精细反映的地表地物的电磁波谱特性,进行地物信息的定量提取研究是多光谱遥感技术应用中的重要内容和热点,本文以地面地物信息的定量化提取为研究内容,提出了地物识别的新思路,探讨了多光谱信息定量化分析技术在遥感解译应用中的具体研究途径,对今后进一步开展遥感解译定量化研究具有实际意义。
图1是多光谱遥感定量化分析技术流程。试验采用的是航空多光谱扫描原始数据,具有较高的波谱和空间分辨率(10个波段,8.5m的像元),地面主要地物波谱资料是通过地面准同步测试获取的。
试验研究包括两部分:第一是遥感图像数据定量化,主要内容有大气散射校正、噪声消除、基于机下点的图像归一化校正和反射率图像生成。第二是利用地物的地面反射率值与遥感图像的光谱信息的相关特征以及反射率值的变化趋势,建立遥感地物反射光谱解译模型,进行地物属性信息的定量提取,为研究人员提供较高精度的专题信息图像和有利于计算机的自动成图。
图1试验研究方法技术流程
一、试验区概况及遥感数据定量化
(一)试验区概况及主要地物波谱特征
本次航空多光谱扫描数据是于1991年9月和1993年8月用DS—1268系统分别在新疆西北部地质找矿区和冀中农业平原区采集的。试验区概况如下。
1.农业区及主要地物波谱
农业区以滦河流域平原为主,平原地区平均海拔高度为70m,试验区内平均高差不足50m。本区地物类型主要有植被、水体、裸土等,植被有农作物、树木、杂草等。农作物类型主要是玉米和花生,成片大面积分布,其混合像元率为0~10%。树木主要有成片树林和在耕地之间、道路两旁、建筑物旁成排分布的两种形式,混合像元率为20%和60%左右,草地主要分布在山坡和河滩,混合像元率为20%~80%,分布不均匀。本区无植被覆盖地物主要是滦河水、池塘水、裸露的砂土和砾石,主要分布在道路区、人工建筑区以及河滩等。典型地物波段反射光谱数据如表1所示。
表1农业区主要地物波段反射光谱数据(%)
2.地理、地质及主要地物波谱
地质找矿调查区位于我国西北的新疆阿舍勒地区,区内有一大型铜矿床。试验区属北温带寒冷半干旱气候区,区内基岩裸露较好,在低山丘陵区的沟谷中植被发育,多生茅草类;山坡(阴坡)上生长有蒿类及野刺玖、兔儿条等灌木,整个地势由南西向北东依次增高,分别为750m、800m、850m,呈似台阶状上升。
区内地层主要出露有上古生界中泥盆系依托克萨雷组、阿尔泰组,下石炭系口山咀组,第三系、第四系主要分布在研究区南部。上述地层构成长轴为北西向的向斜,沿其走向在西北端与南阿勒泰构造成矿带相连。
区内构造复杂,矿床位于玛尔卡库里深断裂北东侧近南北向的次级断裂带中,沿断裂各种岩石普遍受挤压破碎,矿区附近受到不同程度的区域变质和动力变质作用及成矿热液蚀变的影响,使得岩石变得复杂化。围岩蚀变强烈,蚀变范围较广而且种类繁多,岩石强烈硅化、绢云母化和绿石化,且发育有一定量的褐铁矿化及铁帽,形成明显的退色蚀变带。
区内主要岩石类型可分为矿化蚀变岩、非矿化蚀变岩及未蚀变(弱蚀变)岩石。表2是试验区主要地物的波段反射光谱数据。
(二)遥感图像数据定量化
本项试验在保证精度的前提下,对ATM图像进行了必要的预处理,包括图像的条带、噪声去除、大气散射校正、图像归一化校正和反射率值恢复等。
原始的遥感图像数据除了包含地物光谱反射率信息外,也包含着大气辐射传输效应、地形效应和不同波段的增益影响。剔除这些干扰因素,将原始图像数据转换为反射率图像是多光谱数据定量化解译和分析不可少的基础性工作。转换的方法很多,本次试验仅采用波谱平台对数剩余值法和线性回归法。
表2地质试验区主要地物波段反射光谱数据(%)
线性回归法的数学表达式为:
航空物探遥感论文集
式中:Rj(i)为第j波段第i像元的反射率;Aj,Bj为线性回归系数;Lj(i)为第j波段第i像元的图像亮度值。
该方法的适用条件是定标地物分布均匀、面积足够大(约10×10像元)而且地形起伏不能太大。
波谱平台对数剩余值法克服了对数剩余值法中背景地物压制目标地物吸收特征这一缺陷,其数学模型为:
航空物探遥感论文集
式中:G′j(·)为波段j上处于波谱平台区的所有像元的几何平均值;G′(·)为所有处于波谱平台区的像元在所有波段上的几何平均值;G.(i)为第i像元点在所有波段的几何平均值;Rj(i)为第j波段第i像元的波谱平台反射率对数值。
该模型的适用条件是像幅内大气水平均匀。
二、试验区地物反射光谱解释模型建立
(一)用于农业区地物识别的反射光谱解释模型建立及定量化分析
多光谱遥感图像的波谱特征是地物识别的重要依据,而建立判别地物属性的反射光谱解译模型是识别地物的关键。我们利用试验区主要地物的地面反射率值与遥感图像中光谱信息的相关特征以及反射率的变化趋势,建立了地物反射光谱解译模型,这些模型主要有:
①归一化差值植被指数In,d.v
航空物探遥感论文集
②垂直植被指数Ip.v
航空物探遥感论文集
③综合比值植被指数Ir,v
航空物探遥感论文集
式(3)、(4)、(5)中R3、R4、R7、R8分别为DS—1268系统第3、4、7、8波段图像的反射率值。各主要地物的判别指数动态变化范围如表3。
表3主要地物判别指数动态变化范围
(二)矿化蚀变信息解译模型的建立及其数据特征定量分析
在地质研究区内地表满足朗伯体假定、地形起伏中等、大气状况均匀的情况下,预处理后的多光谱图像j波段传感器对地面某点成像时所记录的第i个像元的反射率值可表示为:
航空物探遥感论文集
式中:pij为图像内第j波段的第i个像元对应的地面目标波段反射率值;ρkl为平台区内第l波段的第k个像元对应的地面目标波段反射率;m为多光谱图像的波段数;n′为平台区像元个数;Rij为图像反射率值。
由式(6)可知,图像反射率值仅与平台像幅内地物的和目标地物的反射光谱特征有关。由于平台区选取地物(花岗斑岩)满足灰体的反射特性,因此对于多光谱图像的两个波段的综合比值图像上某一像元点的值可表示为如下形式:
航空物探遥感论文集
由式(7)可知,在一定条件下,反射率图像波段比值仅与像元内目标地物的波谱特性有关。为准确地定量提取矿化蚀变信息,对已知矿化蚀变训练区的多波段综合比值数据进行统计分析,区内主要地物类型的反射率数据综合比值统计特征归纳如表4所示。
表4主要地物类型图像反射率数据比值特征
表4数据表明:应用反射率生成模型对经过初步辐射校正的图像作图像光谱转换之后,在(R9—R7)/(R9+R7)与(R9—R10)/(R9+R10)的二维比值数据中,植被和未蚀变岩石基本上被压缩在零值附近,而在(R5—R2)/(R5+R2)的比值数据中,非矿化蚀变岩类基本上也被压缩到了零值附近,因此,应用遥感信息定量化分析技术可以将矿化蚀变信息单独提取出来作为遥感定量信息,从而实现遥感信息的定量化提取。
三、遥感信息定量化提取
(一)农业试验区地物类型专题信息定量化提取
根据所建立的试验区遥感解译模型,在定量分析的基础上,将不同类型的地物属性信息提取出来。具体方法是,根据对已知地物训练区的统计分析,以由试验区主要地物类型的反射光谱解译模型计算出的各判别指数值的动态变化范围作为阈值基数,在阈值范围内的像元点被认为是所识别的地物,依此类推。附彩图2和附彩图3是利用判别指数在定量分析的基础上提取的试验区主要地物分类图像,提取结果是令人满意的,抽样统计精度达85%。
(二)矿化蚀变岩性信息定量化提取
1.植被影响因素的消除
如前所述,应用反射率图像的ATM9和ATM7生成的比值图像R97可将植被信息单独提取出来,进而消除植被对岩性信息提取的干扰。令:
航空物探遥感论文集
式中:R9为第9波段的反射率值;R7为第7波段的反射率值。
当比值图像的像元值R97≤0时,该像元点所反映的地物为植被。
2.蚀变岩石信息提取
应用反射率图像的ATM9和ATM10生成的比值图像可提取蚀变信息。令:
航空物探遥感论文集
在消除植被的影响后,蚀变信息的判别依据为:当比值图像上的像元值R910>0.03时,该像元点所反映的地物为蚀变岩。
3.矿化信息提取
在蚀变信息提取的基础上,矿化信息可由反射率图像的ATM5和ATM2生成比值图像进行识别和提取。令:
航空物探遥感论文集
提取矿化信息的阈值基数为:当R52>0.03时,比值图像上的对应像元点的地物为矿化蚀变岩。
附彩图4是依据(8)、(9)、(10)式所示的识别准则提取的植被、蚀变岩和矿化点信息分布示意。
在矿化蚀变信息提取的基础上,依据矿化点反射率图像数据的比值特征可进一步提取地表岩石的矿化信息。令:
航空物探遥感论文集
有关试验区地表岩石矿化信息和相对应的图像反射率数据比值特征见表5,通过初步分析,可得如下结论:
表5地表矿化岩石信息和图像反射率数据比值特征
当岩石中铁的氧化物、氢氧化物主要为赤铁矿、褐铁矿矿物时,R678<0,R789>0;
当岩石中以含针铁矿、褐铁矿矿物为主时,R789<0,R678>0;
R52值越大,岩石的褐铁矿化程度越高,岩石中铁的氧化物、氧氧化物含量也越高。
因此,根据上述结论,可提取以赤铁矿为主的和以针铁矿为主的矿化蚀变信息以及地表岩石的矿化程度信息。
当R678<0时,矿化标志为以赤铁矿为主的铁帽(附彩图5);
当R789<0时,矿化标志为以针铁矿为主的褐铁矿化(附彩图6)。
根据R52的值域范围,可确定矿化蚀变程度。即R52值越大,矿化程度越高,试验区矿化程度与比值图像R52值域的关系为:
当0.03<R52<0.05时,矿化程度低;
当0.05<R52<0.10时,矿化程度中等;
当0.10<R52<0.14时,矿化程度高。
附彩图7是根据R52值域范围提取的矿化程度专题信息示意。根据已有地质矿产资料和前人野外实地踏勘结果可知,矿化程度最高的矿化带是第一号矿化带,这与应用比值特征获取的矿化程度信息所反映的图像部位基本一致。
四、结论
通过多光谱定量化分析技术在地物识别中的初步应用研究,得出如下结论:
①采用多光谱定量化分析技术,利用遥感图像数据的光谱信息,进行地表农作物及其它地物类型的定量识别和地质矿化蚀变专题信息的定量提取,不仅物理意义明确,而且可以为动态监测大面积土地资源与矿产勘查快速提供有关专题信息图件。
②初步试验结果表明:在一定的条件下,应用多光谱信息定量化分析技术,通过对遥感数据进行定量化分析和解译,不仅应用效果好,提取精度高,而且所提取的有用地质信息可做为单独数据与其它地学信息复合,从而为今后更深入地探讨实现遥感解译定量化的有效研究途径奠定了基础。
③基于光谱信息统计的定量化分析方法,较好地与地面波谱数据的分析和应用结合起来,所建立的信息提取模型的主要依据是地面实测波谱数据的变化规律。因此,直接将地面波谱数据应用于多光谱图像预处理和解译过程,为多光谱图像的解译从定性发展到定量,提供了新的思路和研究方法。
④仅依据地物的波谱特性进行地物识别研究,具有一定的局限性。今后如何有效地结合遥感图像的光谱信息、结构信息以及其它相关信息,研究提取地物信息的综合计算机方法是提高遥感解释定量化水平值得注意的发展方向。
参考文献
1.斯韦恩P.H等.遥感定量方法.北京:科学出版社,1984
2.彭望碌.遥感数据的计算机处理与地理信息系统.北京:北京师范大学出版社,1991
