首页

> 学术发表知识库

首页 学术发表知识库 问题

高光谱图像目标识别检测本科论文

发布时间:

高光谱图像目标识别检测本科论文

原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为  最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。  需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 0.3来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为0.5。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为0.5 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有0.2个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为0.5的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化45.3%的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是0.29,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

2.1 指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

2.2 人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

2.3 文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K K.Information Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

有关高光谱图像的毕业论文

会做影像么,找个老师做项目,然后拿到影像处理后分析结果。我们是研究水稻高光谱影像的,重金属的没做过,不过做过面源污染的。话说重金属的只能分析表层土吧,影像的波段是几个啊。看看影像分类,还有数学方面的书,这样写出来的质量比较高,SCI和EI都差不多。推荐应用于污染方面的数学类别比较多的有人工神经网络、模糊数学,用的比较多的。你也可以选择计算机方向,例如建立一套在线的污染查询和管理系统,也可以结合实际考察和影像分析入手做个样区的项目实际应用一下,也可以搞搞GIS软件的二次开发什么的,方向很广。学长,我大三,环境科学,在研究所里负责仪器开发、程序开发和光谱分析,大家都是干这个的哈哈。

随着我国的医学影像技术在临床上越来越广泛的应用,医学影像技术的规范化也在不断的完善。下面是我为大家整理的医学影像 毕业 论文,供大家参考。

医学影像毕业论文摘要

【摘要】 通过更新实践教学内容、改革教学组织 方法 ,继承和发扬传统教学的优良传统,充分利用医学模拟教学,改革医学影像检查技术的实践教学模式。

医学影像毕业论文内容

【关键词】 医学影像检查技术; 教学方法 ;研究

医学影像检查技术的教学,是以讲解X线、CT、MRI、超声、影像核医学检查技术及X线照片冲洗技术、放射诊断影像质量管理等知识为基础,以培养学员专业操作技能为前提,其重点是提升学员专业思维及操作能力。当前,面对新形势下人们的法制意识、医疗保健知识的不断增强,更加要求医疗人员对患者的检查、诊断及治疗,在借助各种先进的检查、诊疗设备的条件下,具有高超、娴熟的操作技巧和准确的综合判断能力,以减少、杜绝医疗事故的发生。这不仅是全体医务工作者面临的重任,更是即将走出校门的准医务工作者所面临的巨大挑战。而教学质量的优劣将直接影响到医学影像技术专业人员的综合能力。为此,我们医学影像系通过改进教学模式,利用先进的医疗及教学设备和采用多媒体教学及模拟训练的方式,侧重学员实践能力的培养,使他们在进入临床前就掌握了教学大纲所要求的理论知识和操作能力,取得了很好的效果。

1资料与方法

参加本次教学模式改革的是张家口 教育 学院08级医学影像系三个班级,其中:08医学影像技术专业44人、08分院医学影像技术专业49人、08级影像设备管理及维护专业39人。作为对照的是张家口教育学院07级医学影像三个班级,其中:07医学影像技术专业一班40人、07级医学影像技术专业二班17人、07分院医学影像技术专业46人,采用旧的课堂教学为主的教学模式。教学改革的重点突出医学影像技术专业课的理论知识与操作实践相结合,分为两部分。

1.1课堂教学采用多媒体手段,由教师制作PPT课件,做到图文并茂、生动有趣,充分利用医院的各种影像临床病案资料,采用启发式、讨论式、直观式形象教学法、发现教学法、任务驱动式教学法等方法,达到使用学生由被动学习转变为主动学习,以提高学生学习的主动性、积极性。临床见习示教,则组织学生到本院实训室、附属医院影像科参观、见习、模拟示教。如在讲完总论以后,安排学生到医院见习,结合理论,建立直观印象,消除神秘感,提高学生对专业的热爱、崇高责任感和自豪感,从而提高学生学好本专业的极积性和自觉性。

1.2适当增加实训教学时间模拟实训教学为学生实训提供了可靠的保证。学生操作实训机,模拟各部位的扫描过程,既加深了对理论的理解又提高了操作技能[1]。临床实训教学,集中一段时间将学生安排到教学医院,开展技能实训,按照详细周密的安排,学生到医院影像科在带教老师指导下进行实训。一方面学生亲临实际的岗位环境,感受岗位气氛,增强学生的道德感、责任心,激发了学习热情,另一方面增加实际的操作机会,学得好、掌握得快[2]。表108级医学影像系各班的教学安排

2结果

对于08级和07级各专业班分别进行理论笔试考试及实践能力测试,同时要求教师对学生的综合能力进行整体评价,取各班平均分,进行比较。

2.1通过教学改革,08级各专业班实践及笔试平均成绩均高于07级各专业班,并且教师对学生的整体综合能力评价高于07级各专业班,学生对自己的技术能力信心十足,游刃有余,在医院实践中可以熟练操作,即使遇到不常见的病例,通过自己扎实的理论实践知识仍可以很快接受新的知识,融会贯通。

2.208医学影像技术专业班的实践及笔试平均成绩高于08分院医学影像技术专业班和08级影像设备管理及维护专业班。

通过学生各门课程成绩综合分析,教学改革后学生成绩和能力明显提高,且成绩与实训情况有正比的关系,有实训安排的班级考试成绩明显高于无实训的班级,实训时间长的班级考试成绩明显高于实训时间短的班级。表308级各班学生平均成绩表 表407级各班学生平均成绩表

3讨论

从影像技术专业学生成长为一名合格的医生需要大量的实践、技能锻炼、 经验 积累和专业思维的培养。影像技术专业医学生的专业素质提高才是教学的最终目的,为实现医学教育的培养目标,适应社会发展的需求,实践教学的改革势在必行。以往的影像检查技术教学侧重于理论知识的讲解,教学方法上是以教师为中心,课堂为中心,书本为中心,教师只管教,学生只是做笔记,这种填鸭式教学,学生是被动学习,目的也是应付考试,忽视了操作技能的提高,不利于学生能力的培养,使学生从事临床工作后感到力不从心。我们通过教学改革,改变传统教育中重理论轻实践的倾向,加强理论教学与实际操作的有机结合,激发学生的学习兴趣及创造力,提高整体教学水平,取得了较好的成绩[3]。

通过多媒体教学软件制作,既可使学生获得对于解剖结构的清晰直观的立体图像,图文并茂,形象生动。也极好地调动了学生的学习兴趣,给学生在课后留下难忘的印象。我们把多媒体作为一种教学辅助手段,选择教材中的重点、难点,融合常见病多发病的典型病例,通过多媒体形式表现出来,使学生更易于掌握那些不易理解、不易用语言描述的知识。采取以问题为中心的教学方法,培养学生的自学能力和创造力[4]。

另外我们提倡医学模拟教育[1],医学模拟教育是通过实践技能培训、医学模拟中心乃至模拟医院的方式将医学模拟设备应用于影像技术专业技术实践教学,倡导以贴近医院的真实环境和更符合医学伦理学的方式开展实践和考核。我们有完整的影像设备,例如:影像检查技术及放射X线室,数字成像及PACS室,影像设备室,影像诊断阅片室,CT操作室,设备储藏室;超声诊断室,通过模拟教学,既解决了病员相对不足的问题,又给学生提供了系统完善的操作机会。

实践教学是医学教育的重点和难点,更多的研究和探索适应发展需要的教学模式是推动医学教育发展的动力。医学影像检查技术是一门应用性的学科,培养学生的动手能力和解决实际的能力是教学的关键,提高教师队伍的整体素质及责任心,把临床带教教学作为重点,组织教学大查房、各种教学研讨会,加强教学管理和推进新的教学方法,狠抓教学执行和质量监控,制定完善的 规章制度 、科学的教学质量标准和实践教学评价指标体系,加强教学过程管理,严抓教学执行和质量监控 措施 的落实。临床教学过程中,经常会遇到患者不让实习学生“碰”的尴尬处境,涉及到患者隐私的医疗活动时,情况更严重,带教教师通过做患者的思想工作取得配合,尽量多给学生提供实践操作机会,同时监督操作的每一个步骤,以防止对患者造成不必要的伤害。

通过增加模拟实践技能培训及临床见习实习,使学生尽可能多的掌握技术操作技能,满足未来就业的需要,只有灵活运用所学知识,使理论与实际相结合,把理论知识转化为相应的技巧和能力,才能形成稳固的知识结构,为将来的独立工作打下良好的基础。

医学影像毕业论文文献

1王长远,秦俭,王晶,等.医学模拟教育的发展状况\[J\].中国基层医药,2007,14(1):170-171.

2郭劲松,张东华,薄红,等.临床技能模拟训练中心的建立和实践探索\[J\].中国高等医学教育,2006,20(10):77-79.

3袁力,赵遵强,袁聿德,等.高等医学影像教育课程设置与改革\[J\].医学影像学杂志,2003,13(5):373-375.

4袁力,刘林祥,冯圣平,等.高等医学院校医学影像教育办学模式的国际比较\[J\].医学与哲学,2003,24(8):57-59.

医学影像毕业论文摘要

【摘要】 随着医学影像技术在临床上的广泛应用,医学影像技术的规范化问题愈益突出。从医学影像技术队伍素质的提高、医学影像网络工作系统的数字化建设以及医学影像学诊断 报告 的书写等方面,就医学影像技术规范化建设进行探讨。

医学影像毕业论文内容

【关键词】 医学影像技术;诊断;规范化

医学影像技术规范化是指医学影像诊断合乎一定的标准,即利用医学影像检查手段使其诊断水平不断提高,它要求根据设备和仪器条件合理地开展检查项目,并且在一定时期内达到一定的水平或质量标准,最终目标是提高诊断率,减少漏、误诊,并在最大限度内满足患者需求,但我国地域辽阔,医疗资源分布不均衡,不同医院的医学影像技术设备和水平有较大差异,即使在同一医院也可能使用多种型号的检查设备。为了进一步提高医学影像诊断水平,准确可靠地为临床提供看得懂、能理解的诊断依据,因此,加强医学影像技术的规范化建设就势在必行。

1 提高医学影像技术队伍素质

医学影像设备不断更新换代,且周期越来越短,建立在高新影像设备之上的影像学正发生着巨变,不断更新的设备所涵盖的知识范围,应用时的工作原理、性能无不涉及广博的计算机领域和工程学领域的知识。传统意义上的影像科技人员,无论老中青,都要从零开始,逐步地熟悉、掌握以致精通这门新的数字影像技术,也就是说,要从陈旧的工作模式转为更为开放的、多元化的医技理念。树立新的医技理念,至少应从以下几方面着手。首先,应抓紧时间快速提高自身英文的听、说、读、写、译的能力。数字化设备无论是界面显示还是操作使用提示,无论是部位选择还是投照方式,以及后处理内容均为英文显示,英语既是基础更是工具,同时,随着我国医学事业的发展,与国内外的学术交流将更加频繁,对先进技术与设备的引进速度也将加快。只有不断提高英语水平,才能进一步进行图像处理功能等方面的应用和开发,合理、高效地使用新设备。其次,要多阅读一些有关IT网络、计算机信息技术的专业或通俗刊物,了解网络的运作,对图像的摄取、删除、处理、传递、存储及打印等概念要清晰明了,并在与编程和网络工程师的合作中积累和丰富这一领域的知识。再次,不断完善影像诊断知识结构。人体各部位的解剖结构、生理、病理及病理演变,其图像在监视器上的显示与相关诊断所需,其形式和内涵不尽相同,且数字化影像各参数具有可调节性、大宽容度,如何使体位设计更合理、如何在图像的后处理中使感兴趣区真实并具有明确诊断所需的特征,对技师的影像学知识和诊断学知识的综合应用,提出了更高的要求。

