首页

> 学术发表知识库

首页 学术发表知识库 问题

人脑结构与功能的研究论文

发布时间:

人脑结构与功能的研究论文

课题名称:电脑和人脑的区别探究组长:田毅毅组员:孙树仁、牛宇翔、李银迪、肖艳舒分工:孙树仁、牛宇翔 查找资料李银迪、肖艳舒 咨询相关人员田毅毅 整理资料指导教师:宋义刚 课程教师:韩才师前言:这次研究的目的身为新世纪的人,有的竟然连人脑和电脑的区别都不知道。这次研究的主要是让所有的人知道和电脑的区别。通过这次研究使每个人了解人脑和电脑的区别,这次活动主要从人脑和电脑的发展史、结构、外型等几个方面展开研究。让新世纪的每个人都了解人脑和电脑,让每个人拓展自己的视野,丰富自己的生活,充实自我,完善自我。活动过程:首先,我们来了解一下人脑的发展史和结构。远古时期,人类的脑容量非常小。随着时间的推移,人类需要记忆的东西越来越多,人类的闹用量已经不能够满足了,人类发明了“结绳”等记忆方法。直到近人类的出现,人类的脑容量逐渐增大,在时间的催促下,近代人类的脑容量已经定型——与现代人的脑容量差不多。人脑的结构主要分为大脑、小脑和脑干三部分。其次,我们来了解一下电脑的发展史和结构。21世纪人类最伟大的发明之一——电脑诞生了。起初的电脑非常大——有几间屋那么大,需要十几个人一起操控。随着科技的发展,电脑所占空间越来越小,功能越来越多。直到今天最为先进的掌上电脑也已经早已经被设计出来了。电脑的机构主要是由输入设备、输出设备等组成。电脑的最重要部分是荧屏中的那个“部件”——集成电路。然后,我们了解一下人脑和电脑的外型。人脑的外型就像去了壳的核桃仁一样,分为左右两部分。人的左脑和右脑是成轴对称的,大脑占大部分空间,其次是小脑,脑干占的空间最少,而且在最后边,但它们的作用都非常重要。电脑分为台式电脑、笔记本、掌上电脑等,它们的外型更是五花八门的。首先,台式电脑的主机像个长方体,荧屏像一台电视机,键盘就像一个较薄的长方体。笔记本和台式电脑大体相同,只不过笔记本无主机。掌上电脑的外形和手机十分相似。掌上电脑的荧屏可以用手触摸,掌上电脑可以随声携带,这是他最大的优点。最后,我们来了解一下人脑和电脑其余明显的不同。人脑是人类各种生理活动,生命运动的控制中心;人脑周围神经系统,运输系统等;人脑内含有许多中枢系统,如语言中枢系统,运动中枢系统等。电脑是人类智慧的结晶;电脑需要靠电来运行;电脑内含有许多系统;多种设备,电脑的储存能力强。电脑即可以帮助人类完成工作,也可以帮助人类缓解压力。电脑是把双刃剑,我们既不要过于沉迷于网络,也不要不上网。总之,要谨慎对待网络。感想:通过这次活动是我们了解了人脑和电脑的区别——人脑和电脑的发展史、结构、外型的区别。这次活动让我更加准群的了解了人脑和电脑,同时拓展了我的视野,丰富了我的生活,激发了我的好奇心,是我对生活更加充满了期待,是我自己更加充实、更加完善。以后我还会参加这样的活动,使我更加的“完美”。让我的失业更加宽广,生活更加丰富,思想更加丰富。总结收获:通过这次活动使我更加了解了人脑和电脑的区别,是我生活更加充实、更加完善、更加丰富,这次也拓展了我的视野,激发了我的好奇心。同时在这次活动中,我发现我们组组员非常团结,非常有默契,自觉遵守纪律,这次活动也是我们与老师的沟通增多了,是我们的师生关系更加融洽!这次活动让我懂得了什么叫做“友情”,什么叫做“师生情”。这次活动让我懂得了什么叫做“团结”,什么叫做“默契”。在这次活动中我们大家一起认真的研究,调查,这使我深深感动。这次活动让我更加清楚的明白了人脑和电脑,这次活动让我对未来的生活更加充满了期待,让我更加充满了信心去迎接未来,挑战未来,让我对于未来的“电脑”更加充满了想象。这次活动之后,我明白了做什么事都需要别人的帮助,都需要与别人交流,正所谓“兄弟齐心,其力断金。”总之,我要好好学习,将来去制造,体积更小,功能更多的电脑。我相信我在“朋友、同学、老师”的帮助下,一定会成功的!组员感想:通过这次活动,我体会与认识到了人脑的区别,觉得人类世界是如此的奇妙,人类生活是如此的丰富与精彩,以前曾经对此问题也曾对此问题感兴趣一直想找时间去研究、取法向里面的一些奥秘,但没有时间和足够的帮手,自从有了研究性学习,能跟自己喜欢的小组成员与老师还有足够的资料将这次活动顺利的完成了,也起到了相应的结果,弥足了课外知识,增加了自己的视野是一次比较有意义的活动,同时也发扬了团体精神,小组成员互帮互助,十分团结,增添了团队友谊,同学、老师之间的感情进一步加深了。团队精神增强,这是一次很有价值意义的活动。希望学校的领导和老师能够多开展一些这样有意义的活动,不但能放松学习的压力,又能开拓自己的视野,更能考验我们学生自身的能力,还有团队精神。