3.朱亮璞等.遥感地质学.北京:地质出版社,1994
4.Crippen R E.Regioal Exploration in Desert Terrains:A Guide to the Use of LANDSAT Thematic Mapper Imagery,Presented at the 8th Thematic Conference on Geologic Remote Sensing,1991
THE APPLICATION OF MULTISPECTRAL QUANTITATIVE ANALYTICAL TECHNIQUE TO THE RECOGNITION OF GROUND OBJECTS
Dang Fuxing
(Aerogeophysical Survey and Remote-Sensing Center,Beijing 100083)
Abstract
Using high resolution reflection spectral information of ground objects provided by ATM image data,systematically absorbing and consulting the new achievements in remote sensing techniques and methods gained by the Aerogeophysical Survey and Remote-Sensing Center in the period of Five-Year Plan,and employing multispectral quantitative analytical technology,the author tentatively carried out the remote-sensing ground object recognition study in agricultural area of central Hebei and semi-arid area of Xinjiang,and,as a result,obtained remarkable outcomes in this aspect.
随着影像医学的快速发展,影像检查已成为医疗工作中的重要环节,临床医疗对影像检查的依赖性越来越强。下面是我为大家整理的医学影像技术 毕业 论文,供大家参考。
《 医学影像学的现状和未来初探 》
摘要:医学影像学检查不仅在诊断与治疗的环节发挥作用,而且可以在疾病预防、健康体检、重大疾病筛查、健康管理、早期诊断、病情严重程度评估、治疗 方法 选择、疗效评价、康复等环节发挥越来越大的作用,医学影像学科的地位必将不断提高。
关键词:医学影像学;现状;未来;综述
【中图分类号】R473【文献标识码】A【 文章 编号】1672-3783(2012)04-0140-01
随着医学影像学飞速发展,它在临床医学中的地位不断提高,由X线、超声、放射性核素显像、CT、数字减影血管造成影及介入装置、磁共振成像所组成的医学影像学家族已经成为临床主要的诊断和鉴别诊断方法、医院现在化的重要标志、科学研究的主要手段及医院重要的经济收入来源。现将医学影像学的发展与展望综述如下。
1 医学影像学技术发展的历史回顾
1895年11月8日德国物理学家伦琴发现了一种新型射线(a kind of new rays)。并于11月22日为夫人拍摄了一张手部x线照片,也是人类第一张x线影像。随后,x线被广泛的应用于对疾病的诊断和治疗,形成了放射诊断学和放射治疗学。x线还用于疾病的预防、康复和预后随访。在医学之外,还用于x线衍射分析和工业探伤等多种用途。因此,x线的发现对人类作了重大贡献。1971年亨氏菲尔德发明了CT,将传统的X线的直接成像转变为间接成像,从而奠定了现在影像学的基础,随后出现的MRI、正电子发射型体层摄影术等影像学技术,以及近期出现的分子成像和光成像,使医学影像学在显示形态学状态之外,还能完成组织器官功能检查,并最终在分子和细胞水平显示组织、器官的化学成分和代谢变化。
2 医学影像学现状
曾经在我国长期使用用的x线透视检查的应用逐年减少, 大型医院或者发达地区的中小医院已逐步取消透视, 而代之 以x线摄影检查, 且以DR检查占主导地位。传统 X线造影检查被多排螺旋CT和磁共振成像所取代 首先是 X线脊髓造影检查被 MRI所取代;其次是多排螺旋CT和MRI结合光学内镜逐步取代 X线消化道造影、经静脉肾盂造影和胆道造影等检查;然后是 DSA的诊断性血管造影检查逐步被CT血管成像和MR血管成像所取代。 伴随设备的逐步普及,CT已经成为临床(尤其急诊)最重要的影像检查方法。MRI具有无创伤、 无射线辐射危 害,成像参数多、获得的信息量大,软组织对比度最佳等显著优点,是最活跃的影像学研究手段,已经成为很多重要疾病的确证诊断方法。超声以其设备普及、价格低廉、无创伤、无射线辐射危害、可在病床旁边实施和便于复查等优点, 成为目前临床应用最主要的影像学筛选检查技术。以早年的CT为起点,CT、MRI等设备开始提供横断层面影像。同时,得益于计算机技术的进步,今天已经可以在较短时间内把上述的信息“重组”(reformation)为三维的、分别显示兴趣结构的、带有仿真色彩的,甚至以内窥镜的信息模式显示的“直观信息”。举例说,一个重度创伤的病人可能会有骨折、颅脑损伤、内脏损伤、血管损伤及其他并发症。今天,只需用CT从头到脚在数十秒钟内完成采集,病人即可回病房作急症处理,而放射科医师可使用一次采集的信息分别显示出骨骼、颅脑、内脏、血管等结构与病变,并给急症医师提供“直观的”兴趣结构的三维的、彩色仿真的诊断信息。这样的信息已经超越了大体解剖学的可视能力,达到了即使在手术刀或解剖刀下都不可能完全洞察的水平。
3 医学影像学技术的发展趋势
各种医学影像学设备向小 型化、专门化、高分辨力和超快速化方向发展,MRI和CT的全器官灌注成像得到临床普及应用。虽然目前MSCT主要生产厂家的设计理念和主攻方向不一致,导致彼此设备的差异巨大,但是可以预测,在不远的将来,CT机的构造(包括发生器、X线球管的结构和数量、探测器种类和排数等) 将发生实质性变改, 也许球管和探测器的旋转速度更快,使MSCT的时间分辨力突破50 ms大关,使心脏得到真正的“冻结”,而探测器材质的改进能显著提高MSCT的空间分辨力。 各种介入治疗成为常规有效的治疗方法。集诊断与治疗一体化的医学影像学设备也在不断成熟和普及, 使疾病的诊断更加及时、 准确,治疗效果更佳。应用计算机仿真技术设计外科手术方案、 由影像导航 系统直接引导外科手术入路、确定手术切除范围,并在术中直接应用MRI对病灶切除范围进行现场评价会逐渐普及应用。在影像学网络化的基础上,医学图像处理将成为常规,而服务器软件取代工作站,实现多点同时后处理,并使图像后处理的自动化程度进一步提高。 伴随远程影像学的普及和宽频带网络的应用,医学影像学图像的远程传输更为快捷,图像更加清楚,影像学科医生可以在家里或者在出差旅途中完成诊断 报告 。
分子成像是医学影像学的 热点 研究方向之一,伴随分子成像的研究进展,会有多种组织、器官特异性对比剂问世,这些新型对比剂能显示特定基因表达、 特定代谢过程、特殊生理功能,其毒副作用更小、对比增强效果更佳、诊断的特异性更强,真正实现疾病早期诊断。开发疗效监测对比剂(或称分子探针),以在最短时间得到治疗的反馈信息, 在分子水平上进行疾病的靶向治疗。除PET外, 其他医学影像学技术也能直接用于药物的研发和监测疗效,在活体早期、连续观察药物或基因治疗 的机制和效果,以利于药物筛选和新药开发。此外,分子成像方法和图像后处理技术将得到持续改进,并开发出用于分子成像的影像学新技术。 医学影像学技术的进展还将导致影像学科内部人员构成发生变化,物理师、数学家、生物医学工程师、计算机专家和循证医学专家占影像科室人员的比例越来越高,针对某种重大疾病可以组建包含内、外科和影像学医生的新型科室。医学影像学检查不仅在诊断与治疗的环节发挥作用,而且可以在疾病预防、健康体检、重大疾病筛查、健康管理、早期诊断、病情严重程度评估、治疗方法选择、疗效评价、康复等环节发挥越来越大的作用,医学影像学科的地位必将不断提高。参考文献
[1] 贺延莉,王亚蓉,殷茜,等.T-PACS在医学影像学实践教学中的应用和优势[J].中国医学 教育 技术,2011,25(6):657-659
[2] 刘卫宾,韩冬.浅析普通X射线摄影及其应用[J].中国卫生产业,2011,8(11):115-115
[3] 蒋震,沈钧康,宦坚,等.医学影像学研究生读书报告的方法学探讨[J].中华医学教育探索杂志,2011,10(10):1179-1181
[4] 高艳,李坤成,杜祥颖,等.医学影像学教学中比较影像学的重要性[J].中国高等医学教育,2011(11):79-80
[5] 王安明,史跃,赵汉青,等.格式塔理论在医学影像学诊断中的作用[J].医学与哲学.临床决策论坛版,2011,32(10):67-68
[6] 江传海,余梁,胡正宇.PACS在医学影像学教学中的应用[J].安徽医学,2011,32(10):1778-1779
《 数字图象在医学影像中的应用 》
【摘要】医学影象技术从70年代进入数字时代,二十多年来先后有了MR、B超、DR、DSA、ECT、CR等数字化影像设备投入使用。对医学影像诊断起了很大的推进作用。在客观上促使各种成像技术凭借自身的优势竞相发展。取长补短,综合利用,使疾病的早期诊断率有明显提高。
【关键词】数字图象;医学影像;应用
Digital image in medicine image application
Rao Tianquan
【Abstract】medicine phantom technology enters the Digital Age from the 70's,20 for many years successively have had MR,B ultra,digitized image equipment and so on DR,DSA,ECT,R put into the use. Diagnosed the very big advancement function to the medicine image. In on is objective urges each kind of imagery technology to rely on own superiority unexpectedly to develop. Makes up for one's deficiency by learning from others' strong points,the comprehensive utilization,enable the disease the early diagnosis rate to have the distinct enhancement.