2 建立医学影像网络工作系统

随着数字化时代的到来,医学影像学这门综合性学科开始逐步从影像投照、成像、阅片、报告书写以及远程会诊诸环节进入全面数字化的崭新时代。比如,近年来先进的彩色多普勒超声检查仪的引进和临床应用,拓宽了超声检查范围、服务对象,超声影像、诊断信息和工作量成倍增长,而原有的手写报告、热敏打印图像、人工病案存档、检索查询、工作量统计等,明显影响了工作效率和服务质量,不能更好地为教学、科研和患者的诊疗服务。这一切对于医学影像网络工作系统的建立与完善提出了现实的要求。医学影像室作为医院的医技科室,与患者和临床科室有着密切联系。这种联系简单地表达为患者和临床科室申请单的请求与影像室检查报告单的答复。影像室从接收申请单到发出检查报告单是一个有序的过程,每项工作的效率和服务质量及其之间的衔接良好与否,将反映影像室整体的工作效率、服务质量和管理水平。这要求从预约登记到发出报告必须实现一体化操作(如图1所示)。

图1 影像网络工作系统流程(略)

影像网络工作系统的建立与临床应用,不仅可以实现患者一般资料—图像采集—诊断报告全部信息的数据化存档,提高诊断水平和服务质量,减少医疗纠纷,而且由于使就诊顺序透明化、公开化和接诊服务的温情化,提高了患者满意度,所以大大有助于和谐医患关系的建立。同时,这一网络的建立也真正体现了医疗信息共享,使患者在一所医院拍摄的X线、CT及MRI图像及诊断意见报告,在远程会诊或转诊到其他医院咨询、会诊或治疗时仍然具有参考价值,不必再作重复检查,这样既节省人力物力,减少医疗资源的浪费,也可减少患者的经济负担,数字化的进程使接诊到发报告的时间大大缩短,从过去的隔日到目前的2 h,甚至0.5 h,而工作量的不断增加又是每个医院所面对的。减少患者的等待时间已经成为衡量医疗服务质量的一个重要标准,要做好这一点除了发挥设备优势外,尽量缩短各环节的耗时,利用信息的传递,使每个环节运作流畅尤为重要。

3 完善医学影像学诊断报告

3.1 基本程序规范化 医学影像学诊断报告是临床医生诊断和确定治疗方案的重要依据之一,又是重要的医疗文件。报告书写的质量代表科室的诊断水平,也代表整个学科的水平以及发展的程度。这就要求医学影像科室人员要通过审阅病历,了解病情,全面观察,系统分析,结合临床进行鉴别、对照、综合,写出报告做出结论。

3.2 基本格式规范化 医学影像学诊断报告书的格式是一种形式,它反映的内容必须要符合质量保证与质量控制要求。纵观目前国内外的诊断报告书,形式各种各样,大小与繁简程度也不一致。但是从质量保证与质量控制角度来看,医学影像学的诊断报告书的一般格式应依次包括以下5项内容:一般资料,包括患者姓名、性别、年龄、科别、住院号、病区、病床、门诊号、X线号、CT号、MRI号、DSA号、X片序号、检查日期、报告日期等;检查名称与检查方法或技术;医学影像学表现或讨论部分,如X线所见、CT所见、MH 所见、DSA所见等;医学影像学诊断或印象部分;书写报告与审核报告医师签名。在临床工作中,上述五项内容可具体化为以下几种格式。第一种是从影像征象或讨论到影像诊断或印象的分段描述法。第二种是从影像诊断或印象到影像征象或讨论的分段描述法。第三种是将影像征象或讨论与影像诊断或印象混合描述法。第四种是表格式,是将报告设计成固定的表格。第五种是逐条列项式,是将各项观察的内容按顺序排列,在预留的空白处填写正常、异常或意见等。其中,第二种报告格式是目前采用最多、最常用的一种,因为它满足规范化报告的5项内容,符合检查的标准,是目前公认的标准格式之一。

3.3 基本要求规范化 书写规范化报告内容的总体原则是影像描述简洁,重要的部分或内容先写,回答临床医师的要求;病灶要进行必要的量化及形态影像征象描述;影像检查要进行征象的比较及必要的鉴别诊断,最后要得出影像检查的结论。一般和常规项目要齐全,描述要有顺序,主次要分明,描述部分与诊断结论要保持一致。此外,还要求字迹工整、语句通顺、术语规范。

3.4 注意事项 医学影像报告是一份把病变影像转换成文字、具有法律效力的医疗文件,讲求客观性、科学性、严禁掺杂主观印象,不要武断地单以图像诊断疾病,也不要过于随附临床,故一定要写得确切、客观。这就必须运用规范的影像学术语或解剖学与病理学名称来描绘,不能随便下笔,按个人的 爱好 写。实事求是,不弄虚作假是对医学影像技师的最基本要求。总之,加强医学影像技术的规范化建设已经迫在眉睫,刻不容缓,需要我们从多方面努力。只有这样,才能提高医学影像诊断的准确性,才能更好地服务于临床,造福于患者。

医学影像毕业论文文献

[1] 李晨,杨德民,苗壮,等.超声影像网络工作系统的建立与临床应用[J].中华现代影像学杂志,2005,(12):1078?1080.

[2] 段少银,蔡国祥,叶锋,等.关于医学影像学诊断报告书书写规范化的讨论[J].中华现代影像学杂志,2000,(1):90?91.

[3] 林海波,曹然,叶晖,等.影像技术数字化建设面临的问题[J].现代医院,2004,(6):117?118.

引言

医学影像是涵盖X 线片、超声、CT、核磁共振、介入等多个不同门类的一门新兴医学技术,自1895年伦琴发现X 线片以来,医学影像技术得到迅速发展,在此之前,医生除解剖外,只能依靠触诊了解患者体内情况,但解剖与触诊均具有一定风险。因影像成像原理及采用的检查方法存在明显区别,检查范围也各不相同,且还突出了检查技术。因此,影像技术对于影像诊断具有较强的依赖性,逐渐从根据某一形态变化而诊断向功能、形态、代谢等改变的综合诊断体系方向演变。

一、医学影像技术与医学影像诊断的专业互补性

医学影像诊断离不开医学影像技术的支持,二者之间存在十分紧密的关心。医学影像技术水平的提升及工作层面的拓展需要影像诊断的科学指导,而医学影像诊断水平的提升同样需要高水平的医学影像技术作为保障。只有通过医学影像诊断及时将结果反馈出来,才能逐步提升医学影像技术水平。由于不同的医学影像技术的成像原理是存在差别的,并且不同的影像学技术的专业性较高,例如超声检查、CT、MRI 等方法各有特点,在临床应用过程中,对检查的结果进行分析与研究,能够发现不同的技术各有优势,但也存在一定的不足和缺陷。对于疾病的诊断,并非通过医学影像技术就能够得出最准确的结论,有时仅通过一种影像学技术就能进行诊断,而采用其他的检查方式则难以检出异常。即使不同的影像学技术都能对一些疾病进行检查,但应当出于对患者经济角度的考虑,选择最为经济且适合的检查方法。

医学影像技术和医学影像诊断在本质上是紧密联系的,并且二者之间相互依赖、相互渗透、相互制约,在相互促进的过程中促进各自的发展。随着当前医学影像技术的不断成熟与发展,医学影像诊断和医学影像及时之间的界限逐渐变得模糊。在整个医疗环境中,随着新业务、新技术、新材料以及性科学的出现及快速发展,使得医学影像诊断与医学影像技术之间实现了有效的融合,这在一定程度上缩短了患者的治疗周期,大大提升了医疗水平。

二、医学影像技术与医学影像诊断的专业独立性

在当前医学影像技术临床应用中,对于专业医师的要求较高,主要包括:第一,要求了解与掌握CT、核磁共振、超声医学及常规放射学等方面的专业操作技能与相关理论知识;第二,了解并掌握有关电子学、基础医学及临床医学等方面的理论知识;第三,在疾病诊断过程中,对各类影像学诊断技术的应用情况及主要作用有一定的了解;第四,了解医学影像等不同专业分支的发展趋势及主要的技术。

在当前医学影像诊断应用方面,对于专业医师的要求主要有以下几个方面:第一,熟练掌握现代医学影像学、基础医学及临床医学等方面的专业性知识;第二,在对临床疾病患者的诊断过程中,对多种影像诊断技术熟练应用;第三,能够深入了解并熟悉与医学影像方 面相 关的临床技术及知识;第四,了解医学影像等不同专业分支的发展趋势及主要的技术。

医学影像技术主要是为临床疾病的影像学诊断提供科学的参考依据,并且能帮助专业医师获得准确可靠的影像学信息与知识,从而为疾病的诊断及治疗提供极为关键的依据。医学影像诊断工作则主要是为了对医学影像技术中提供的各方面信息作出观察与分析,并对这些信息进行归纳与 总结 ,从而得出最为客观、公正的影像学诊断结论。

三、结束语

综上所述,医学影像技术与医学影像诊断互为一个整体,前者离不开后者的支持,而后者在临床中的应用效果则依赖于后者。医学影像诊断技术在临床应用过程中与医学影像诊断相互促进、相互制约。因此,医学影像技术工作人员和影像诊断人员应当严格依据相关标准执行质量控制及质量管理,逐步提升临床医疗诊断效率及水平,在进一步减轻患者就诊痛苦的同时,将医学影像学的临床应用价值充分发挥出来。

1. 医学影像本科毕业论文

2. 关于医学影像的论文

3. 本科医学毕业论文范本

4. 医学影像技术晋升职称报告范文

5. 医学晋升职称论文范文

6. 本科临床医学毕业论文范文

高光谱分辨率遥感应用于地质是光学、结晶学、光谱学、传感器技术和图像处理技术等学科共同发展的结果。由于它具有将高光谱分辨率的图像与光谱合二为一的特点,不仅能有效地直接识别地表物质,而且还能更深入地研究地表物质的成分及结构。

因此,在地质应用中可在以下几个方面作出贡献:

1.制作基础地质图件

利用高光谱图像丰富的光谱和纹理信息,可以全面、快速、经济有效地对研究区岩石分布、构造形迹展布及沉积环境等进行综合研究,为相应的各种地质研究提供源信息并加以更新在研究区中可以利用图像光谱特征与光谱数据库中光谱的相似性,如光谱角度填图(SAM),进行岩石识别与分类,从而绘制不同岩石类型的分布图、不同构造单元的岩相图、不同变质程度的变质岩分级图以及火山岩系、火山机构的调查图等专题图。