学习,可以开阔人的大脑;学习,可以使人的大脑拥有更多的知识,人的大脑和肢体一样,多用则灵,不用则废。那么下面我给大家分享一些大脑的结构和功能分区的知识,希望大家喜欢。

大脑(Brain)包括左、右两个半球及连接两个半球的中间部分,即第三脑室前端的终板。大脑半球被覆灰质,称大脑皮质,其深方为白质,称为髓质。髓质内的灰质核团为基底神经节。在大脑两半球间由巨束纤维—相连。

具体内容有大脑半球各脑叶、大脑皮质功能定位、大脑半球深部结构、大脑半球内白质、嗅脑和边缘系统五大部分。

各叶的位置、结构和主要功能如下:

1、额叶:也叫前额叶。位于中央沟以前。在中央沟和中央前沟之间为中央前回。在其前方有额上沟和饿下沟,被两沟相间的是额上回、额中回和额下回。额下回的后部有外侧裂的升支和水平分支分为眶部、三角部和盖部。额叶前端为额极。额叶底面有眶沟界出的直回和眶回,其最内方的深沟为嗅束沟,容纳嗅束和嗅球。嗅束向后分为内侧和外侧嗅纹,其分叉界出的三角区称为嗅三角,也称为前穿质,前部脑底动脉环的许多穿支血管由此入脑。在额叶的内侧面,中央前、后回延续的部分,称为旁中央小叶。负责思维、计划,与个体的需求和情感相关。

2、顶叶:位于中央沟之后,顶枕裂于枕前切迹连线之前。在中央沟和中央后沟之间为中央后回。横行的顶间沟将顶叶余部分为顶上小叶和顶下小叶。顶下小叶又包括缘上回和角回。响应疼痛、触摸、品尝、温度、压力的感觉,该区域也与数学和逻辑相关。

3、颞叶:位于外侧裂下方,由颞上、中、下三条沟分为颞上回、颞中回、颞下回。隐在外侧裂内的是颞横回。在颞叶的侧面和底面,在颞下沟和侧副裂间为梭状回,,侧副裂与海马裂之间为海马回,围绕海马裂前端的钩状部分称为海马钩回。负责处理听觉信息,也与记忆和情感有关。

4、枕叶:位于枕顶裂和枕前切迹连线之后。在内侧面,,距状裂和顶枕裂之间为楔叶,与侧副裂候补之间为舌回。负责处理视觉信息。

5、岛叶:位于外侧裂的深方,其表面的斜行中央钩分为长回和短回。

6、边缘系统:与记忆有关,在行为方面与情感有关。

大脑皮质为中枢神经系统的最高级中枢,各皮质的功能复杂,不仅与躯体的各种感觉和运动有关,也与语言、文字等密切相关。根据大脑皮质的细胞成分、排列、构筑等特点,将皮质分为若干区。

现在按Brodmann提出的机能区定位简述如下:

•皮质运动区:位于中央前回(4区),是支 配对 侧躯体随意运动的中枢。它主要接受来自对侧骨骼肌、肌腱和关节的本体感觉冲动,以感受身体的位置、姿势和运动感觉,并发出纤维,即锥体束控制对侧骨骼肌的随意运动。返回皮质运动前区:位于中央前回之前(6区),为锥体外系皮质区。它发出纤维至丘脑、基底神经节、红核、黑质等。与联合运动和姿势动作协调有关,也具有植物神经皮质中枢的部分功能。

•皮质眼球运动区:位于额叶的8枢和枕叶19区,为眼球运动同向凝视中枢,管理两眼球同时向对侧注视。皮质一般感觉区:位于中央后回(1、2、3区),接受身体对侧的痛、温、触和本体感觉冲动,并形成相应的感觉。顶上小叶(5、7)为精细触觉和实体觉的皮质区。