【key word】digital image; Medicine image; Using
图象是周围客观世界的一种印象,数字图象是60年代出现的一种全新的,科技含量极高的产物。它的出现使传统的模拟图象受到了极大的挑战。数字图象和模拟图象相比,二者的区别在于:一:模拟图象是以一种直观的物理量的方法来连续地表现我们期望得知的另一种物理场的特征。而且数字图象则完全以一种规则的数字量的集合来表达我们面对的物理图象。二:用模拟图象的方法来显示图象具有直观,方便的特点,一旦设计出一种图象的处理方法则具有全场性与实时处理等优点。但是模拟图象亦有抗干扰性差,重复精度差,处理功能有限,处理灵活性差的缺点。而数字图象具有很好的抗干扰性,图象处理方便,适应性能强等优点,特别是随着计算机技术的发展,数字图象处理的速度也变得越来越快,越来越显示它的发展潜力和优势。三:数字图象和模拟图象相比,它的图象更清晰、无失真,更便于储存和传输。
从70年代末期开始,医学影像技术进入了数字时代。二十多年来先后有了MR、B超、DR、DSA、ECT、CR等数字化影像设备投入使用。对医学影像诊断起了很大的推进作用。这一些进展无一不是从根本上破除了原有信息载体形式和成像原理的束缚,开创新径而取得的。同时这也在客观上促使各种成像技术凭借自身的优势竞相发展。它们之间不仅没有相互代替,而是取长补短,综合利用,使疾病的早期诊断率有明显提高。
1 数字X线图象的形成
X线透射成像是基于人体内不同结构的脏器对X线吸收的差异。一束能量均匀的X线照射到人体不同部位时,由于各部位对X线吸收的不同,透过人体各部位的X线的强度亦不同,这些穿透过人体的剩余X线就携带着人体被照射部分的组织密度和厚度的信息。这些信息投影到一个检测平面上,即形成一幅人体的X线透射图象。如果这个检测平面是荧光屏,那么我们就得到一幅模拟的图象了。再将这幅图象用不同的方法采集下来(如摄影,录像,拍照等方法)。检测器也可以是 其它 ,如电离室、光电管、晶体压电等等。然后将收集到的信号进行模数转换就形成了一组由不同数字代表X线强弱排列的数字信号了。最后将该组信号交计算机处理经数模转换即成为清晰、无干扰、无变形、无失真的数字X线图象。
2 数字图象技术在X线检查中的运用
2.1 X线电视系统:主要由影像增强器和X线闭路电视系统组成,影像增强器把X线像转换成可见光像,而且图象的亮度得到很大的增强,然后通过电视系统进行观察和分析图象,它是实现X线图象数字化的基础。
2.2 数字摄影:(DR)对影像增强器所得到的电视信号,用摄像机拾取的高信噪比的电视信号进行数字化,然后再进行各种计算机处理,得到不同效果的图象,这种技术多用于胃肠透视和血管造影成像。该种检查拍摄后立即可以得到图象。不必等待冲洗,还可以动态的观察。
2.3 计算机摄影:(CR)它是用影像板(IP)代替胶片暴光,然后将存储在IP板上的X线潜影用激光扫描拾取并转换成电信号,再经计算机处理得到一幅X线数字图象,最终用激光像机把X线图象记录在胶片上。这种方法灵敏度高、敏感范围大、图象清晰。
2.4 数字减影:(DSA)用于血管造影,原理是将检查部位于造影前后用摄像机各采集图象,然后将图象数字化后存储在计算机里,用计算机进行处理,将两次采集的图象进行对应像素逐个相减,减影后的图象只留下充盈的血管图象,这样去掉了组织的重叠干扰,可以清楚地观察血管情况。
2.5 计算机横断体层装置:(CT)X线对人体横断面的各个方向进行照射,检测器采集到体层各个面对X线的吸收曲线后,用计算机处理所得数据最后以数字矩阵的形式表示横断面上个点的密度值,这样断面上的各点的密度都用确定的数值表示出来,这种对组织密度的量化,可以从数值上来区分健康组织和病变组织,大大提高了诊断的科学性。
此外;数字图象还应用于MIR、ECT、B超等医学影象学科,在我们的日常生活中都离不开数字图象。
参考文献
[1] 王容泉. 《医用大型X线机系统》
[2] 梁振声. 《医用X先机结构与维修》
[3] 邹 仲.《X线检查技术学》
[4] 吴恩惠.《头部CT诊断学》
有关医学影像技术毕业论文推荐:
1. 医学影像毕业论文范文
2. 有关医学影像类毕业论文
3. 医学影像本科毕业论文
4. 医学影像学研究论文
5. 关于医学影像的论文
截至2014年3月,该校建有11个人文社会科学研究基地,6个理工类实验室,2个工程技术研发中心 。黑龙江省哲学社会科学研究基地:大庆精神研究中心黑龙江省高校人文社会科学重点研究基地:大庆精神研究中心黑龙江省高校重点建设实验室:油田应用化学实验室大庆油田有限责任公司重点实验室:油田结垢与腐蚀研究实验室大庆师范学院人文社会科学研究基地:油田文化研究中心、学前教育研究所、现代营销管理研究中心、民商法学研究中心、汉语文化研究中心、法与社会发展研究所、经济发展研究所、中国近现代史研究中心、中国古代文学研究所、英语应用语言学研究所大庆师范学院重点实验室:凝聚态物理实验室、油田湿地生物与生态修复实验室、中科院湿地研究中心大庆研究基地、检测技术及自动化装置实验室大庆师范学院工程技术研发中心:微生物驱油工程技术研发中心、检测与控制工程技术研发中心 2004年至2014年3月,该校承担省部级及以上项目80项,其中,国家社会科学基金项目7项,国家自然科学基金项目4项,教育部项目3项,文化部文化艺术科学研究项目1项,中石油集团公司项目1项,省哲学社会科学研究规划项目39项,省自然科学基金项目23项,省科技攻关计划项目2项。同时还承担市局级项目278项,其中,省教育厅人文社会科学研究项目112项,省教育厅科学技术项目60项,省青年学术骨干支持计划项目6项,省艺术科学研究项目10项,大庆市社科联项目69项,大庆市科技计划项目6项,大庆油田有限责任公司项目15项。获得市(局)级及以上科研成果奖570项,其中获黑龙江省社会科学优秀成果一等奖和中国石油天然气集团公司科技进步二等奖等29项省部级以上成果奖;发表学术论文3643余篇,其中被SCI、EI检索论文140篇;获得国家专利18项 。 2013年所获省级以上科研项目(截至2013年9月30日)项目名称负责人项目来源项目类别所属单位免疫保护剂作用下的外源微生物驱油机理研究 黄永红 国家自然科学基金 专项基金项目 生命科学学院 国有企业党风廉政建设风险防控问题研究 胡荣良 国家社会科学基金 一般项目 纪委监察审计处 我国农村服务业发展的理论与实证研究 张 平 国家社会科学基金 青年项目 经济管理学院 当代中国死刑民意引导研究 曾赛刚 国家社会科学基金 青年项目 法学院 理想认知模式理论视域下汉语被字句的特点研究 颜力涛 国家社会科学基金 青年项目 文学院 新中国石油工业题材美术发展研究 杨俊峰 文化部文化艺术科学研究项目 一般项目 美术与设计学院 倍增计划下国家、企业、个人收入分配的效率与公平问题研究 周 乾 省社科研究规划项目 青年项目 法学院 中国传统法律制度的现代化研究 房 丽 省社科研究规划项目 专项项目 法学院 非典型劳动关系的法律规制研究 章 辉 省社科研究规划项目 扶持共建项目 法学院 立法辩论制度及其中国化研究 李店标 省社科研究规划项目 扶持共建项目 法学院 黑龙江省创新资源的空间分布及其转移趋势研究 尚德萍 省社科研究规划项目 扶持共建项目 经济管理学院 大学英语教学中的文化预设与学生能力培养研究 姚坤明 省社科研究规划项目 扶持共建项目 外语学院 黑龙江省西部地区进城务工人员随迁子女的义务教育问题研究 高有才 省社科研究规划项目 扶持共建项目 教育科学学院 百年语文教育思潮演变研究 程 媛 省社科研究规划项目 扶持共建项目 文学院 油陶杂彩烧制及文化传承研究 鄂玉梅 省社科研究规划项目 扶持共建项目 美术与设计学院 大庆题材绘画创作发展流变与构建研究 陈秀煜 省社科研究规划项目 扶持共建项目 美术与设计学院 黑龙江篆刻创作中的民族特色问题研究 李 慧 省社科研究规划项目 扶持共建项目 美术与设计学院 大庆油画的地域文化特色研究 杜 薇 省社科研究规划项目 扶持共建项目 美术与设计学院 关于黑龙江省国有文化企业融资渠道的研究 黎 羊 省社科研究规划项目 扶持共建项目 经济管理学院 产业转型驱动下黑龙江省资源型城市服务外包发展研究 姜 鹏 省社科研究规划项目 扶持共建项目 经济管理学院 汉语常用多功能副词的语义地图模型分析 李冬梅 省社科研究规划项目 扶持共建项目 文学院 动态顺应视域下的商务话语中汉英语码转换研究 孙明明 省社科研究规划项目 扶持共建项目 外国语学院 龙江文学对先锋小说后形而上学思想的接受 张宇宁 省社科研究规划项目 扶持共建项目 文学院 基于光谱特性的高光谱图像非线性异常检测研究 成宝芝 省教育厅 科学技术研究项目 物理与电气信息工程学院 物联网中间件智能信息处理技术的研究 许有军 省教育厅 科学技术研究项目 计算机科学与信息技术学院 基于AJAX框架和MVC设计模式的WEB研究与应用 付丹丹 省教育厅 科学技术研究项目 计算机科学与信息技术学院 两亲高分子驱油剂的合成及性能评价 陈 成 省教育厅 科学技术研究项目 化学化工学院 两性磺酸盐型离子液体驱油剂的合成及性能测定 赵秀丽 省教育厅 科学技术研究项目 化学化工学院 汉语副词的语义地图模型分析 李冬梅 省教育厅 人文社科研究项目 文学院 技术创新导向下黑龙江省服务外包产业升级研究——以大庆为例 于珊珊 省教育厅 人文社科研究项目 经济管理学院 东北流人文学研究 张荣东 省教育厅 人文社科研究项目 文学院 过渡金属取代的杂多酸氧化催化性能的DFT研究 慈成刚 省教育厅 省高校青年学术骨干支持计划项目 化学化工学院 铁人精神在大庆高校学生思想建设工作中的作用研究 薛 丹 省教育厅 高校学生工作项目 经济管理学院 综合材料创造中观念的价值表现研究 孙志晔 省文化厅 省艺术科学规划项目 美术与设计学院 石油歌曲时代内涵与大庆精神关联研究 王永桦 省文化厅 省艺术科学规划项目 大庆精神研究中心 大庆城市文化的现代展示设计方法研究 陆 津 省文化厅 省艺术科学规划项目 美术与设计学院 黑龙江省第十五届社会科学优秀科研成果奖获奖名单成果名称获奖人获奖级别成果类别所在单位两岁儿童延迟满足的实验研究 程利 一等奖 论文 教育科学学院 陈独秀与中国大革命 贾立臣 三等奖 专著 思想政治理论课教研部 论商业秘密的构成要件 宋惠玲 三等奖 论文 法学院 现代汉语词汇动态发展研究 杨松柠 佳作奖 专著 教育科学学院 FDI影响东道国就业规模的效应分析 姜鹏 佳作奖 论文 经济管理学院 香港文化中的本土意识透视 刘慧敏 佳作奖 论文 文学院 论陶渊明“采菊”的文化意蕴 张荣东 佳作奖 论文 文学院 论民营职业中介机构的作用与完善路径 章辉 佳作奖 论文 法学院 自强不息 臻于至善《周易·乾》:“天行健,君子以自强不息”。