2.反演大地构造演化过程

根据高光谱吸收特征的细微差别,利用遥感信息提取技术,如光谱角度填图、岩矿光谱指数等,对变质岩区的蚀变矿物进行研究,再造区域内构造演化的温压环境。同时可利用光谱混合分解模型、高斯模型以及相似性测度等,技术提取岩矿蚀变信息,加强对变质岩系的光谱特征研究,建立高光谱遥感变质岩原岩恢复模型,再造动力变质环境。对沉积岩区可通过加强该区沉积岩系的识别与分类制圈,进行区域对比,进行古地理环境再造。对岩浆岩区的研究则可根据该区火山岩系的高步谱岩性识别与制图,全面展示不同构造的展布情况和空间关系。由火成岩和区域岩浆活动特征,进行古大AV石脚构造单元划分与大地构造环境再造。

3.显示地质体空间关系

结合高光谱图像的纹理信息,利用定量遥感模型,确定岩矿的分布,进行岩矿的分布关系研究

4.成矿预铡

通过岩石光谱信息模型反演某些指示矿物的丰度分布。结合遥感专题、图件以及丰富的纹理信息,借助于相应的成矿模式和理论,可以从全局、综合的角度对研究区的矿产进行可持续的勘探和开发。

检测光谱论文

色谱分析技术能够实现原料分离,分析环节中同时完成多种任务,下面是我为大家精心推荐的色谱分析技术论文,希望能够对您有所帮助。

涂料检测中的现代色谱分析技术应用分析

摘 要:文章首先介绍了气相色谱法涂料检验的原理,并对检验环节中常见的问题以及解决对策进行分析。从技术的优缺点两方面进行。其次重点分析高效液相色谱法的应用原理,并对涂料检测环节的技术要点做出总结。帮助提升检测结果的准确性。

关键词:涂料检测;现代色谱;气相色谱法

1 高效液相色谱法

该种技术融合了传统工艺中的优点,同时也对存在的问题做出优化,更高效的解决检测期间的影响问题。这种技术能够实现原料分离,分析环节中同时完成多种任务,与传统方法相比较在时间上会有明显的减少,尤其是对受热程度的分析判断,更高效合理。检验环节中常见的加热问题,成为色谱分析的首要影响因素,如果不能合理的设置温度,很容易造成分析结合与实际情况不符合。大部分涂料都是液体形式的,在性质上更具有稳定性,原料选取的量也能得到控制。随着对环保和健康的日益重视,国家陆续出台了一些涂料相关的有毒有害标准,涂料的生产工艺和配方也随之调整优化。但也不乏有生产厂家使用现行标准中还未被限量的有毒有害物质来替代已被限量的物质。这就要求在检验工作中不仅要依照现行标准对涂料样品进行检验,还要积极发现还未被限量的有毒有害物质。涂料产品成分复杂多样,高效液相色谱法属于分离性分析方法,能够对绝大部分的有机物进行分析,尤其是对挥发性不强,高温易分解的物质,能获得比其他方法更好更稳定的结果。

涂料中含有的化学物质可能会对环境造成污染,因此目前的检测工作也大部分是针对生态环保来进行的,目的在于避免质量检测不达标的物质投入到使用中。因此检测工作要有明确的目标,对待检物质中可能会含有的污染物进行判断。有毒涂料防污剂有机锡的HPLC分析在船舶防污涂料抑制海洋生物污损中发挥了非常有效的作用,随着海洋监测技术的发展,有机锡的毒性和对生态系统的危害越来越多地被人类认识。海洋环境中的有机锡浓度很低(10-12~10-9),而且种类繁多,因此用传统的仪器很难满足高灵敏度、高选择性的分析要求。其中较成熟的方法是以GC(凝胶色谱)为分离手段,配以适合金属离子分析的检测器。

HPLC能对不适应GC的有机锡进行分析,适用于大多数极性及非极性有机锡化合物的直接分离。不需萃取及衍生,在常温下可直接分离样品中不同形态的锡,不但缩短了分析时间,而且还减少了分析过程中可能的损失;可通过改变固定相和流动相获得最佳分离;尤其适用于具有生物活性化合物的分离与形态分析。凝胶色谱法是液相色谱法的一种,其分离原理与其他色谱法不同,是按分子体积的大小进行分离,所以也称为体积排阻色谱法。高效凝胶渗透色谱是20世纪60年代发展起来的一种液相色谱方法,主要用途是测定高聚物的相对分子质量及其分布。

2 气相色谱法

2.1 裂解气相色谱-傅里叶变换红外光谱联用

能够用来判断树脂涂料中的组成成分,同样是针对光谱来进行,该种技术方法在所得结果上更具有全面性,融合了两种技术方法中的优点,在对色谱类型进行判断时可以直接显示结果。生产工艺不断进步后,涂料中的含有成分也在逐渐复杂化,高分子结构在普通的红外光谱下不容易分析。关于该种色谱技术,在国内的研究起步较晚,应用环节也是根据已有的研究结果来探讨的。

我国学者在研究过程中,提取涂料中的成分,将检测得到的成分含量录入到计算机设备中进行分析,更准确的定位色谱表现形式与其中涂料含量的函数关系。该种技术可以选择任意部分涂料进行检测,不需要对测试点进行选取,节省时间的同时也能够减少标样点,对未来的工作开展有很大帮助。这一特征性也是该技术能够得到应用落实的原因。

红外光照作用下,涂料发生的裂解反应是检测开展的依据,不需要再次选择分析的样本,可以直接根据反应过程来分析结果。面对比较复杂的分析对象时,仅仅依靠简单的裂解很难实现目标,简单的升高温度能够促进涂料裂解,再根据反应发生的情况来判断是否达到可以检测的点。红外光照在其中发挥着催化的作用,可以应对化合物检测。但涂料的形式并不是如此简单,还包含了聚合物形式,红外光谱检测的效果便会受到阻碍。

2.2 裂解气相色谱-质谱联用

涂料由几大部分组成,树脂原料常常被应用在基料制作中。对于耐高温性质好,并且不容易分离的材料,不能再通过高温裂解的方式来检验。但检验方法在原理上都相同,遇到的难题是如何促使裂解反应发生。常见的方法是对分子结构链进行破坏,涂料中的成分自然分解,此时在对色谱表现形式进行分析,能更好的完成任务。裂变过程中会散发出能量,不同分子结构链变化期间所散发的热量也不相同,同时也与基料自身耐高温形式相关。

了解到裂变需要经过高温加热来实现分析检测时,关键技术是对温度的控制,如果加热温度超出了需求范围,很容易造成分子结构链过于零散,影响到结果的判断。不可忽略的一点是,涂料在高温状态下其中的一些物质容易发生氧化反应,分解出检测环节不需要的物质,对任务开展产生阻碍。由此可见,这种方法虽然操作过程简单,结果分析准确,但却容易受外界因素影响。

涂料在高温环境下发生反应变化需要一段融合的时间,而破坏结构链是在高温加热的瞬间完成的。检测环节中,可以在短时间内瞬间升高温度,这样能够避免物质的高温氧化反应,提升检测结果的可靠性。影响物质并不能被完全消除,只是尽可能的将生成量控制在合理范围内,不对检验分析造成影响。根据检验结果可以了解到,不同的基料材质对涂料色谱表现形式会产生影响,在检测环节需要对原料组成成分进行判断,明确高温状态下可能会发生的反应类型。任务进行期间,需要选取不同涂料的样品来测试,避免掺入其他杂质。所选取的量要均等,观察检测结果的同时将原始数据整理记录,用于后续的分析检验环节,可以更好的对比。根据反应发生的形式对检验技术进行选择,涂料色谱分析在流程上会有明显的进步。

3 结论

快速灵敏的仪器分析法在很大程度上取代了繁琐费时的化学分析法,打破了化学分析的局限,极大地提高了分析工作的效率、分析精度与可靠性,而先进的色谱技术已成为涂料成分检测不可缺少的重要手段。

参考文献

[1] 宋晓波,兰小军,丁立群.现代色谱分析技术在涂料检测中的应用[J].上海涂料,2013(03).

[2] 尹洧.色谱分析技术在食品检测中的应用[J].农业工程,2012(08).

点击下页还有更多>>>色谱分析技术论文

这个东西你给的信息太少了拉曼属于振动-转动光谱,像红外一样,一般只能给出某些键振动的信息。只能通过拉曼光谱来指认某些键的存在,而难于指认某种分子的存在。首先你要知道你的待测样品可能包含什么,然后这些成分是否具有拉曼活性,如果有,那么特征是在哪个峰位,需要用哪个激发波长。液态样品的拉曼光谱通常强度比较弱,不知道你使用的是液池型的光谱仪还是显微拉曼光谱仪,测量的是纯的液体的混合物还是水溶液中的混合物。