•额叶联合区:为额叶前部的9、10、11区,与智力和精神活动有密切关系。

•视觉皮质区:在枕叶的距状裂上、下唇与楔叶、舌回的相邻区(17区)。每一侧的上述区域皮质都接受来自两眼对侧视野的视觉冲动,并形成视觉。

•听觉皮区:位于颞横回中部(41、42区),又称Heschl氏回。每侧皮质均按来自双耳的听觉冲动产生听觉。

•嗅觉皮质区:位于嗅区、钩回和海马回的前部(25、28、34)和35区的大部分)。每侧皮质均接受双侧嗅神经传入的冲动。

•内脏皮质区:该区定位不太集中,主要分布在扣带回前部、颞叶前部、眶回后部、岛叶、海马及海马钩回等区域。

•语言运用中枢:人类的语言及使用工具等特殊活动在一侧皮层上也有较集中的代表区(优势半球),也称为语言运用中枢。

它们分别是:

①运动语言中枢:位于额下回后部(44、45区,又称Broca区)。

②听觉语言中枢:位于颞上回42、22区皮质,该区具有能够听到声音并将声音理解 成语 言的一系列过程的功能。③视觉语言中枢:位于顶下小叶的角回,即39区。该区具有理解看到的符号和文字意义的功能。

④运用中枢:位于顶下小叶的缘上回,即40区。此区主管精细的协调功能。

⑤书写中枢:位于额中回后部8、6区,即中央前回手区的前方。

•基底神经节:基底神经节是大脑皮质下的一组神经细胞核团,它包括纹状体、杏仁核和屏状核(带状核)。

纹状体又包括尾状核、豆状核两部分。纹状体是丘脑锥体外系重经结构之一,是运动整合中枢的一部分。它主要接受大脑皮质、丘脑、丘脑底核和黑质的传入冲动,并与红核、网状结构等形成广泛的联系,以维持肌张力和肌肉活动的协调。

•内囊:内囊位于豆状核、尾状核和丘脑之间,是大脑皮层与下级中枢之间联系的重要神经束的必经之路,形似宽厚的白质纤维带。内囊可分三部,额部称前肢,枕部称后肢,两部的汇合区为膝部。

大脑

又称端脑,脊椎动物脑的高级神经系统的主要部分,由左右两半球组成,在人类为脑的最大部分,是控制运动、产生感觉及实现高级脑功能的高级神经中枢。脊椎动物的端脑在胚胎时是神经管头端薄壁的膨起部分,以后发展成大脑两半球,主要包括大脑皮层和基底核两部。大脑皮层是被覆在端脑表面的灰质、主要由神经元的胞体构成。皮层的深部由神经纤维形成的髓质或白质构成。髓质中又有灰质团块即基底核,纹状体是其中的主要部分。广义的大脑指小脑幕以上的全部脑结构,即端脑、间脑和部分中脑(见中枢神经系统)。

大脑构造

大脑主要包括左、右大脑半球,是中枢神经系统的最高级部分。人类的大脑是在长期进化过程中发展起来的思维和意识的器官。大脑半球的外形和分叶左、右大脑半球由胼胝体相连。半球内的腔隙称为侧脑室,它们借室间孔与第三脑室相通。每个半球有三个面,即膨隆的背外侧面,垂直的内侧面和凹凸不平的底面。背外侧面与内侧面以上缘为界,背外侧面与底面以下缘为界。半球表面凹凸不平,布满深浅不同的沟和裂,沟裂之间的隆起称为脑回。背外侧面的主要沟裂有:中央沟从上缘近中点斜向前下方;大脑外侧裂起自半球底面,转至外侧面由前下方斜向后上方。在半球的内侧面有顶枕裂从后上方斜向前下方;距状裂由后部向前连顶枕裂,向后达枕极附近。这些沟裂将大脑半球分为五个叶:即中央沟以前、外侧裂以上的额叶;外侧裂以下的颞叶;顶枕裂后方的枕叶以及外侧裂上方、中央沟与顶枕裂之间的顶叶;以及深藏在外侧裂里的脑岛。另外,以中央沟为界,在中央沟与中央前沟之间为中央前回;中央沟与中央后沟之间为中央后回。

1. 灰质:覆盖在大脑半球表面的一层灰质称为大脑皮层,是神经元胞体集中的地方。这些神经元在皮层中的分布具有严格的层次,大脑半球内侧面的古皮层分化较简单,一般只有三层:①分子层;②锥体细胞层;③多形细胞层。在大脑半球外侧面的新皮层则分化程度较高,共有六层:①分子层(又称带状层);②外颗粒层;③外锥体细胞层;④内颗粒层;⑤内锥体细胞层(又称节细胞层);⑥多形细胞层。