“自强不息”意味自觉地奋发图强,永不懈怠。《礼记·大学》:“大学之道,在明明德,在亲民,在止于至善”。“臻于至善”是指为了达到尽善尽美的完美境界而不懈努力 。 党委书记校长王维周 1965 年 08 月-1968 年 10 月 李文魁 1965 年 08 月-1968 年 10 月 梁振邦 1971 年 02 月-1981 年 08 月 梁振邦 1971 年 02 月-1981 年 08 月 梁振邦 1981 年 08 月-1988 年 03 月 徐 斌 1981 年 08 月-1985 年 05 月 梁振邦 1981 年 08 月-1988 年 03 月 詹林森 1985 年 05 月-1987 年 11 月 王进一 1988 年 03 月-1991 年 03 月 王德安 1988 年 03 月-1991 年 03 月 张书德 1991 年 03 月-1998 年 05 月 王进一 1991 年 03 月-1998 年 05 月 张九生 1998 年 05 月-2002 年 10 月 王进一 1998 年 05 月-2002 年 10 月 祁志群 2002 年 10 月-2006 年 11 月 徐克明 2002 年 10 月-2006 年 11 月 王亚伟 2006 年 11 月-2010 年 02 月 徐克明 2006 年 11 月 齐振林 2010 年 02 月-2013 年 06 月 隋 军 2013 年 06 月
科技的进步带动了现代医学的发展,计算机技术的广泛应用,又进一步推动了影像医学向前迈进。各类检查仪器的性能不断地提高,功能不断地完善,并且随着图像存档和传输系统(PACS)的应用,更建立了图像信息存储及传输的新的模式。而医学影像的融合,作为图像后处理技术的完善和更新,将会成为影像学领域新的研究热点,同时也将是医学影像学新的发展方向。所谓医学影像的融合,就是影像信息的融合,是信息融合技术在医学影像学领域的应用;即利用计算机技术,将各种影像学检查所得到的图像信息进行数字化综合处理,将多源数据协同应用,进行空间配准后,产生一种全新的信息影像,以获得研究对象的一致性描述,同时融合了各种检查的优势,从而达到计算机辅助诊断的目的〔1,2〕。本文将从医学影像融合的必要性、可行性、关键技术、临床价值及应用前景5个方面进行探讨。1 医学影像融合的必要性1.1 影像的融合是技术更新的需要 随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。1.2 影像的融合弥补了单项检查成像的不足 目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。1.3 影像的融合是临床的需要 影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。2 医学影像融合的可行性2.1 影像学各项检查存在着共性和互补性为影像的融合奠定了基础 尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT检查则可以弥补功能测定的不足。2.2 医学影像的数字化技术的应用为影像的融合提供了方法和手段 现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。3 医学影像融合的关键技术信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织脏器在空间描述上的一致性。它是影像融合的基本。(2)影像融合首先要实现相关图像的对位,也就是点到点的一一对应。而图像分辨率越高,图像细节越多,实现对位就越困难。因而,在进行高分辨率图像(如CT图像和MRI图像)的对位时,目前借助于外标记。(3)建立图像数据库用以完成典型病例、典型图像数据的存档和管理以及信息的提取。它是融合的数据支持。(4)数据理解在于综合处理和应用各种成像设备所得信息,以获得新的有助于临床诊断的信息
论文: Generative adversarial network in medical imaging: A review 这篇文章发表于顶刊Medical Imaging Analysis 2019上,文章细数了GAN应用于医学图像的七大领域——重建(图像去噪)、合成、分割、分类、检测、配准和其他工作,并介绍了包括医学图像数据集、度量指标等内容,并对未来工作做出展望。由于笔者研究方向之故,本博客暂时只关注重建、合成部分的应用。关于该论文中所有列出的文章,均可在 GitHub链接 中找到。 GAN在医学成像中通常有两种使用方式。第一个重点是生成方面,可以帮助探索和发现训练数据的基础结构以及学习生成新图像。此属性使GAN在应对数据短缺和患者隐私方面非常有前途。第二个重点是判别方面,其中辨别器D可以被视为正常图像的先验知识,因此在呈现异常图像时可以将其用作正则器或检测器。示例(a),(b),(c),(d),(e),(f)侧重于生成方面,而示例 (g) 利用了区分性方面。下面我们看一下应用到分割领域的文章。 (a)左侧显示被噪声污染的低剂量CT,右侧显示降噪的CT,该CT很好地保留了肝脏中的低对比度区域[1]。 (b)左侧显示MR图像,右侧显示合成的相应CT。在生成的CT图像中很好地描绘了骨骼结构[2]。 (c)生成的视网膜眼底图像具有如左血管图所示的确切血管结构[3]。(d)随机噪声(恶性和良性的混合物)随机产生的皮肤病变[4]。 (e)成人胸部X光片的器官(肺和心脏)分割实例。肺和心脏的形状受对抗性损失的调节[5]。 (f)第三列显示了在SWI序列上经过域调整的脑病变分割结果,无需经过相应的手动注释训练[6]。 (g) 视网膜光学相干断层扫描图像的异常检测[7]。 通常,研究人员使用像像素或逐像素损失(例如交叉熵)进行分割。尽管使用了U-net来组合低级和高级功能,但不能保证最终分割图的空间一致性。传统上,通常采用条件随机场(CRF)和图割方法通过结合空间相关性来进行细分。它们的局限性在于,它们仅考虑可能在低对比度区域中导致严重边界泄漏的 pair-wise potentials (二元势函数 -- CRF术语)。另一方面,鉴别器引入的对抗性损失可以考虑到高阶势能。在这种情况下,鉴别器可被视为形状调节器。当感兴趣的对象具有紧凑的形状时,例如物体,这种正则化效果更加显着。用于肺和心脏mask,但对诸如血管和导管等可变形物体的用处较小。这种调节效果还可以应用于分割器(生成器)的内部特征,以实现域(不同的扫描仪,成像协议,模态)的不变性[8、9]。对抗性损失也可以看作是f分割网络(生成器)的输出和 Ground Truth 之间的自适应学习相似性度量。因此,判别网络不是在像素域中测量相似度,而是将输入投影到低维流形并在那里测量相似度。这个想法类似于感知损失。不同之处在于,感知损失是根据自然图像上的预训练分类网络计算而来的,而对抗损失则是根据在生成器演变过程中经过自适应训练的网络计算的。 [10] 在鉴别器中使用了多尺度L1损失,其中比较了来自不同深度的特征。事实证明,这可以有效地对分割图执行多尺度的空间约束,并且系统在BRATS 13和15挑战中达到了最先进的性能。 [11] 建议在分割管道中同时使用带注释的图像和未带注释的图像。带注释的图像的使用方式与 [10] 中的相同。 [10] 和 [12] ,同时应用了基于元素的损失和对抗性损失。另一方面,未注释的图像仅用于计算分割图以混淆鉴别器。 [13] 将pix2pix与ACGAN结合使用以分割不同细胞类型的荧光显微镜图像。他们发现,辅助分类器分支的引入为区分器和细分器提供了调节。 这些前述的分割训练中采用对抗训练来确保最终分割图上更高阶结构的一致性,与之不同的是, [14] -- code 中的对抗训练方案,将网络不变性强加给训练样本的小扰动,以减少小数据集的过度拟合。表中总结了与医学图像分割有关的论文。 参考链接: [1] X. Yi, P. Babyn. Sharpness-aware low-dose ct denoising using conditional generative adversarial network. J. Digit. Imaging (2018), pp. 1-15 [2] J.M. Wolterink, A.M. Dinkla, M.H. Savenije, P.R. Seevinck, C.A. van den Berg, I. Išgum. Deep MR to CT synthesis using unpaired data International Workshop on Simulation and Synthesis in Medical Imaging, Springer (2017), pp. 14-23 [3] P. Costa, A. Galdran, M.I. Meyer, M. Niemeijer, M. Abràmoff, A.M. Mendonça, A. Campilho. End-to-end adversarial retinal image synthesis IEEE Trans. Med. Imaging(2017) [4] Yi, X., Walia, E., Babyn, P., 2018. Unsupervised and semi-supervised learning with categorical generative adversarial networks assisted by Wasserstein distance for dermoscopy image classification. arXiv:1804.03700 . [5] Dai, W., Doyle, J., Liang, X., Zhang, H., Dong, N., Li, Y., Xing, E.P., 2017b. Scan: structure correcting adversarial network for chest x-rays organ segmentation. arXiv: 1703.08770 . [6] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609 [7] T. Schlegl, P. Seeböck, S.M. Waldstein, U. Schmidt-Erfurth, G. Langs Unsupervised anomaly detection with generative adversarial networks to guide marker discovery International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 146-157 [8] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609 [9] Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.