原子吸收光谱法在环境常规监测中的应用 西南科技大学分析测试中心 张伟〔摘要〕原子吸收光谱分析法(AAS)在环境分析化学中广泛使用。本文简述了近年来AAS在环境常规监测中的应用进展。〔关键词〕原子吸收光谱法环境监测应用原子吸收光谱法(AAS),因其灵敏度高、干扰小、精密度高、准确性好及分析速度快、测试范围广等诸多优点,在环境分析化学中广泛使用。20世纪80年代末,国家环保局在《环境监测技术规范》中的地表水和废水、大气和废气、生物测定部分,就将原子吸收光谱法列为《环境监测技术规范》中有关金属元素的标准分析方法。1.水环境监测适时地对地表水质量现状及发展趋势进行评价,对生产和生活设施所排废水进行监视性监测是常规环境监测的两项基本任务。原子吸收光谱分析主要应用于水环境中重金属的监测。龙先鹏[1]采用火焰原子吸收光谱法直接测定水中微量铜、铅、锌、镉元素的含量,在0-1.00mg/L范围内,被测元素浓度与吸光度呈线性关系,相关系数不小于0.9990;最低检出限分别为0.001、0.01、0.0008、0.0005mg/L,相对标准偏差分别为1.16%、1.22%、1.15%、1.16%;该方法对标准样品的测试结果与国家标准方法基本一致,相对偏差均不大于7.0%。张美月等[2]以二乙胺基二硫代甲酸钠为配位剂、Triton X-114为表面活性剂,采用浊点萃取-火焰原子吸收光谱法测定水样中的痕量镉,检测限为0.238μg/L,富集倍数为55,加标回收率为98%-102%;分离富集方法简单、安全、快捷,结果令人满意。陆九韶等[3]利用Al3+与Cu(Ⅱ)-EDTA发生定量交换反应,通过测定水相残余铜,从而间接测定水和废水中的铝。在线富集是原子吸收光谱检测分析发展的热点之一。高甲友[4]用含黄原脂棉的微型柱对试样中的Cd2+在线富集、盐酸洗脱后,采用火焰原子吸收光谱法在线测定水中的镉离子。富集50 mL溶液时此方法灵敏度可提高68倍。陈明丽等[5]用溴化十六烷基三甲胺(HDTMAB)改性的天然斜发沸石微填充柱,建立了顺序注射在线分离富集电热原子吸收法测定水中Cr(Ⅵ)及铬形态分布的方法;测定铬的检出限达到0.03μg/L,精密度3.7%。用本法测定标准水样GBW08608中的铬,所得结果与标准值相符。冷家峰等[6]对螯合树脂富集-火焰原子吸收光谱法测定天然水体中痕量铜和锌的在线富集条件、干扰因素等进行研究,在线富集倍数达到两个数量级,在灵敏度与石墨炉原子吸收光谱法相当情况下,提高了测定准确度。痕量金属元素化学形态的分析比单纯元素的分析要复杂、困难得多,除要求测定方法灵敏度高、选择性好外,还要求分离效能高。联用技术,特别是色谱-原子吸收光谱联用,综合了色谱的高分离效率与原子吸收光谱检测的专一性的优点,是解决这一问题的有效手段。刘华琳等[7]自行设计了一种紫外在线消解氢化物发生接口,并将高效液相色谱-紫外在线消解-氢化物发生原子吸收联用仪器(HPLC-UV-HGAAS)用于砷的形态分析,以砷甜菜碱、砷胆碱、亚砷酸盐(As(Ⅲ))及砷酸盐(As(V))等进行了分离测定,实现了将分离后不能直接用于氢化物发生的大分子,通过紫外“在线”消解成小分子砷化合物的目的。李勋等[8]采用电化学氢化物发生与原子吸收光谱联用技术有效地实现了无机砷的形态分析。在电流为0.6 A和1A条件下,As(III)和As(V)在0-40μg/L浓度范围内均呈良好的线性关系。As(III)和As(V)检出限分别为0.3μg/L和0.6μg/L;该方法成功应用于食用鲜牛奶中无机砷的形态分析。2.土壤、底泥和固体物分析景丽洁等[9]采用微波消解法预处理待测土壤,火焰原子吸收分光光度法测定污染土壤消解液中的锌、铜、铅、镉、铬5种重金属。土壤中锌、铜、铅、镉、铬的相对标准偏差分别为1.2%、1.9%、1.2%、5.2%和1.8%。方法简便、灵敏、准确,适用于污染土壤中重金属含量的测定。卢卫[10]采用悬浮液进样平台石墨炉原子吸收法测定土壤的痕量汞,精密度为5.9%,检出限达到1.2×10-12g。宫青宇[11]采用直接固体进样、添加基体改进剂技术测定土壤中重金属铅含量,避免了土壤中复杂基体的影响,实现了土壤样品中铅的快速分析。王北洪等[12]采用了“硝酸-氢氟酸-过氧化氢”三酸消化体系和密封高压消解罐法对土壤样品进行消化,以原子吸收光谱法测定其中的铜、锌、铅、铬、镉。结果表明:采用该法测定土壤中的重金属时,测定结果准确可靠,实验条件易于控制,能够满足环境监测分析的要求,可以作为一种可行的土壤重金属元素分析方法。程滢等[13]把河流底泥经过氢氟酸和高氯酸消化,用火焰原子吸收法测定其中的铜,获得较好的结果。王畅等[14]利用流动注射系统中串联的阴、阳离子交换微型柱分离、NH4NO3+抗坏血酸和H2SO4两种洗脱液同时逆向洗脱,实现了对底泥可利用态铬中Cr(Ⅵ)和Cr(Ⅲ)同时在线分离和原子吸收光谱法测定。在交换时间2 min,洗脱50 s,Cr(Ⅵ)和Cr(Ⅲ)回收率分别为85.4%-94.8%和96.7%-106%。此法对实际样品中不同价态铬进行测定,铬回收率可达95%。Cr(Ⅵ)和Cr(Ⅲ)的检出限和最大相对标准偏差分别为0.9μg/L、6.4%和2.7μg/L、3.5%。王霞等[15]用冷原子吸收光谱法测定固体废物浸出液中的汞含量,检出限为0.02μg/L,回收率在91%-101%之间。方法简便快速,线性范围宽。3.大气环境质量监测邹晓春等[16]以微孔滤膜采样、钯或镍作改进剂,用石墨炉原子吸收光谱法测定居住区大气中硒,检出限为3.45ng/mL,线性范围为0-50ng/mL,回收率94.6%-102.0%;其中砷对测定硒有一定干扰,其它金属元素对测定无干扰。邹晓春在此基础上又对居住区大气中的镍进行了测定,检出限为0.12 ng/mL,线性范围为0-35 ng/mL,回收率为95.1-102.1%,其他金属元素对测定镍未见明显干扰[17]。冯新斌等[18]对原有的光谱仪器进行简单改装,建立了两次金汞齐-冷原子吸收光谱法测定大气中的微量气态总汞的方法,检出限达到0.05ng;100μL饱和汞蒸气连续测定结果表明其相对标准偏差<1.41%。在0-2.0ng汞量范围内标准工作曲线线性关系良好。并且运用该法,对贵州省万山汞矿、丹寨汞矿、清镇汞污染农田、省农科院和中国科学院地球化学研究所等地大气气态总汞进行了测定。综上所述,原子吸收光谱法在环境监测分析中应用取得了不少成果,但在应用范围上还有待扩大,如在污染物的化学形态研究上尚待深入等。总之,随着环境监测事业的发展,原子吸收光谱法因具有其它方法所不能比拟的优势,必将在环境化学分析中展现广阔的应用前景。参考文献〔1〕龙先鹏.火焰原子吸收分光光度法直接测定水中微量铜、铅、锌、镉〔J〕.化学分析计量,2008,17(1):53-54.〔2〕张美月,李越敏,杜新等.浊点萃取-火焰原子吸收光谱法测定水样中的痕量镉〔J〕.河北大学学报(自然科学版),2009,29(4):407-411.〔3〕陆九韶,覃东立,孙大江等.间接火焰原子吸收光谱法测定水和废水中铝〔J〕.环境保护科学,2008,34(3):111-113.〔4〕高甲友.流动注射在线富集-火焰原子吸收光谱法测定水中痕量镉〔J〕.冶金分析,2007,27(1):61-63.〔5〕陈明丽,邹爱美,仲崇慧等.改性沸石填充柱在线分离富集电热原子吸收法测定水中铬(Ⅵ)及铬的形态分布〔J〕.分析科学学报,2007,23(6):627-630.〔6〕冷家峰,高焰,张怀成等.在线鳌合树脂富集火焰原子吸收光谱法测定天然水体中铜和锌〔J〕.理化检验-化学分册,2005,41(8):556-560.〔7〕刘华琳,赵蕊,韦超等.高效液相色谱-在线消解-氢化物发生原子吸收光谱联用技术〔J〕.分析化学,2005,33(11):1522-1526.〔8〕李勋,戚琦,薛珺等.电化学氢化物发生与原子吸收光谱联用对鲜牛奶中无机砷的形态分析〔J〕.食品研究与开发,2007,28(11):121-123.〔9〕景丽洁,马甲.火焰原子吸收分光光度法测定污染土壤中5种重金属〔J〕.中国土壤与肥料,2009,(1):74-77.〔10〕卢卫.悬浮液进样平台石墨炉原子吸收法测定土壤中痕量汞〔J〕.化学工程与装备,2009,(3):100-101.〔11〕宫青宇.直接固体进样-石墨炉原子吸收法测定土壤中铅含量〔J〕.内蒙古科技与经济,2009,6:69.〔12〕王北洪,马智宏,付伟利.密封高压消解罐消解-原子吸收光谱法测定土壤重金属〔J〕.农业工程学报,2008,24(Supp.2):255-259.〔13〕程滢,张莘民.火焰原子吸收分光光度法测定鱼内脏及河流底泥中的铜〔J〕.环境监测管理与技术,2003,15(2):28-30.〔14〕王畅,谢文兵,刘杰等.流动注射分离-原子吸收光谱法测定底泥中生物可利用态Cr(Ⅵ)和Cr(Ⅲ〔)J〕.分析化学,2007,35(3):451-454.〔15〕王霞,张祥志,陈素兰等.冷原子吸收光谱法测定固体废物浸出液中汞〔J〕.光谱实验室,2008,25(5):981-984.〔16〕邹晓春,李红华,徐小作.居住区大气中硒的原子吸收光谱法研究〔J〕.现代预防医学,2004,31(6):879-880.〔17〕邹晓春.石墨炉原子吸收光谱法测定居住区大气中镍〔J〕.职业与健康,2000,16(6):36-37.〔18〕冯新斌,鸿业汤,朱卫国.两次金汞齐-冷原子吸收光谱法测定大气中的微量气态总汞〔J〕.中国环境监测,1997,13(3):9-11.