2. 皮层的深面为白质,白质内还有灰质核,这些核靠近脑底,称为基底核(或称基底神经节)。基底核中主要为纹状体。纹状体由尾状核和豆状核组成。尾状核前端粗、尾端细,弯曲并环绕丘脑;豆状核位于尾状核与丘脑的外侧,又分为苍白球与壳核。尾状核与壳核在种系发生(即动物进化)上出现较迟,称为新纹状体,而苍白球在种系发生上出现较早,称为旧纹状体。纹状体的主要功能是使肌肉的运动协调,维持躯体一定的姿势。

左脑

布罗卡分脑区实验:在认知自己的大脑左右半球之间的功能性差异这个看似简单的问题上,花了整整200年的时间。而在19世纪前,对左右脑之间的差异几乎一无所知。人类对这一自身的认识经历了漫长而痛苦的过程。1816年,法国医生布罗卡偶然碰到一位失语症病人,原来他能讲话,患病后却不能用语言表达自己的思想。但检查表明,他的听觉器官和发音器官却完好无损。当患者的尸体被解剖时,布罗卡发现,患者左额叶组织有严重病变,他为此写出了轰动科学界的论文——《人是用左脑说话》。对失语症的研究使人类终于认识到了左脑和右脑,这就是著名的布罗卡分脑区实验。

左右脑分工的观念确立:真正确立左右脑分工的新观念,开始于20世纪50年代。在此我们不能不提及一个人,他就是美国加利福尼亚技术研究院的教授、著名生物学家斯佩里。他和他的学生开始在动物身上进行裂脑实验研究,并发现当切断猫(随后是猴子)的左右脑之间的全部联系时,这些动物仍然生活得很正常。更令人兴奋的是,他们可以训练两个脑半球以相反的方式去完成同一项任务。后来他们又对裂脑人进行了实验研究,即对严重癫痫病人切断两半球之间的神经联系,使其成为相对独立的半脑半球。结果发现,各自独立的半球有其自己的意识流,在同一个头脑中两种独立意识平行存在,它们有各自的感觉、知觉、认知、学习以及记忆等。也就是说,左脑同样具有右脑的功能,右脑也同样具有左脑的功能,只是各有分工和侧重点而已。

如果进行形象一点的描绘,左脑就像个雄辩家,善于语言和逻辑分析;又像一个科学家,长于 抽象思维 和复杂计算,但刻板,缺少幽默和丰富的情感。右脑就像个艺术家,长于非语言的形象思维和直觉,对音乐、美术、舞蹈等艺术活动有超常的感悟力,空间想像力极强。不擅言辞,但充满激情与创造力,感情丰富、幽默、有人情味。

左右脑两部分由3亿个活性神经细胞组成的胼胝体联结成一个整体,不断平稳着外界输入的信息,并将抽象的、整体的图像与具体的逻辑信息连接起来。

关于左右脑的另一种说法完全可以看成是对斯佩里脑科学成果的补充,即认为左脑储存的信息一般是我们出生后所获得的,在左脑反复得到强化的信息最终转存在了我们的右脑,而右脑继承了我们祖先的遗传因子,是祖先智慧的代言人。

右脑

人脑中有2千亿个脑细胞、可储存1千亿条讯息,思想每小时游走三百多里、拥有超过1百兆的交错线路、平均每24小时产生4千种思想,是世界上最精密、最灵敏的器官。研究发现,脑中蕴藏无数待开发的资源,而一般人对脑力的运用不到5%,剩余待开发的部分是脑力与潜能表现优劣与否的关键。

人的脑部构造分为大脑、小脑与脑干。大脑由大脑皮质(大脑新皮质)、大脑边缘叶(旧皮质)、脑干、脑梁所构成。大脑皮质从位置上可分为额叶、聂叶及枕叶三部分。

此外,脑又分为左、右两半部,右半球就是「右脑」,左半球就是「左脑」。而左右脑平分了脑部的所有构造。左脑与右脑形状相同,功能却大不一样。左脑司语言,也就是用语言来处理讯息,把进入脑内看到、听到、触到、嗅到及品尝到(左脑五感)的讯息转换成语言来传达,相当费时。左脑主要控制著知识、判断、思考等,和显意识有密切的关系。