-A., 2018. Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. arXiv: 1804.10916 . [10] Y. Xue, T. Xu, H. Zhang, L.R. Long, X. Huang Segan: adversarial network with multi-scale l 1 loss for medical image segmentation Neuroinformatics, 16 (3–4) (2018), pp. 383-392 [11] Y. Zhang, L. Yang, J. Chen, M. Fredericksen, D.P. Hughes, D.Z. Chen. Deep adversarial networks for biomedical image segmentation utilizing unannotated images International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2017), pp. 408-416 [12] Son, J., Park, S.J., Jung, K.-H., 2017. Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv: 1706.09318 . [13] Y. Li, L. Shen. CC-GAN: a robust transfer-learning framework for hep-2 specimen image segmentation IEEE Access, 6 (2018), pp. 14048-14058 [14] W. Zhu, X. Xiang, T.D. Tran, G.D. Hager, X. Xie. Adversarial deep structured nets for mass segmentation from mammograms 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE (2018) [15] D. Yang, D. Xu, S.K. Zhou, B. Georgescu, M. Chen, S. Grbic, D. Metaxas, D. Comaniciu. Automatic liver segmentation using an adversarial image-to-image network International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2017), pp. 507-515 [16] Dou, Q., Ouyang, C., Chen, C., Chen, H., Heng, P.-A., 2018. Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss. arXiv: 1804.10916 . [17] Rezaei, M., Yang, H., Meinel, C., 2018a. Conditional generative refinement adversarial networks for unbalanced medical image semantic segmentation. arXiv: 1810.03871 . [18] A. Sekuboyina, M. Rempfler, J. Kukačka, G. Tetteh, A. Valentinitsch, J.S. Kirschke, B.H. Menze. Btrfly net: Vertebrae labelling with energy-based adversarial learning of local spine prior International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham (2018) [19] M. Rezaei, K. Harmuth, W. Gierke, T. Kellermeier, M. Fischer, H. Yang, C. Meinel. A conditional adversarial network for semantic segmentation of brain tumor International MICCAI Brainlesion Workshop, Springer (2017), pp. 241-252 [20] P. Moeskops, M. Veta, M.W. Lafarge, K.A. Eppenhof, J.P. Pluim. Adversarial training and dilated convolutions for brain MRI segmentation Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Springer (2017), pp. 56-64 [21] Kohl, S., Bonekamp, D., Schlemmer, H.-P., Yaqubi, K., Hohenfellner, M., Hadaschik, B., Radtke, J.-P., Maier-Hein, K., 2017. Adversarial networks for the detection of aggressive prostate cancer. arXiv: 1702.08014 . [22]Y. Huo, Z. Xu, S. Bao, C. Bermudez, A.J. Plassard, J. Liu, Y. Yao, A. Assad, R.G. Abramson, B.A. Landman. Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks Medical Imaging 2018: Image Processing, 10574, International Society for Optics and Photonics (2018), p. 1057409 [23]K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert, et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks International Conference on Information Processing in Medical Imaging, Springer (2017), pp. 597-609 [24]Z. Han, B. Wei, A. Mercado, S. Leung, S. Li. Spine-GAN: semantic segmentation of multiple spinal structures Med. Image Anal., 50 (2018), pp. 23-35 [25]M. Zhao, L. Wang, J. Chen, D. Nie, Y. Cong, S. Ahmad, A. Ho, P. Yuan, S.H. Fung, H.H. Deng, et al. Craniomaxillofacial bony structures segmentation from MRI with deep-supervision adversarial learning International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer (2018), pp. 720-727 [26] Son, J., Park, S.J., Jung, K.-H., 2017. Retinal vessel segmentation in fundoscopic images with generative adversarial networks. arXiv: 1706.09318 . [27]Y. Li, L. Shen. CC-GAN: a robust transfer-learning framework for hep-2 specimen image segmentation IEEE Access, 6 (2018), pp. 14048-14058 [28] S. Izadi, Z. Mirikharaji, J. Kawahara, G. Hamarneh. Generative adversarial networks to segment skin lesions Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, IEEE (2018), pp. 881-884 Close [29]W. Zhu, X. Xiang, T.D. Tran, G.D. Hager, X. Xie. Adversarial deep structured nets for mass segmentation from mammograms 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE (2018)