遥感图像的目标检测论文

洋河流域遥感图像土地利用分类方法研究 【摘要】遥感影像分类方法的确定是LUCC研究中的关键步骤。文章以洋河流域为研究区,分别进行了非监督分类和监督分类。针对监督分类结果中存在的误差,对水域、植被、城镇与工矿用地三种类型地物的提取分别选择了综合阈值法、植被指数法、DEM数据辅助分析法进行了改进,结果表明改进后的提取结果较监督分类直接得到的结果有了很大的改善。【关键词】遥感图像;监督分类;综合阈值法;植被指数法【中图分类号】TP79 【文献标识码】A【文章编号】1671-5969(2007)16-0164-03一、研究区域概况及图像资料(一)研究区域概况洋河流域是张家口经济发展的中心地带,水资源相对丰富。洋河发源于山西省阳高县和内蒙古兴和县,是永定河上游的一大支流,流域面积约14600km2 。在张家口市流域面积为9762km2,流经万全县、怀安县、张家口市区、宣化县、宣化区、下花园区、怀来县等,干流全长106 km,在朱官屯于桑干河汇合后流至官厅水库,是官厅水库的重要水源。洋河流域形状东西向较长,南北向较短,地形总趋势西北高、东南低。流域的东北、北部和西北沿坝头一带海拔高程1200~1500m之间,西部和南部边界海拔高程一般在500~1000m之间。流域内80%以上为丘陵山区,绝大部分为荒山秃岭。流域内大部分为黄色沙壤土,并有部分砂砾土及黄粘土,沿河川地层厚且较肥沃[1]。(二)信息源遥感信息源的选择要综合考虑其光谱分辨率、空间分辨率、时间分辨率等因素, 这是利用遥感图像进行土地利用分类的关键问题。美国的Landsat TM 图像是当前应用最为广泛的卫星遥感信息源之一,它可提供7个波段的信息, 空间分辨率为30~120m。TM数据源各波段各有特点,可进行不同地物类型的信息提取。相关资料表明TM遥感数据各波段间的信息相关关系为:TM1与TM2,TM5与TM7高度相关,相关系数达0.95以上,信息冗余大,可以考虑不选取TM1波段。另外由于第6个波段的分辨率为120m,不利于地物信息的提取,所以亦不选取TM6波段。一般来说, 选择图像类型时,应考虑研究区域的大小、研究的目的,以及要达到的精度要求,另外不同时相遥感图像的选择对分类精度也具有很大的影响。为了能把水域、城市与工矿用地、林地、耕地、裸地区分开,以洋河流域1987年9月17日的TM图像为信息源进行研究。本文中所使用的遥感图像处理工具为美国ERDAS公司的ERDAS IMAGINE8.4软件,它是一个功能完整的、集遥感与地理信息系统于一体的专业软件,具有数据预处理、图像解译、图像分类、矢量功能、虚拟gis等多个功能。二、现有遥感图像土地利用分类的主要方法及其分析遥感图像土地利用分类就是利用计算机通过对遥感图像中各类地物的光谱信息和空间信息进行分析,选择特征,并用一定的手段将特征空间划分为互不重叠的子空间,然后将图像中的各个像元划归到各个子空间中以实现分类[2]。按照是否有已知训练样本的分类数据,将其分为非监督分类和监督分类。它们最大的区别在于监督分类首先给定类别,而非监督分类则由图像数据本身的统计特征来确定。(一)非监督分类非监督分类是在多光谱特征空间中通过数字操作搜索像元光谱属性的自然群组的过程,这种聚类过程生成一副有m个光谱类组成的分类图。然后分析人员根据后验知识将光谱类划分或转换成感兴趣的专题信息类[3]。洋河流域内有很多山地,在图像上会产生大量的阴影,导致了像元灰度值的空间变化,这对分类结果有很大的影响。为此可以通过比值运算来去除阴影的影响,使向阳处和背阴处都毫不例外地只与地物的反射率的比值有关。常用算法:近红外波段(TM4)/红外波段(TM3),这样所得到的效果比较好,从原始图像和比值运算后的图像(图像略)中,可以清楚地看到山体阴面的阴影得到了有效的去除。经过比值运算后, 就可以对图像进行非监督分类。得到的分类结果如图1所示。非监督分类只根据地物的光谱特征进行分类,受人为因素的影响较少,不需要对地面信息有详细的了解,但由于“同物异谱、异物同谱”等现像的存在,其结果一般不如监督分类令人满意。比如官厅水库旁边的大量建筑物被分到水体一类。是因为在TM3波段上,水体和建筑物的灰度值相近, 同样在TM7波段上,裸山和建筑物的灰度值也相近。总之,在TM的6个波段上,无论采用哪个波段进行非监督分类,总有几种地物的光谱值接近,因此单纯依靠计算机自动分类取得很好的效果是非常困难的。

摄影测量与遥感技术发展论文主要通过对摄影技术与遥感技术的发展进行了研究,并对其在各个方面的运用进行了论述。

摄影测量与遥感技术发展论文【1】

摘要:随着经济的不断发展,科学的不断进步,摄影测量与遥感技术因其运用范围广、作用大而走上了逐渐发展的道路,并且对国民经济生活起着重要的影响。

关键词:摄影测量;遥感技术;发展;应用

摄影测量与遥感技术被划分在地球空间信息科学的范畴内,它在获取地球表面、环境等信息时是通过非接触成像传感器来实现的,并对其进行分析、记录、表达以及测量的科学与技术。

3S技术的应用、运用遥感技术以及数字摄影测量是其主要研究方向。

在多个领域内都可以运用遥感技术与摄影测量,比如:自然灾害、勘查土木工程、监测环境以及国土资源调查等。

随着我国经济的不断发展,运用到遥感技术与摄影测量的领域也在逐渐的增多。

在人类认识宇宙方面,遥感技术与摄影测量为人类提供了新的方式与方法,也为人类对地球的认知以及和谐共处提供了新的方向。

遥感技术和摄影测量可以提供比例不同的地形图以服务于各种工作,并且还能实现基础地理信息数据库的建立;遥感技术与摄影测量与地图制图、大地测量、工程测量以及卫星定位等构成了一整套技术系统,是测绘行业的支柱。

一、摄影测量与遥感技术的发展

从摄影测量与遥感技术的发展来看,摄影测量与遥感技术在近30年的时间里已经涉及到城市建设、水利、测绘、海洋、农业、气象、林业等各个领域,在我国的经济发展中起着至关重要的作用。

摄影测量从20世纪70年代后期从模拟摄影中分离出来,并逐渐步入数字摄影阶段,摄影测量正在逐渐的转变为数字化测绘技术体系。

(一)摄影测量与遥感技术有利于推动测绘技术的进步

我国的摄影测量从上世纪70年代后期经历一个系统的转变。

在经历了模拟摄影测量以及解析摄影测量阶段之后,摄影测量终于步入了数字摄影测量的阶段,这也成为我国传统测绘体系解体,测绘技术新体系兴起的标志。

首先,从数字影像的类型来看,当前我国已经建立了数字栅格图、数字高程模型以及数字正射影像,土地利用与地名数据库也随之建立起来,摄影测量与数据库的多样性在一定程度上为生产运用提供了可能,从而进一步推动了测绘技术的发展。

其次,由于摄影测量与遥感技术的飞速发展,也逐渐被国家所重视,并利用这两项技术来完成了各种地理比例尺地形图的绘制。

此外,还推动了诸多具有全国界别的基础地理信息数据库的建立。

比如:比例尺级别为1:50000,1:1000000等的国家级地理信息数据库;除开国家级的,还有省级、县级等的地理信息数据库等。

(二)摄影测量与遥感技术有利于提升空间数据的获取能力

我国获取空间数据的能力在经过五十年的发展,有了较大的提升。

对具有自主知识产权的处理遥感数据平台进行了研发,从而推动了国产卫星遥感影像地面处理系统的建立,并在摄影测量方面积极进行研究和探索,为我国独立处理信息、获取观测体系的建立提供了坚实的基础。

首先,从获取数据的能力方面来看,传感器在国家863以及973计划的支持上成功被研制出来,成功发射了对地观测的包括通信卫星、海洋卫星、气象卫星以及资源卫星等五十多颗卫星,并推动了资源、风云、环境减灾以及海洋四大民用对地观测卫星体系的建立,实现了从太阳和地球同步轨道对地球多传感器、多平台的观测以及对地球表面分辨率不同的雷达和光学图像的获取,并将这些获取的数据用于对海洋现象、大气成分、自然灾害以及水循环等各个方面的监测。

其次,从数据储备方面来看,数据积累已经成功的覆盖了全国海域、陆地以及我国周围国家和地区的包括一千五百万平方公里的地球表面数据。

二、摄影测量与遥感技术在国民经济各项领域中的运用

(一)摄影测量与遥感技术在应对自然灾害中的运用

在发生自然灾害时,为了能够第一时间了解灾情的具体分布,获取高分辨率灾区遥感影像,可以采用低空无人遥感、航天、航空遥感等方式,对灾区原有的地理信息以及尺度进行整合,推动地理信息服务平台的建立,将多尺度影像地图制作出来,及时、有效的提供地理信息以及地图数据支持,为及时制定出应对自然灾害的措施提供了依据。

比如在汶川地震时,在灾区道路交通与通信严重受损的情况下,通过摄影测量与遥感技术在第一时间获取了灾区的详细信息与资料,并利用航空遥感技术和无人机连续、动态的实现对灾区的监测,并对道路交通以及房屋倒塌等情况进行分析,建立起灾区地理信息综合服务平台,将灾区的地理信息数据进行整合,比如水系、居民地以及交通等,为各级抗震救灾指挥部门作出正确的决策以及救援人员的搜救工作提供了及时有效的灾情信息。

在灾区的救援工作中,发挥着至关重要的作用。

(二)摄影测量与遥感技术在气象中的运用

在气象方面中,摄影测量与遥感技术主要运用在对各种气象灾害的.预报和监测两方面。

在热带天气系统的监测方面,气象卫星发挥着极其重要的作用,尤其是对于台风的预报和监测。

在我国的春、夏季中,雷雨、暴雨等作为多发性的灾害性天气,在监测和分析方面,如果运用常规的气象观测资料是非常困难的。

利用具有高空间分辨率和高时间密度特点的卫星云图以及卫星产品,可以对对流系统的演变、发生、移动以及发展过程进行全方位的监测,从而为对流天气的分析和提前预警提供了非常重要的信息。

三、结语

摄影测量与遥感技术的应用已经逐渐步入信息化阶段。

随着我国航空航天技术的不断发展,如何将各行各业的发展与摄影测量和遥感技术相结合从而推动我国经济的发展,已经成为未来摄影测量和遥感技术发展的主要方向。

【参考文献】

[1]张景雄.地理信息系统与科学[M].武汉:武汉大学出版社,2010:108―114

[2]张剑清.潘励.王树根.摄影测量学[M].武汉:武汉大学出版社,2009:89―93

[3]李德仁.王树根.周月琴.摄影测量与遥感概论[M].北京:测绘出版社,2008:131―137

[4]乔瑞亭.孙和利.李欣.摄影与空中摄影学[M].武汉:武汉大学出版社,2008:178―182

[5]窦超.李兆钧.浅谈摄影测量与遥感的发展应用[M].青海国土经略,2011(06):29―31

摄影测量与遥感技术的新特点及技术【2】

摘要:本文主要分析了近年来我国摄影测量与遥感技术表现出的许多新的特点,分别从航空摄影自动定位技术、近景摄影测量、低空摄影测量、SAR数据处理、多源空间数据挖掘等方面进行了总结与论述。

关键词:电子科技论文发表,科技论文网,自动定位技术,近景摄影测量,低空摄影测量,SAR数据处理,多源空间数据挖掘

前言:摄影测量与遥感是从摄影影像和其他非接触传感器系统获取所研究物体,主要是地球及其环境的可靠信息,并对其进行记录、量测、分析与应用表达的科学和技术。

随着摄影测量发展到数字摄影测量阶段及多传感器、多分辨率、多光谱、多时段遥感影像与空间科学、电子科学、地球科学、计算机科学以及其他边缘学科的交叉渗透、相互融合,摄影测量与遥感已逐渐发展成为一门新型的地球空间信息科学。

1、航空摄影自动定位技术

近年来,随着卫星导航和传感器技术的进步,遥感对地目标定位逐步摆脱了地面控制点的束缚,向少控制点甚至是无控制点的方向发展。

1.1 利用基于载波相位测量的GPS动态定位技术测定航空影像获取时刻投影中心的3维坐标,以此为基础研究了GPS辅助空中三角测量理论和质量控制方法,在加密区四角布设地面控制点的GPS辅助光束法区域网平差的精度可满足摄影测量规范的精度要求,大量减少了航空摄影测量所需的地面控制点。

研究成果已大规模用于国家基础测绘,产生了显著的社会和经济效益。

1.2 开展利用在飞机上装载IMU和GPS构成的POS系统直接获取航摄像片6个外方位元素的多传感器航空遥感集成平台研究,可实现定点航空摄影和无地面控制的高精度对地目标定位。

研究成果表明,在1:5万及以下比例尺的4D产品生产中,可直接使用POS系统测得的像片外方位元素进行影像定向,基本无需地面控制点和摄影测量加密,从而改变了航空摄影测量的作业模式,并使无图区、困难地区的地形测绘和空间信息数据的实时更新成为可能。

2、近景摄影测量技术

近景摄影测量的研究应用领域已涉及空间飞行器制造、航空工业、船舶工业、汽车工业、核能工业、化学工业以及医学、生物工程、公安刑事侦破、交通事故及其他事故现场处理、古建筑建档和恢复、大型工程建设监测等方面。

2.1 利用数字相机与实时数字近景摄影测量技术相结合建立相应的工业零件检测系统。

该类系统使用高重叠度序列图像作为影像数据源,利用较多同名特征的冗余观测值成功地进行粗差剔除,根据2维序列图像导出物体不同部位的3维信息,然后将这些3维信息融为统一的表面模型,实现了高精度3维重建。

2.2 利用数码相机与全站仪集成形成一个全新的测量系统——摄影全站仪系统。

尽管传统近景摄影测量近年来得巨大发展,但必须在被测物体表面或周围布设一定数量的控制点,摄影测量工作者心中的“无接触测量“没有真正实现。

全站仪作为一种高精度测量仪器在工程测量中被广泛接受,本质上它是一种基于”点“的测量仪器。

将它与基于”面“的摄影测量有机地结合起来,形成一个全新的测量系统——摄影全站仪系统。

在该系统中,量测数码相机安装在全站仪的望远镜上,测量时利用全站仪进行导线测量,在每个导线点利用量测数码相机对被测物体进行摄影。

每张影像对应的方位元素可以由导线测量与全站仪的读数中获取。

3、低空摄影测量技术

近年来随着低空飞行平台(固定翼模型飞机、飞艇、直升机、有人驾驶小型飞机)及其辅助设备的进一步完善、数码相机的快速普及和数字摄影测量技术的日趋成熟,由地面通过无线电通讯网络,实现起飞、到达指定空域、进行遥感飞行以及返回地面等操作的低空遥感平台为获取地面任意角度的清晰影像提供了重要途径。

3.1 建立基于无人驾驶飞行器的低空数字摄影测量与遥感硬件系统。

硬件平台包括无人驾驶遥控飞行平台,差分GPS接收机,姿态传感器,高性能数码相机和视频摄像机,数据通讯设备,影像监视与高速数据采集设备,高性能计算机等等。

需要深入研究无人驾驶飞行平台的飞行特性,并研制三轴旋转云台、差分GPS无线通讯、视频数据的自动下传、自动曝光等关键技术。

3.2 研究无人驾驶飞行平台的自动控制策略。

在飞行器上搭载飞控计算机,由差分GPS数据得到飞艇(相机)的精确位置,在此基础上对较低分辨率的视频序列影像进行匹配,结合姿态传感器的输出信号实时自动确定飞行器的姿态,从而进行飞行自动控制,并将所有数据同时下传到地面监控计算机。

3.3 研究多基线立体影像中连接点的多影像匹配方法与克服影像几何变形的稳健影像匹配方法。

3.4 数字表面模型与正射影像的自动获取及立体测图。

4、SAN数据处理技术

SAR成像具有全天时、全天候的工作能力,它与可见光红外相比具有独特的优势。

随着我国SAR传感器研制技术的进一步发展,先后研制了不同波段,不同极化方式,空间分辨率达到0.3 In的传感器,并在SAR立体测绘方面设计了不同轨道和相同轨道的重复观测,为我国开展SAR技术的相关研究奠定了数据基础。

4.1 根据不同应用目的的SAR图像与可见光图像的融合。

利用SAR和可见光反映地物不同特性的特点,在提取不同土壤性质以及洪水监测和灾害评估方面采用不同的融合方法,取得了一定的理论成果,并完成了国家和部门的科研课题。

4.2 SAR图像噪声去除方法。

由于SAR的成像特点,造成了SAR图像的信噪比低,噪声严重。

提出了自适应滤波思想,基于图斑的去噪方法以及噪声去除方法的评价等。

4.3 机载和星载重复轨道的SAR立体测图技术以及星载的InSAR技术和D—InSAR的突破。

完成了星载InSAR生成DEM及D—InSAR形变检测的相关软件开发,利用极化SAR数据提取地物目标,开展极化干涉测量的研究。

5、多源空间数据挖掘技术

多源空间数据挖掘技术主要研究应用数学方法和专业知识从多源对地观测数据中,提取各种面向应用目的的地学信息。

5.1 从遥感图像数据中挖掘GIS数据。

在统计模式识别的基础上,通过神经网络、模糊识别和专家系统等技术实现图像光谱特征自动分类。

5.2 基于纹理分析的分类识别。

包括基于统计法的纹理分析、基于分形法的纹理分析、基于小波变换的纹理分析、基于结构法的纹理分析、基于模型法的纹理分析和空间/频率域联合纹理分析等。

5.3 遥感图像的解译信息提取。

把计算机自动识别出来的影像,结合GIS数据库或解译员的知识,确定其对应的地学属性。

包括基于GIS数据的图像信息识别、基于地学知识辅助的图像信息识别、基于专家知识辅助的图像信息识别、基于立体观察的图像信息识别、基于矢量栅格转化的信息提取和基于多源数据融合的信息识别等。

摄影测量与遥感的现状及发展趋势【3】

摘 要:随着信息时代的来临,人类社会步入全方位信息时代,各种新兴的科学技术迅猛发展,并广泛应用于人类生活中去。

摄影测量与遥感技术被广泛应用于我国测绘工作去,本文探讨了我国摄影测量与遥感的发展现状以及展望了发展趋势。

关键词:摄影测量;遥感;现状

随着信息时代的来临,人类社会步入全方位信息时代,各种新兴的科学技术迅猛发展,并广泛应用于人类生活中去。

摄影测量经历了模拟摄影测量、解析摄影测量和数字摄影测量三个阶段。

而在这期间,从遥感数据源到遥感数据处理、遥感平台和遥感器以及遥感的理论基础探讨和实际应用,都发生了巨大的变化。

数字地球(digitalearth)的概念是基于信息高速公路的假设和地理空间信息学的高速发展而产生的,数字地球为摄影测量与遥感学科提供了难得一遇的机会和明确的发展方向,与此同时,也向摄影测量和遥感技术提出了一些列的挑战。

而摄影测量和遥感学科是为数字地球提供空间框架图像数据及从数据图像中获得相关信息惟一技术手段

一、国内外摄影测量与遥感的现状

(一)摄影测量现状

摄影测量经历了漫长的发展过程,随着计算机技术以及自动控制技术的高数发展,进入20世纪末期的时候,基于全数字自动测图软件的完成,数字摄影测量工作站获得了迅猛发展并普遍存在于测量工作中。

进入21世纪后,科学技术的提升帮助摄影测量进入了数字化时代,数字摄影测量学学科与计算机科学有了大面积的知识交叉,摄影测量工具也变为较为经济的计算机输入输出设备,这种革命性的变革,使得数字摄影测量提升到了另一个台阶,数字摄影测量的语义信息提取、影像识别与分析等方面均产生了从质到量的变化。

目前我国各省测绘局均已广泛应用了数字摄影测量,建立了数字化测绘生产基地,实现了全数字化摄影测量与全球定位系统之间的有机合成,并且应用与测量实际工作中。

(二)遥感技术现状

目前遥感技术主要应用在日常的天气、海洋、环境预报及灾害监测、土地利用、城市规划、荒漠化监测、环境保护等方面,为社会带来了巨大的经济利益。

尤其要提出的是航天遥感,是利用卫星遥感获取各种信息是目前最有效的方法。

在实现数字地球概念,卫星遥感技术具有很重要的地位。

数字地球的实际意义就是将地球转为一个虚拟的球体,以数字形式来表达地球上的不同种类的信息,实现三维式和多分辨形式的地球描述。

数字地球是一个数量庞大的工程,从长远来看,信息量的更新一集信息的收取都需要卫星遥感技术提供可靠的信息源,换句话说,卫星遥感是实现数字地球的必要手段,也是其他手段不能够替代的。

二、摄影测量与遥感的应用与主要技术

(一)摄影测量与遥感在地籍测量中的应用

应用数字摄影测量与遥感模式进行地籍测量前景非常广阔。

航空航天事业的飞速发展,为高分辨率卫星遥感影像技术为空间地理信息提供主要的数据元。

主要以激光成像雷达、双天线SAR系统等三维数字摄影测量系统。

利用卫星遥感进行土地资源调查和土地利用动态监测,为快速及时的变更地籍测量做好参照,同时还能顺利的完成地籍线画图的测绘,还可以得到正射影像地籍图、三维立体数字地籍图等附属产品。

数字摄影测量主要以大比例尺航空像片为数据采集对象,利用该技术在航片上采集地籍数据,实行空三加密。

数字摄影测量与模式得到的地籍图信息丰富,实时性强;大部分工作均在室内完成,降低劳动强度与人工成本,还能大幅度提高工作效率,是一种非常实用的地籍测量模式。

(二)摄影测量在三维模型表面重建的应用

三维物体的重建技术可广泛应用于古建筑重建和文物保护、医学重建、工业量测、人脸重建、人体重建及程勘察等方面,这种技术主要通过手持量测数码相机进行操作,得到一组具有短基线和多度重叠的图片,通过立体匹配获取可靠的模型点数据。

基于短基线多影像数字摄影测量的快速三维重建技术能够解决静静摄影测量中不能同时兼顾变形早点近景和远景的问题,在操作过程中采用量测数码相机以及手持拍摄方式,使得这种技术简单快速,并且具有高度自动化的有点。

(三)遥感自动定位技术的应用

遥感自动定位技术能够确定影响目标的实际位置,并且准确的解译影响属性,在GPS空中三角测量的基础上,利用惯性导航系统,形成航空影响传感器,实现高精度的定点摄影成像。

在卫星遥感条件下,精度甚至可以达到米级。

遥感自动定位技术的应用,有助于实现实时测图和实时数据更新的作业流程,能够大量减少野外像控测量的工作量。

三、摄影测量与遥感发展展望

目前,摄影测量与遥感技术在数据获取与处理、信息服务和数据分析方面都有了新的进展,数据获取装备发展迅猛,数据处理系统自动化程度相应的提高,航空摄影测量软件实现模块化和标准化,实现了内外一体化的航空摄影测量方法,遥感影像信息管理能力增强。

除此之外,还可以看到测绘领域的全球化进程日益加剧。

四、结语

虽然现在摄影测量与遥感技术相对发展迅速,并且已经广泛应用与测绘工作中,逐步实现数字化与智能化。

在我国目前,摄影测量与遥感装备存在产品种类单一、生产效率低等实际生产问题,这是与飞速发展的信息产业背道而驰的,达不到国际水平。

需要国家发展测绘仪器制造业和专业软件开发能力,跨学科展开合作,集中优势力量,通过政府出台政策来引导市场发展,我国想要在摄影测量与遥感上取得更大的飞跃,还有一段很长的路要走。

参考文献:

[1]李德仁等.地球空间信息学与数字地球[C].空间数据基础设施与数字地球论文集,1999.