医学影像的处理是临床的实用技术,也是计算机在影像学科应用的一个方面。下面是我为大家整理的浅谈医学影像学 毕业 论文,供大家参考。医学影像学毕业论文篇一:《医学影像技术学实验教学改革》 【摘要】 医学影像技术学是医学领域中的一门重要的基础性学科,同时也是一门较强的实践性学科。但是由于 教育 条件的限制,现在很多高校的医学影像技术学教学手段都还停留于单纯的理论授课方式,对于学生的实践能力培养不够全面。基于此,本文我们的主要研究重点就是关于医学影像技术学的改革问题,了解当前教学模式中存在的主要问题,从而有针对性的提出具体的解决 措施 ,以有效的提高医学影像技术学的教学效果。 【关键词】医学影像技术学;实验教学;改革创新;分析研究 随着社会的快速发展,人们对医学技术的要求标准也越来越高,影像诊断技术作为现代医学领域中的一门重要学科,必须随着社会的发展而不断的更新完善。在这样的严酷现实之下,我们对医学影像技术学的实验教学模式提出了更高的标准,教学模式必须要打破传统的常规模式,向着更加科学化、数字化和信息化的方向发展。 一、医学影像实验教学的特殊性 医学影像技术学是一门基础性的医学科目,其在医学领域中具有着重要的地位,对于学生将来更好的适应岗位需求具有着决定性的作用。总的来说,医学影像实验教学的特殊性主要表现在以下几个方面: 1.实践应用性强。 他是一门实践性非常强的学科,单纯的理论学习并不能够让学生充分的掌握技术的要求,必须要通过有效的实验课程,让学生将理论知识与实际操作相结合,提高动手能力和临床工作能力。 2.新技术推广应用快、广。 医学影像技术学是医学中的新兴学科,它的发展速度非常的快,科研究的领域与空间十分的广,每当有新的技术手段被应用到临床医疗之中的时候,实验教学都必须要紧跟其步伐,避免出现于临床脱节的现象。 3.和其他学科联系较多。 医学影像学技术是其他多种临床疾病诊断的重要依据,它与其他的学科之间存在很多的联系。因此对于医学影像学的实验教学不仅要让学生学会操作的技能,而且还要学会应对各种疾病检查的 方法 。 二、当前医学影像技术学实验教学模式存在的主要问题 医学影像技术学有其独特的特殊性,因此对此的学习也应该具有针对性。但是就当前医学院校的教学实际来看,很多的学校在这一学科的教学模式上还存在着很多的不足,归纳来看主要可以归结为以下几个方面: 1.实验大纲与实验教材相对滞后。 近年来,随着医学影像技术的飞速发展,很多的技术和设备都发生了巨大的变化,但是目前国内的高校使用书籍中并没有一些新技术、新理论的内容,对于医学影像技术学方面的实验指导也非常的少,涉及的新技术方面非常的窄,甚至一些教材中仍然沿用已经淘汰的技术教材,这对于学生的学习产生了很大的负面影响。 2.实验课学时相对较短。 医学影像技术学是一门实践性非常强的学科,对于他的学习主要应该采用实验教学的方式,但是由于受传统教学模式的影响,当前很多高校对于这门课程的教学模式采用的还是纯理论授课的方式,对于实验教学的课时安排的相对较少,这使很多学生虽然学到了理论知识,但却不能够切实的应用到实际之中,造成他们的岗位适应能力差。 3.实验教学手段单一落后。 以往我们的医学影像技术学实验课主要是在实验室进行的,但是由于实验室的教学条件有限,能够联系的实验内容也就不充足,一般只能够进行一些基础性的实验实践,对于当前临床医学中常用的大型数字化的设备认识不足。 三、医学影像技术学实验教学改革的措施 随着社会的发展进步,人们对医疗水平的要求越来越高,医学影像技术学作为医疗诊断方式中的重要方式其在医疗领域中的应用越来越广,总的来说,根据当前的教学实际,进行医学影像技术学实验教学改革的措施主要可以分为以下几点: 1.学习实践活动多样化,注重在训练中学习医学影像技术。 医学影像技术的学习不是纯理论的,实验教学也具有着非常重要的地位。因此今后教学改革的方向之一就是要加强实践教学的改革,不断的引进先进的设备技术,充实教育资源,让学生能够及时的了解最新的技术手段,从而有效的提高实际操作技能。 2.注重人才的引进,加强实验教学人员队伍建设。 师资能力的不足是当前影像教学效果的主要原因之一,原来一名实验教学需要带一个班级的学生,这大大的增加了教师的工作量,也弱化了对学生的时时指导强度。通过人才引进培养的方式,加强实验教学人员的队伍建设,提高实际的教学人数可以大大的改善教学的环境,让学生更加充分的享受教师资源。 3.健全实验教学教材和资料库。 随着一系列的改革发展,我们要根据技术发展的实际,不断的将最新的医学影像技术编撰到教材用书之中,让学生及时的了解当前的技术形式,从而更好的掌握技术能力。同时我们也要逐步的完善资料库,保证每一个学生都有充足的资料来源。 结语 综上所述,医学影像学实验教学有其独特的特殊性,这决定了它需要不断的进行发展,根据当前各医学高校的实际教学情况,结合临床实际需求和医学影像技术的新进展,不断的进行实验教学改革,为学生走上临床工作岗位打下坚实的基础。 参考文献: [1]汪百真,俞曼华,张俊祥,曹明娜.医学影像检查技术学实验课程的改革与创新[J].蚌埠医学院学报,2013,07:919-921. [2]王惠方,梁长华,杨瑞民,陈杰,岳巍,刘儒鹏.医学影像诊断学实验教学模式改革[J].中国医药指南,2013,21:774-775. [3]邱建峰,谢晋东,王晓燕,王鹏程,侯庆峰.医学影像物理学(医学影像成像理论)教学与实验改革的探讨[J].中国医学物理学杂志,2008,03:700-702. [4]陈晓光,任伯绪,柯茜茜,陈奕.医学影像技术学实验教学的改革与实践[J].中国高等医学教育,2011,11:55-56+69. 医学影像学毕业论文篇二:《临床医学影像在泌尿系统结石中的应用》 泌尿系统结石病属于临床泌尿外科中最寻常的病症之一,主要包含了肾结石、输尿管结石、膀胱结石与尿道处的结石。本组抽取了84例泌尿系统结石患者作为研究对象,其目的是根据红外光方法测量泌尿体系结石组分当成根本规范,探讨CT值关于结石组分的诊断作用,现将研究成果报道如下。 1资料与方法 1.1一般资料 本组研究84例泌尿系统结石患者均符合WHO相关诊断标准。其中,男55例、女29例;年龄8月~82岁,平均年龄是(40.2±6.7)岁;其中结石有54例,输尿管结石有19例,膀胱尿道结石有11例。单发结石有54例,多发结石有20例,鹿角形结石有10例。肾结石的最大直径为8公分,输尿管结石的最大直径为3公分。临床症状表现当中包含了肾绞痛主诉患者有49例(60.59%),含有肉眼血尿或者尿隐血患者一共是11例(11.8%),含有腰部酸胀不适主诉的患者一共是18例(22.6%),含有尿频尿急主诉的患者一共是6例(13.2%)。 1.2CT扫描的常态检测方式 使用美国制造的GECardiacLightSpeedVCT63排扫描机还有Toshiba15排扫描机。其中美国制造的GECardiacLightSpeedVCT63排扫描机还有Toshiba15排扫描机都设立好了下面的参量,即:扫描电压在90~135KV之间扫描层厚度为:3或者2.7mm,完成泌尿系统的全方位扫描。患者完成检测前不再需要完成肠道的预备,但是探究关于肠道内食物或者气体等给扫描后果也许会形成较大干扰,在不变化医疗安全条件允可的情况中,建议患者禁食在7个小时以上。一般在扫描前要嘱咐患者喝清水500ml~1100ml之间,在1个小时大致的时间里患者自觉带有尿意觉得尿液充满膀胱的时候再完成扫描,扫描中要求病人的双手抱住头,平仰式卧躺,凝注呼吸,扫描范畴在肾上部至耻骨结合的下部,大至持续4分钟。 2结果 本组调查所收入的84例结石患者的情况大致是:84结石病例的均衡CT值依次是:尿酸铵有230.37HU、无水尿酸有243.28HU、碳酸磷灰石有860.61HU、一水草酸钙有639.03HU、二水草酸钙有673.61HU、二水尿酸有279.57HU、二水磷酸氢钙有1565.72HU、六水磷酸铵镁有230.35HU。当中的尿酸铵、无水尿酸、碳酸磷灰石、一水草酸钙、二水草酸钙CT值差异拥有统计学意义(P<0.05);二水尿酸、二水磷酸氢钙、六水磷酸铵镁结石的CT值差异不具备统计学意义(P>0.05)。 3讨论 关于结石的医治,这些年来,伴随泌尿外科腔中手术道具还有手术科技的快速进步,腹腔镜技术,经皮肾镜科技(PCNL),各式的腔内内镜器械的发展,引发了泌尿系统结石的医治水准拥有显著的提高,其中超过八成的泌尿系统结石不再应用传统的开放手术医治[2-3]。然而虽然这样,手术治疗后结石的遗留与反复,也给病人带来了很大的痛感。因此探究讨论泌尿系结石的因素还有指引结石的预防措施拥有关键的意义。泌尿体系结石不仅发病率很高,较高的反复率也是困惑临床主疗医生医疗的困难其一。 结石处理的科技还有设施的进步,仅仅是关于整体因素所带来的结果完成处理。然而患者出院后造成结石构成的危险因子并未获得改善。复发结石是说以前利用自行排除结石、腔内镜手术取出石或体外冲击波碎化石让结石引出体外后,在其以往病理因素干预下泌尿系统结石再一次行成。 患者到医院进行随访时[5],尿液代谢探究可以给医治带来参照依据,尿液标本必须测量钙、镁、磷、钠、尿酸还有肌酐的浓值、草酸与梓檬酸的浓值、pH度和总值,有利于尽快找寻引法尿路结石的机理内部原素。选用血液标本需测量血清里的钙、镁、磷、钠、尿酸与肌酐的浓值。 结合此次研究结果,可以得出结论:对于泌尿系统结石的患者,CT值确诊碳酸磷灰石、一水草酸钙结石的精准度对比其他较高,有关 其它 组分结石的判断精准度不清楚。如果需要临床上提高判断精准度,一定要深入化的参照其它方法,例如尿液代谢探讨等可以提高其判断精准度。 