[2]刘经南.激光扫描测高技术的发展与现状[M].武汉大学学报,2003(2):132-137.

[3]郑立中,陈秀万.中国卫星遥感与定位技术应用的现状和发展[A].中国遥感奋进创新二十年学术论丈集[C].北京:气象出版社,2001.

一、资料的收集与分析 遥感制图所需的资料范围较广,一般需要收集如下资料 1、编制地区的普通地图 、 (1)比例尺最好与成图比例尺一致或稍大于成图比例尺 (2)选用面积变形较小的地图投影 2、遥感资料 后几年的影像 在选择遥感图像时,要遵循以下几个原则: (1)空间分辨率及制图比例尺的选择 空间分辨率指像素 代表的地面范围的大小,即扫描仪的瞬时视场或地面物体能分辨的最小单元。 空间分辨率指像素所代表的地面范围的大小,即扫描仪的瞬时视场或地面物体能分辨的最小单元的地面范围的大小 由于遥感制图是利用遥感图像来提取专题制图信息的,因此在选择遥感图像空间分辨率时要考虑以 下两点要素:一是判读目标的最小尺寸,二是地图成图比例尺。遥感图像的空间分辨率与地图比例尺有 密切关系:空间分辨率越高图像可放大的倍数越大,地图的成图比例尺也越大。 遥感图像的比例尺应与成图比例尺一致或象片比例尺稍大于成图比例尺,这样可以避免成图比例尺 大尺度变换的繁琐技术问题。但对于专题要素的判读、分类、描绘来说,往往要选择大于地图比例尺的 象片为宜。 (2)波谱分辨率与波段的选择 波谱分辨率是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。间隔越小,分辨率越高。 波谱分辨率是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。间隔越小,分辨率越高。 是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔 波谱分辨率,是由传感器所使用的波段数目,也就是选择的通道数,以及波段的波长和宽度所决定。各 遥感器波普分辨率在设计时, 都是有针对性的, 多波段的传感器提供了空间环境不同的信息。 TM 为例: 以 TM1 蓝波段:对叶绿素和夜色素浓度敏感,用于区分土壤与植被、落叶林与针叶林、近海水域制图。 TM2 绿波段:对无病害植物叶绿素反射敏感 TM3 红波段:对叶绿素吸收敏感,用于区分植物种类。 TM4 近红外波段:对无病害植物近红外反射敏感,用于生物量测定及水域判别。 TM5 中红外波段:对植物含水量和云的不同反射敏感,可判断含水量和雪、云。 TM6 远红外波段:作温度图,植物热强度测量 TM 图象的性质 波段 1 2 3 4 5 6 7 光谱范围 (微米) 0.45—0.52 0.52—0.60 0.63—0.69 0.76—0.90 1.55—1.75 10.4—12.5 2.08—2.35 光谱性质 蓝 绿 红 近红外 中(近)红外 热(中)红外 中红外 地面分辨 率(米) 30 30 30 30 30 120 30 主 要 应 用 地壤与植被分类 健康植物的绿色反射率 探测不同植物的叶绿素吸收 生物量测量,水体制图 植物湿度测量,区分云与雪 植物热强度测量,其它热制图 水热法制图,地质采矿 包括航空象片、卫星象片及它们的底片和磁带、航空象片镶辑图、若为动态监测还需要前 (3)时间分辨率与时相的选择 遥感图像是某一瞬间地面实况的记录,而地理现象是变化、发展的。因此,在一系列按时间序列成像的 遥感图像 多时相遥感图像中,必然存在着最能揭示地理现象本质的“最佳时相”图像 把传感器对同一目标进行重复探测时, 相邻两次探测的时间间隔称为遥感图像的时间分辨率。 Landsat 如 1、2、3 的图像最高时间分辨率为 18 天,Landsat4、5、7 为 16 天,SPOT-4 为 26 天,而静止气象卫星的 时间分辨率仅为半小时。 遥感图像的时间分辨率对动态监测尤为重要。如:天气预报、灾害监测等需要短周期的时间分辨率,因 此常以“小时”为单位。植物、作物的长势监测、估产等需要用“旬”或“日”为单位。 显然只有气象卫星的图像信息才能满足这种要求;研究植被的季相节律、农作物的长势,目前以选择 landsat-TM 或 SPOT 遥感信息为宜。 3、其他资料 土地现状图、土地利用报告 、编图地区的统计资料、政府文件、地方志等 二、确立专题要素的分类系统 三、遥感图像处理 1、遥感图像处理方法的选择 、 (1)光学处理法 常用的方法有:假彩色合成(加色法、减色法)、等密度分割、图像相关掩膜。 (2)数字图像校正 方法:辐射校正、几何校正 (3)数字图像增强的方法: A. 对比度变换 B.空间滤波:是指在图像空间或空间频率对输入图像应用若干滤波函数而获得改进的输出图像的技术。 空间滤波 常用的空间滤波的方法有:平滑和锐化。 :平滑和锐化 平滑:图像中出现某些亮度变化过大的区域,或出现不该有的亮点(“噪声”)时,采用平滑的方法可以减小变化, 平滑 使亮度平缓或去掉不必要的“噪声”点。具体方法有:均值平滑、中值滤波 均值平滑、 均值平滑 锐化:为了突出图像的边缘、线状目标或某些亮度变化率大的部分,可采用锐化方法。常用的几种方法:罗伯特 锐化 梯度、索伯尔梯度、拉普拉斯算法、定向检测 C.彩色变换 彩色变换就是将黑白图像转换成彩色图像的方法。主用的方法有单波段彩色变换、多波段彩色变换、 彩色变换: 彩色变换 HLS 变换等。 D.图像运算 E.多光谱变换 多光谱变换: 多光谱变换 两幅或多幅单波段影像,完成空间配准后,通过一系列运算,可以实现图像增强,达到提取某些信息 或去掉某些不必要信息的目的。方法:差值运算、比值运算 多光谱变换就是指用某种变换把信息集中于较少(一般为 3 个)波段内。常用的方法有:主成分分 主成分分 变换) 缨帽变换( 、缨帽变换 变换) 、沃尔什—哈达玛变换、傅立叶变换、植被指数变换、斜变 析(K-L 变换) 缨帽变换(K-T 变换) 、 换、余弦变换等等。 主成分分析( 变换) 主成分分析(K-L 变换)的主要特性有二: a.能够把原来多个波段中的有用信息尽量集中到数目尽可能少的新的组分图像中。 b.还能够使新的组分图像中的组分之间互不相关,也就是说各个组分包含的信息内容是不重叠的。 K-L 变换的缺点 的缺点是不能排除无用以至有碍的噪声和干扰因素。 的缺点 缨帽变换( 变换) :它是 Kauth 和 Thomas(1976 年)通过分析 MSS 图像反映农作物或植被生长过程的数据结 缨帽变换(K-T 变换) 构后,提出的正交线性变换。 K-T 变换的特点:a.能够把原来多个波段中的有用信息压缩到较少的新的波段内。 b.要求新波段正交或近似正交。 c.分离或削弱无用的干扰因素。 (4)多源信息复合 ) 四、遥感图像的判读 1、遥感图像目视判读 遥感图像的判读标志: 遥感图像的判读标志:是指图像上反映出的地物和现象的图像特征,是以深浅不同的黑白色调(灰阶) 或不同的色彩构成的各种各样图形现象出来的。 遥感图像的判读标志可概括为:颜色、形状、空间位置 :颜色、形状、 颜色——色调、 颜色、 颜色——色调、 颜色、阴影 ——色调 形状——形状、纹理、 大小 、 形状 、 位置——位置、图型、相关布局 位置 2、目视解译的方法 (1)直接判读法(2)对比分析法 (3)信息复合法(4)综合推理法(5)地理相关分析法 (1)直接判读法:是根据遥感影像目视判读直接标志,直接确定目标地物属性与范围的一种方法。 直接判读法 例如,在可见光黑白像片上,水体对光线的吸收率强,反射率低,水体呈现灰黑到黑色,根据色调可以从影像 上直接判读出水体,根据水体的形状则可以直接分辨出水体是河流,或者是湖泊。在 MSS4、5、7 三波段假彩色影 像上,植被颜色为红色,根据地物颜色色调,可以直接区别植物与背景。 (2)对比分析法 此方法包括同类地物对比分析法、空间对比分析法和时相动态对比法。 A.同类地物对比分析法 同类地物对比分析法是在同一景遥感影像上,由已知地物推出未知目标地物的方法。 同类地物对比分析法 B.空间对比分析法 空间对比分析法是根据待判读区域的特点,选择另一个熟悉的与遥感图像区域特征类似的影像,将两个影像相互 空间对比分析法 对比分析,由已知影像为依据判读未知影像的一种方法。 C.时相动态对比法,是利用同一地区不同时间成像的遥感影像加以对比分析,了解同一目标地物动态变化的一种解 .时相动态对比法 译方法。 (3)信息复合法:利用透明专题图或者透明地形图与遥感图像重合,根据专题图或者地形图提供的多种辅助信息, 信息复合法 识别遥感图像上目标地物的方法。 (4)综合推理法:综合考虑遥感图像多种解译特征,结合生活常识,分析、推断某种目标地物的方法。 综合推理法 (5)地理相关分析法:根据地理环境中各种地理要素之间的相互依存,相互制约的关系,借助专业知识,分析推断 地理相关分析法 某种地理要素性质、类型、状况与分布的方法。 3、目视解译的基本步骤 (1)准备工作 •选择合适波段与恰当时相的遥感影像 •相关专题地图的准备 •工具材料准备 •熟悉地理概况 •确定专题分类系统 (2)室内初步解译与判读区的野外考察 室内建立初步判读标志 •初步解译的主要任务是掌握解译区域特点,确立典型解译样区,建立目视解译标志,探索解译方法,为全面解译 奠定基础。 •在室内初步解译的工作重点是建立影像解译标准,为了保证解译标志的正确性和可靠性,必须进行解译区的野外 调查。野外调查之前,需要制定野外调查方案与调查路线。 野外考察验正判读标志 在野外调查中,为了建立研究区的判读标志,必须做大量认真细致的工作,填写各种地物的判读标志登记表, 以作为建立地区性的判读标志的依据。在此基础上,制订出影像判读的专题分类系统,根据目标地物与影像特征之 间的关系,通过影像反复判读和野外对比检验,建立遥感影像判读标志。 (3)室内详细判读 在详细判读过程中,要及时将解译中出现的疑难点、边界不清楚的地方和有待验证的问题详细记录下来,留待野 外验证与补判阶段解决。 (4)野外验证与补判 野外验证指再次到遥感影像判读区去实地核实解译的结果。主要内容包括两方面: •检验专题解译中图斑的内容是否正确。 •验证图斑界线是否定位准确,并根据野外实际考察情况修正目标地物的分布界线。 (5)目视解译成果的转绘与制图 遥感图像目视判读成果,一般以专题图或遥感影像图的形式表现出来。 五、遥感图像计算机解译 图像分类方法 监督分类 1.(1) 最小距离法 最小距离法(minimum distance classifier) •以特征空间中的距离作为像素分类的依据。 •在遥感图象上对每一类别选取一个具有代表意义的统计特征量;计算待分像元与已知类别之间的距离,将其归 属于距离最小的一类。 •最小距离分类法原理简单,分类精度不很高,但计算速度快,它可以在快速浏览分类概况中使用。 (2) 分级切割分类法 分级切割分类法(multi-level slice classifier) 多级切割法(multi-level slice classifier)是根据设定在各轴上的值域分割多维特征空间的分类方法。 (3) 特征曲线窗口法 •特征曲线窗口法分类的依据是:相同的地物在相同的地域环境及成像条件下,其特征曲线是相同或相近的,而不 同地物的特征曲线差别明显。 •特征曲线窗口法分类的效果取决于特征参数的选择和窗口大小。各特征参数窗口大小的选择可以不同,它要根据 地物在各特征参数空间里的分布情况而定。 (4) 最大似然法 最大似然法(maximum likelihood classifier) •地物图象可以以其光谱特征向量 X 作为亮度在光谱特征空间中找到一个相应的特征点,来自于同类地物的各种特 征点在特征空间中将形成一种属于某种概率分布的集群。 • 判别某一特征点类属的合理途径是对其落进不同类别集群中的条件概率进行比较, 相应于条件概率大的那个类别, 应是该特征点的归属。 2、监督分类步骤 (1)选择有代表性的训练场,确定各类地物的范围界线。 (2)对各类地物光谱值统计,提取各地物的数值特征。 (3)确定分类判别函数:最小距离法、马氏距离法等。 (4)分类参数、阈值的确定;各类地物像元数值的分布都围绕一个中心特征值,散布在空间的一定范围,因此需要 给出各类地物类型阈值,限定分布范围,构成分类器。 (5)分类:利用分类器分类。 (6)检验:对初步分类结果精度进行检验(分类精度、面积精度、位置精度等) 对分类器进行调整。 (7)待分类影象分类。 (8)分类结果的矢量化。 非监督分类 前提:遥感影象上同类物体在同样条件下具有相同的光谱信息特征,依靠影象上不同类地物光谱信息(或纹理信息) 进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的个别类进行确认。 非监督分类方法是在没有先验类别(训练区)作为样本的条件下,即事先不知道类别特征,主要根据像元间相似度 非监督分类方法 的大小进行归类合并(将相似度大的像元归为一类)的方法。主要有: (1)分级集群法(2)动态聚类法 第二节 从影像生成专题地图一、目视解释的专题地图(1)影像预处理 包括遥感数据的图像校正、图像增强,有时还需要实验室提供监督或非监督分类的图像。(2)目视解译 经过建立影像判读标志,野外判读,室内解译,得到绘有图斑的专题解译原图。(3)地图概括 按比例尺及分类的要求,进行专题解译原图的概括。专题地图需要正规的地理底图,所以地图概括的同时也进行图斑向地理底图的转绘。(4)地图整饰 在转绘完专题图斑的地理底图上进行专题地图的整饰工作。二、数字图像处理的专题制图(1)影像预处理 同目视解译类似,影响经过图像校正、图像增强,得到供计算机分类用的遥感影像数据。(2)按专题要求进行影像分类。(3)专题类别的地图概括 包括在预处理中消除影像的孤立点,依成图比例尺对图斑尺寸的限制进行栅格影像的概括。(4)图斑的栅格/矢量变换。(5)与地理底图叠加,生成专题地图。三、遥感系列制图系列地图,简单说就是在内容上和时间上有关联的一组地图。我们所讨论的系列地图,是指根据共同的制图目的,利用同一的制图信息源,按照统一的设计原则,成套编制的遥感专题地图。地理底图的编制程序:采用常规的方法编制地理底图时,首先选择制图范围内相应比例尺的地形图,进行展点、镶嵌、照像,制成地图薄膜片,然后将膜片蒙在影像图上,用以更新地形图的地理要素。经过地图概括,最后制成供转绘专题影像图的地理底图,其比例尺与专题影响图相同。遥感系列制图的基本要求1.统一信息源2.统一对制图区域地理特征的认识3.制定统一的设计原则4.按一定的规则顺序成图

无人机图像的目标检测论文

小目标问题在物体检测和语义分割等视觉任务中一直是存在的一个难点,小目标的检测精度通常只有大目标的一半。

CVPR2019论文: Augmentation for small object detection 提到了一些应对小目标检测的方法,笔者结合这篇论文以及查阅其它资料,对小目标检测相关技巧在本文进行了部分总结。

小目标的定义: 在MS COCO数据集中,面积小于 32*32 的物体被认为是小物体。

小目标难以检测的原因: 分辨率低,图像模糊,携带的信息少。由此所导致特征表达能力弱,也就是在提取特征的过程中,能提取到的特征非常少,这不利于我们对小目标的检测。

1、由于小目标面积太小,可以放大图片后再做检测,也就是在尺度上做文章,如FPN(Feature Pyramid Networks for Object Detection),SNIP(An Analysis of Scale Invariance in Object Detection – SNIP)。

Feature-Fused SSD: Fast Detection for Small Objects, Detecting Small Objects Using a Channel-Aware Deconvolutional Network 也是在多尺度上做文章的论文。

2、在Anchor上做文章(Faster Rcnn,SSD, FPN都有各自的anchor设计),anchor在设置方面需要考虑三个因素:

anchor的密度: 由检测所用feature map的stride决定,这个值与前景阈值密切相关。

anchor的范围: RetinaNet中是anchor范围是32~512,这里应根据任务检测目标的范围确定,按需调整anchor范围,或目标变化范围太大如MS COCO,这时候应采用多尺度测试。

anchor的形状数量: RetinaNet每个位置预测三尺度三比例共9个形状的anchor,这样可以增加anchor的密度,但stride决定这些形状都是同样的滑窗步进,需考虑步进会不会太大,如RetinaNet框架前景阈值是0.5时,一般anchor大小是stride的4倍左右。

该部分anchor内容参考于:

3、在ROI Pooling上做文章,文章SINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection 认为小目标在pooling之后会导致物体结构失真,于是提出了新的Context-Aware RoI Pooling方法。

4、用生成对抗网络(GAN)来做小目标检测:Perceptual Generative Adversarial Networks for Small Object Detection。

1、从COCO上的统计图可以发现,小目标的个数多,占到了41.43%,但是含有小目标的图片只有51.82%,大目标所占比例为24.24%,但是含有大目标的图像却有82.28%。这说明有一半的图像是不含小目标的,大部分的小目标都集中在一些少量的图片中。这就导致在训练的过程中,模型有一半的时间是学习不到小目标的特性的。

此外,对于小目标,平均能够匹配的anchor数量为1个,平均最大的IoU为0.29,这说明很多情况下,有些小目标是没有对应的anchor或者对应的anchor非常少的,即使有对应的anchor,他们的IoU也比较小,平均最大的IoU也才0.29。

如上图,左上角是一个anchor示意图,右上角是一个小目标所对应的anchor,一共有只有三个anchor能够与小目标配对,且配对的IoU也不高。左下角是一个大目标对应的anchor,可以发现有非常多的anchor能够与其匹配。匹配的anchor数量越多,则此目标被检出的概率也就越大。

实现方法: 1、Oversampling :我们通过在训练期间对这些图像进行过采样来解决包含小对象的相对较少图像的问题(多用这类图片)。在实验中,我们改变了过采样率和研究不仅对小物体检测而且对检测中大物体的过采样效果

2、Copy-Pasting Strategies:将小物体在图片中复制多分,在保证不影响其他物体的基础上,增加小物体在图片中出现的次数(把小目标扣下来贴到原图中去),提升被anchor包含的概率。

如上图右下角,本来只有一个小目标,对应的anchor数量为3个,现在将其复制三份,则在图中就出现了四个小目标,对应的anchor数量也就变成了12个,大大增加了这个小目标被检出的概率。从而让模型在训练的过程中,也能够有机会得到更多的小目标训练样本。

具体的实现方式如下图:图中网球和飞碟都是小物体,本来图中只有一个网球,一个飞碟,通过人工复制的方式,在图像中复制多份。同时要保证复制后的小物体不能够覆盖该原来存在的目标。

网上有人说可以试一下lucid data dreaming Lucid Data Dreaming for Multiple Object Tracking ,这是一种在视频跟踪/分割里面比较有效的数据增强手段,据说对于小目标物体检测也很有效。

基于无人机拍摄图片的检测目前也是个热门研究点(难点是目标小,密度大)。 相关论文: The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking(数据集) Drone-based Object Counting by Spatially Regularized Regional Proposal Network Simultaneously Detecting and Counting Dense Vehicles from Drone Images Vision Meets Drones: A Challenge(数据集)

1: 2: 3: 4: 5: 6: 7:

小目标检测几点总结 一、单阶段目标检测主要步骤:     1、特征提取骨干网络设计     2、分类头网络设计     3、回归头网络设计     4、anchor生成设计:anchor尺度与比例     5、anchor匹配机制     6、损失函数设计     7、数据增强技术应用 二、航空图像特点: 1、目标尺度变化大:以中、小目标为主(评判标准?); 2、目标旋转变化较大:尤其对于下视图像,同一类目标存在多角度变化;(旋转框检测) 3、场景明暗变化:存在过曝光和光线不充足等场景; 4、场景内目标疏密变化:存在目标密度极大的场景,也存在非常稀疏的场景; 5、图像视场大,单个目标较小,背景较为复杂; 6、单幅图像分辨率较高; 7、目标相对运动存在模糊现象; 8、目标遮挡现象; 三、小目标检测需注意的几点: 1、小目标所含像素信息小,主要纹理信息缺失,边缘信息相对明显; 2、小目标所含像素较少,信号微弱,需得到一定增强或考虑上下文环境信息辅助推理; 3、提高小目标分辨率,增强信号强度; 4、CNN底层特征预测具有较好的结构信息,顶层具有更多的语义信息。好的特征融合策略可以提取语义信息和结构信息俱佳的特征; 5、级联CNN思想; 6、感受野需根据目标尺度而选取。小感受野捕获不了完整信息,大感受野引入更多背景噪声(小目标对感受野更加敏感); 7、Anchor尺度和比例的选取和与GT匹配机制,保证更多的anchor匹配到小目标上; 8、可以从定位和识别两个角度单独思考,设计专门的分类头和回归头(分类所需特征与检测所需特征之间具有一定偏移)。 四、小目标检测可行的几点方法: 1、多尺度训练与测试; 2、数据增强 3、特征融合模块设计 4、特征增强模块设计 5、上下文推理模块设计 6、膨胀卷积的利用 7、Anchor free是一个趋势 8、Focal loss 9、特征提取骨干网络设计 10、动态区域放大机制:基于强化学习 11、超分辨率重建 12、注意力机制(利用上层语义信息生成注意力)

相关百科

热门百科

首页
发表服务