医学影像学毕业论文篇三:《护理在医学影像检查中的作用》 随着现代医学的迅速发展,医学影像学已由过去单纯的辅助检查逐渐向造影诊疗与介入性治疗等领域扩展。护理人员要适应影像检查的特殊性,配合好影像医师的各项工作,使患者顺利安全地达到诊疗目的而不发生意外情况,在熟练掌握临床基本护理知识及操作技能的同时,还要努力掌握影像专业的一些理论知识和技术操作能力,了解更多的新知识、新方法,提高护理技能,才能适应这项工作。现就护理工作在影像检查中的作用介绍如下。 1 心理护理 到影像科室检查的患者受认知程度的影响对增强扫描往往感到紧张,尤其是增强扫描还需要先行告知增强扫描的目的和危险,这更加重了患者的紧张情绪。而精神过度紧张是一种应激反应,可导致肾上腺素分泌增加,引起心率加快、手足冷汗、头晕等多种负性反应,诱发或加重对比剂的不良反应,因此减轻患者的紧张恐惧心理是保证增强扫描顺利完成的一个重要环节。为了取得患者的理解和充分配合,作为护理人员必须耐心地向患者和家属详细介绍增强的目的、过程、安全性、术后可能出现的不良反应以及应注意的事项,使患者对增强扫描过程有比较全面的了解,以 消除紧张 恐惧等不良心理,积极配合,保证增强扫描的顺利进行。 2 普通X线平片及造影检查的患者准备及护理 2.1 X线平片 腹部、腰椎、骶尾椎、骨盆平片均应先行清洁灌肠或检查前晚上服缓泄剂,以便清洁肠内粪便,消除因此而造成的X线漏误诊。 2.2 造影检查 造影检查在X线中占有重要地位,随着各种设备的日趋完善和造影药物的不断改进,临床造影项目逐渐增多。为减少患者的痛苦,避免不必要的重复检查, 做到一次成功,需要放射科护士认真细致地做好术前准备。 2.2.1 造影前应向患者讲明造影检查的重要性及检查过程中应注意的事项和方法,努力消除患者的恐惧和忧虑。 2.2.2 熟练掌握各种造影检查药物的剂量和应用;全面了解各种造影检查的目的、方法以及适应证、禁忌证,掌握各种检查前患者的准备。 2.2.3 做好麻醉剂、碘剂 、磺胺类药物过敏试验,并记录结果;准备好抢救药品和设备。 2.2.4 造影中密切观察患者的各种变化,熟练掌握过敏反应的临床表现以及防治措施、急救药品与设备的应用,一旦发生过敏反应需及时处理,必要时请相关科室医师配合。 2.2.5 检查后患者的护理 对于各种X线造影检查后的患者要求观察2~4h,要密切注意患者的反应,定时随访,必要时留院观察。对放置引流管的患者要保持引流管通畅,对有明显感染症状者应用抗生素治疗或收往院。 3 CT增强检查的患者准备及护理配合 3.1 检查前患者准备及特殊患者的护理 护士应了解CT扫描检查的全过程,做好患者检查前的准备工作,如头颅检查4h前禁食,腹部各种脏器检查前1周内不应吃含金属的药物,不做胃肠造影检查,扫描前6~12h禁食。 3.2 检查前,对精神紧张的患者要进行必要的心理安慰,使其稳定情绪;对小儿采取耐心积极的态度,鼓励他们完成检查,另一方面要轻移、轻放、尽量少动,必要时需临床医生陪同,以便病情有变化时及时抢救和治疗。 3.3 过敏反应的抢救及护理 CT检查时给患者静脉注射碘对比剂,以增加不同组织间的对比度,进一步提高诊断准确率。由于在CT检查中给药的方式快、剂量大、浓度高,因此,碘过敏反应的发生率高于其它造影检查。护理人员应在使用过程中引起高度警惕,严密观察不良反应。 3.4 用药时详细询问有无过敏史。 3.5 有无严重的心、肝、肾脏疾病,对高热、心衰、 严重肝肾疾病患者应慎用或不用。 3.6 向患者说明造影目的及过程,减少患者的恐惧心理。 3.7 注药过程中严密观察患者,发现有异常反应立即停止注射,必要时给予处理。如发生轻度反应一般不用特殊处理,让患者大量饮水。必要时可静脉注射地塞米松10mg。对个别重度反应者,应及时抢救处理,并及时给吸氧等措施,必要时请相关专科医生来科共同抢救。 4 磁共振患者受检前的准备与护理 4.1 在进入磁共振检查室之前,护士应对患者做好适当的解释工作,以消除其思想顾虑。 4.2 详细询问现病史与既往史,结合申请单上临床医师查出的症状、体征、实验室检查及拟诊,确定扫描部位及层面选择,以便更准确地查出病变的部位、范围与性质。 4.3 掌握绝对禁忌证及相对禁忌证:询问并检查患者是否有心脏起搏器、神经刺激器、人工心脏瓣膜、眼球异物及动脉瘤夹,发现这些物品者不能进行检查。进入检查室以前取下患者身上的一切金属物品,如假牙、发卡、戒指、耳环、钥匙、钢笔、手表、硬币等,这些物体会造成金属伪影,影响成像质量。磁盘、磁带也应取下,否则会因为去磁而损坏。 检查眼部前应洗掉眼影等化妆品,检查胸椎、乳腺以及盆腔、腰椎应去除乳罩及取出避孕环,否则也会因伪影而影响诊断。 4.4 幼儿、烦躁不安与幽闭恐惧症患者应给予适量镇静剂,如水合氯醛、安定等。对心脏患者,精神紧张者,可用棉花球塞外耳道, 减少噪音的刺激。 4.5 使患者尽量舒适地平卧在检查床上,盖上棉毯以保持温暖。 4.6 护士应预先向患者解释检查过程中的一切现象,如梯度场启动会有噪声,使患者能安心静卧,平稳呼吸,如有不适可用话机与医生交谈。 4.7 中风、脑瘤伴颅高压者应先采取降颅压措施,否则患者仰卧会因喷射性呕吐而造成窒息与吸入性肺炎。由于检查时间较长,为预防意外,可侧卧扫描。 4.8 注射MRI造影剂时,应在治疗室将药液抽入注射器并连接无菌塑料头皮针,将注射器和头皮针放在无菌塑料盘内,备好棉签、胶布、止血带等进入磁体房,不宜将金属针头、镊子治疗盘等带入磁体房。 5 介入放射科的护理管理 5.1 做好术前、术中、术后的各项准备工作及护理 5.1.1 术前患者按要求备皮,术前4~6h禁食。 5.1.2 做好患者的思想工作,使其消除顾虑,取得配合必要时给予镇静、 止吐剂,避免患者术中躁动或呕吐,影响手术的进行。工作人员进人介入室,需换专用鞋、帽及口罩。 5.1.3 术中严格执行操作规程,导管、导线等注意盘好放顺,防止污染。荧光增强器用消毒罩罩住,加强无菌操作的监督。 5.1.4 术后应严密观察患者体温及穿刺口情况,发现出血及病情变化及时处理,必要时应用抗生素预防感染。 5.2 增强无菌观念,严格无菌操作。努力做好介入放射室的无菌管理工作,是减少感染和并发症,使介入诊疗术顺利进行的重要保证。而术中造影投照时挪动机器等因素,增加污染机会,易造成并发症。 5.2.1 树立严格的无菌观念,充分认识无菌操作的重要性和必要性。 5.2.2 加强对无菌知识理论的学习和操作的训练,对操作人员进行必要的培训,熟悉无菌操作的要求,使其达到操作规范化。 5.2.3 认真督促,检查无菌操作执行情况,发现问题,及时纠正与补救。 5.2.4 操作房间要有专职护士管理,保持肃静和整洁。门窗装置要严密。 5.2.5 术前、术后房间要用紫外线灯照射2h,每周用福尔马林熏蒸1次。 5.2.6 对术中器械使用之前,金属器材高压消毒,导管等塑料制品,均为一次性使用,用后必须剪断,送处理处进行焚烧。 总之,放射科的护理工作在整个检查与诊疗工作中越来越受到人们的重视,作为放射科的护理人员不但要熟练掌握基础护理各项操作的技能,而且要掌握放射专业的一些理论知识和技术操作。这就要求护理工作者,要不断更新知识。提高本身的业务素质,全面提高护理质量,全心全意为伤病员服务。 猜你喜欢: 1. 分析医学影像职称论文 2. 关于超声医学论文精选 3. 医学影像论文范文 4. 放射技术论文 5. 病例分析论文范文
现阶段,我国所有论文查重检测系统也包括知网论文检测系统软件,不能识别图片,会绕过图片。如果一定要识别图片,只能用人眼进行论文查重检测。 理科论文写作过程中,会需要写很多公式,这些公式都是属于书本的,所以必须和其他发表的论文一样。这个时候如果不把公式当图片用,会影响论文的查重率。因此,如果学生可以编辑这部分公式,然后将其转换成图片,放入word中,可以降低论文的查重率。
图像处理吧,看着比较高深
从开题到最后发表一篇论文需要很多时间和精力。如果你想顺利通过大学或杂志的查重,你必须提前进行论文检测,但自检的查重费用需要自费。为了节约检测费用,我们会找一些免费查重软件进行自检,那么免费论文查重检测软件都有哪些? 一、免费论文查重软件。 1.学校内部查重系统: 学校一般会提供内部的论文查重系统,并且提供1-2次免费查重机会,学校内部查重系统查重率是最准确,也是最权威的。内部查重系统是不对外开放的,我们校外很难找到查重入口。 2.Paperfree论文查重软件:学校提供的几次免费查重机会往往是不够的。这时我们可以选择Paperfree查重软件,新用户可以获取免费试用机会,而用户亦可透过参与活动,免费使用转发字数。 3.其免费查重系统软件:大学生在撰写毕业论文时,学校和导师会推荐免费查重软件。不同学校推荐的软件不同,我们以学校通知为准。 二、免费论文查重软件怎么选择。 虽然目前市面上有自己很多企业提供免论文查重检测系统软件,我们在选择的时候要注意其安全性。因此,在选择免费论文查重软件时,最好不要使用不安全的软件,不仅查重结果没有参考性,而且你的论文可能会因为小损失而泄露。通过询问学长学姐或自己的导师,我们可以选择一个真正可靠的免费论文查重检测系统软件。
美图秀秀比较不错
应该是这句的问题if(in->nChannels != 1)return 0;一般加载进来的图片的通道是3,这样的话就直接返回0了,没有create image
这里IplImage* img=cvLoadImage("D:\\demo2.jpg");如果不加参数,默认读取图像的原通道数。假如你载入的图像不是单通道的,if(in->nChannels != 1) return 0;这句就直接被执行然后return了,Img2自然什么都么有。 改正:把IplImage* img=cvLoadImage("D:\\demo2.jpg");改成IplImage* img=cvLoadImage("D:\\demo2.jpg",0);//强制转化读取的图像为灰度图 附:cvLoadImage函数使用方法cvLoadImage( filename, -1 ); //默认读取图像的原通道数cvLoadImage( filename, 0 ); //强制转化读取图像为灰度图cvLoadImage( filename, 1 ); //读取彩色图
图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!
图像分割技术研究
摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。
关键词:图像分割、阈值、边缘检测、区域分割
中图分类号: TN957.52 文献标识码: A
1引言
随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。
2图像分割方法
图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。
2.1基于灰度特征的阈值分割方法
阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。
这类方法主要包括以下几种:
(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。
(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。
(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。
2.2 边缘检测分割法
基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。
2.3基于区域的分割方法
基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。
区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。
2.4结合特定工具的图像分割技术
20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。
2.4.1基于数学形态学的分割算法
分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。
2.4.2基于模糊数学的分割算法
目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。
这类方法主要有广义模糊算子与模糊阈值法两种分割算法。
(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。
(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。
2.4.3基于遗传算法的分割方法
此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。
2.4.4基于神经网络分割算法
人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。
2.5图像分割中的其他方法
前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。
(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。
(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的
(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。
(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。
3图像分割性能的评价
图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。
4图像分割技术的发展趋势
随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。
参考文献
[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003
[2] 章毓晋.图像分割[M].北京:科学出版社,2001.
[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.
[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.
点击下页还有更多>>>图像分割技术论文
论文原文:
YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:
如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:
每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:
其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。
每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)
举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:
在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:
等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。
得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。
1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。
2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。
3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。
4、损失函数公式见下图:
在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:
解决方法:
只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。
作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为0.88(ImageNet2012 validation set),与GoogleNet模型准确率相当。
然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。
作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}=0.5 。
作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为0.9,学习速率延迟为0.0005。Learning schedule为:第一轮,学习速率从0.001缓慢增加到0.01(因为如果初始为高学习速率,会导致模型发散);保持0.01速率到75轮;然后在后30轮中,下降到0.001;最后30轮,学习速率为0.0001。
作者还采用了dropout和 data augmentation来预防过拟合。dropout值为0.5;data augmentation包括:random scaling,translation,adjust exposure和saturation。
YOLO模型相对于之前的物体检测方法有多个优点:
1、 YOLO检测物体非常快
因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。
2、 YOLO可以很好的避免背景错误,产生false positives
不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。
3、 YOLO可以学到物体的泛化特征
当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。
尽管YOLO有这些优点,它也有一些缺点:
1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。
2、YOLO容易产生物体的定位错误。
3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。
目标检测(object detection)是计算机视觉中非常重要的一个领域。在卷积神经网络出现之前,都利用一些传统方法手动提取图像特征进行目标检测及定位,这些方法不仅耗时而且性能较低。而在卷积神经网络出现之后,目标检测领域发生了翻天覆地的变化。最著名的目标检测系统有RCNN系列、YOLO和SSD,本文将介绍RCNN系列的开篇作RCNN。 RCNN系列的技术演进过程可参见 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN 。 目标检测分为两步:第一步是对图像进行分类,即图像中的内容是什么;第二步则是对图像进行定位,找出图像中物体的具体位置。简单来说就是图像里面有什么,位置在哪。 然而,由于不同图片中物体出现的大小可能不同(多尺度),位置也可能不同,而且摆放角度,姿态等都可以不同,同时一张图片中还可以出现多个类别。这使得目标检测任务异常艰难。上面任务用专业的说法就是:图像识别+定位两个不同的分支分别完成不同的功能,分类和定位。回归(regression)分支与分类分支(classification)共享网络卷积部分的参数值。 还是刚才的分类识别+回归定位思路。只是现在我们提前先取好不同位置的框,然后将这个框输入到网络中而不是像思路一将原始图像直接输入到网络中。然后计算出这个框的得分,取得分最高的框。 如上,对于同一个图像中猫的识别定位。分别取了四个角四个框进行分类和回归。其得分分别为0.5,0.75,0.6,0.8,因此右下角得分最高,选择右下角的黑框作为目标位置的预测(这里即完成了定位任务)。 这里还有一个问题——检测位置时的框要怎么取,取多大?在上面我们是在257x257的图像中取了221x221的4个角。以不同大小的窗口从左上角到右下角依次扫描的话,数据量会非常大。而且,如果考虑多尺度问题的话,还需要在将图像放缩到不同水平的大小来进行计算,这样又大大增加了计算量。如何取框这个问题可以说是目标检测的核心问题之一了,RCNN,fast RCNN以及faster RCNN对于这个问题的解决办法不断地进行优化,这个到了后面再讲。 总结一下思路: 对于一张图片,用各种大小的框将图片截取出来,输入到CNN,然后CNN会输出这个框的类别以及其位置得分。 对于检测框的选取,一般是采用某种方法先找出可能含有物体的框(也就是候选框,比如1000个候选框),这些框是可以互相重叠互相包含的,这样我们就可以避免暴力枚举所有框了。讲完了思路,我们下面具体仔细来看看RCNN系列的实现,本篇先介绍RCNN的方法。 R-CNN相比于之前的各种目标检测算法,不仅在准确率上有了很大的提升,在运行效率上同样提升很大。R-CNN的过程分为4个阶段: 在前面我们已经简单介绍了selective search方法,通过这个方法我们筛选出了2k左右的候选框。然而搜索出的矩形框大小是不同的。而在AlexNet中由于最后全连接层的存在,对于图像尺寸有固定的要求,因此在将候选框输入之前,作者对这些候选框的大小进行了统一处理——放缩到了统一大小。文章中作者使用的处理方法有两种: (1)各向异性缩放因为图片扭曲可能会对后续CNN模型训练产生影响,于是作者也测试了各向同性缩放的方法。有两种方法: 此外,作者对于bounding box还尝试了padding处理,上面的示意图中第1、3行就是结合了padding=0,第2、4行结果采用padding=16的结果。经过最后的试验,作者发现采用各向异性缩放、padding=16的精度最高。 卷积神经网络训练分为两步:(1)预训练;(2)fine-tune。 先在一个大的数据集上面训练模型(R-CNN中的卷机模型使用的是AlexNet),然后利用这个训练好的模型进行fine-tune(或称为迁移学习),即使用这个预训练好的模型参数初始化模型参数,然后在目标数据集上面进行训练。 此外,在训练时,作者还尝试采用不同层数的全连接层,发现一个全连接层比两个全连接层效果要好,这可能是因为使用两个全连接层后过拟合导致的。 另一个比较有意思的地方是:对于CNN模型,卷积层学到的特征其实就是基础的共享特征提取层,类似于传统的图像特征提取算法。而最后的全连接层学到的则是针对特定任务的特征。譬如对于人脸性别识别来说,一个CNN模型前面的卷积层所学习到的特征就类似于学习人脸共性特征,然后全连接层所学习的特征就是针对性别分类的特征了。 最后,利用训练好的模型对候选框提取特征。 关于正负样本的问题:由于选取的bounding box不可能与人工label的完全相同,因此在CNN训练阶段需要设置IOU阈值来为bounding box打标签。在文章中作者将阈值设置为0.5,即如果候选框bounding box与人工label的区域重叠面积大于0.5,则将其标注为物体类别(正样本),否则我们就把他当做背景类别(负样本)。 作者针对每一个类别都训练了一个二分类的SVM。这里定义正负样本的方法与上面卷积网络训练的定义方法又不相同。作者在文章中尝试了多种IoU阈值(0.1~0.5)。最后通过训练发现,IoU阈值为0.3的时候效果最好(选择为0精度下降了4个百分点,选择0.5精度下降了5个百分点)。即当IoU小于0.3的时候我们将其视为负样本,否则为正样本。 目标检测问题的衡量标准是重叠面积:许多看似准确的检测结果,往往因为候选框不够准确,重叠面积很小。故需要一个位置精修步骤。在实现边界回归的过程中发现了两个微妙的问题。第一是正则化是重要的:我们基于验证集,设置λ=1000。第二个问题是,选择使用哪些训练对(P,G)时必须小心。直观地说,如果P远离所有的检测框真值,那么将P转换为检测框真值G的任务就没有意义。使用像P这样的例子会导致一个无望的学习问题。因此,只有当提案P至少在一个检测框真值附近时,我们才执行学习任务。“附近”即,将P分配给具有最大IoU的检测框真值G(在重叠多于一个的情况下),并且仅当重叠大于阈值(基于验证集,我们使用的阈值为0.6)。所有未分配的提案都被丢弃。我们为每个目标类别执行一次,以便学习一组特定于类别的检测框回归器。 在测试时,我们对每个提案进行评分,并预测其新的检测框一次。原则上,我们可以迭代这个过程(即重新评估新预测的检测框,然后从它预测一个新的检测框,等等)。但是,我们发现迭代不会改进结果。 使用selective search的方法在测试图片上提取2000个region propasals ,将每个region proposals归一化到227x227,然后再CNN中正向传播,将最后一层得到的特征提取出来。然后对于每一个类别,使用为这一类训练的SVM分类器对提取的特征向量进行打分,得到测试图片中对于所有region proposals的对于这一类的分数,再使用贪心的非极大值抑制(NMS)去除相交的多余的框。再对这些框进行canny边缘检测,就可以得到bounding-box(then B-BoxRegression)。 参考: Rich feature hierarchies for accurate object detection and semantic segmentation. RCNN-将CNN引入目标检测的开山之作-晓雷的文章 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN R-CNN 论文翻译