右脑的五感包藏在右脑底部,可称为「本能的五感」,控制著自律神经与宇宙波动共振等,和潜意识有关。右脑是将收到的讯息以图像处理,瞬间即可处理完毕,因此能够把大量的资讯一并处理(心算、速读等即为右脑处理资讯的表现方式)。一般人右脑的五感都受到左脑理性的控制与压抑,因此很难发挥即有的潜在本能。然而懂得活用右脑的人,听音就可以辨色,或者浮现图像、闻到味道等。心理学家称这种情形为「共感」这就是右脑的潜能。

如果让右脑大量记忆,右脑会对这些讯息自动加工处理,并衍生出创造性的讯息。也就是说,右脑具有自主性,能够发挥独自的想像力、思考,把创意图像化,同时具有做为一个 故事 述说者的卓越功能。如果是左脑的话,无论是你如何的绞尽脑汁,都有它的极限。但是右脑的 记忆力 只要和思考力一结合,就能够和不靠语言的前语言性纯粹思考、图像思考连结,而独创性的构想就会神奇般的被引发出来。

功能

西元一九八一年,诺贝尔医学生理奖得主罗杰•史贝尼教授将左右脑的功能差异归类整理如下:

右脑(本能脑•潜意识脑)

1.图像化机能(企划力、创造力、想像力)

2.与宇宙共振共鸣机能(第六感、念力、透视力、直觉力、灵感、梦境等)

3.超高速自动演算机能(心算、数学)

4.超高速大量记忆(速读、记忆力)•知性•知识•理解•思考•判断•推理•语言•抑制

左脑(意识脑)

•五感 ( 视、听、嗅、触、味觉)

人的右脑具有直观性的整体把握能力、形象思维能力、独创性等,所以右脑的开发对于个人的成功而言是不可欠缺的。而在现代社会, 右脑开发 的重要性显得尤为突出,是每个希望获得成功的人士所必须重视的。

端脑

端脑由左、右大脑半球、基底核构成,连接两半球的是胼胝体。

(一)大脑半球的外形

1.三个面

每侧大脑半球可分为上外侧面、内侧面和下面三个面。

2.三个叶间沟

中央沟、外侧沟、顶枕沟。

3.五个叶

额叶、顶叶、枕叶、颞叶、岛叶。

4.主要沟回

(1)额叶:中央前沟、额上沟、额下沟、中央前回、额上回、额中回、额下回。

(2)顶叶:中央后沟、中央后回、角回、缘上回等。

(3)颞叶:颞上沟、颞下沟、颞上回、颞中回、颞下回、颞横回等。

(4)内侧面:扣带沟、距状沟、侧副沟、扣带回、中央旁小叶、海马旁回等。

(5)下面:嗅球、嗅束等。

(二)大脑半球内部结构

1.大脑皮质机能区

(1)躯体感觉区:中央后回和中央旁小叶后部。

(2)躯体运动区:中央前回和中央旁小叶前部。

(3)视区:距状沟两侧皮质。

(4)听区:颞横回。

(5)语言中枢

•听觉语言中枢:缘上回。

•视觉语言中枢:角回。

•书写中枢:额中回后部。

•运动性语言中枢:额下回后部。

2.基底核

是包埋于大脑髓质中的灰质团块,位于大脑基底部。主要包括屏状核、尾状核、豆状核、杏仁体等。

纹状体:尾状核、豆状核合称纹状体。主要功能是维持骨骼肌的张力,协调肌群运动。

基底核

基底核,埋脑底 屏尾豆状杏仁体

尾豆合称纹状体 协调运动及张力

3.大脑髓质

(1)联络纤维:连结同侧大脑半球。

(2)连合纤维:即胼胝体。

(3)投射纤维:主要是内囊。

内囊:位于背侧丘脑、尾状核、豆状核之间,由上行的感觉纤维和下行的运动纤维构成。在脑的水平切面上呈“><”状,分为内囊前肢、内囊膝、内囊后肢三部。

(1)内囊前肢:位于背侧丘脑与尾状核头部之间。

(2)内囊后肢:位于背侧丘脑与豆状核之间。主要有皮质脊髓束、脊髓丘脑束、视辐射等纤维束通过。

(3)内囊膝:位于内囊前肢和内囊后肢交汇处,有皮质核束通过。

一侧内囊受损,可致对侧肢体深浅感觉丧失、骨骼肌瘫痪等症状。

大脑结构功能论文参考文献

人的大脑由端脑、间脑组成。

大脑(brain)包括端脑和间脑,端脑包括左右大脑半球。端脑是脊椎动物脑的高级神经系统的主要部分,由左右两半球组成,在人类为脑的最大部分,是控制运动、产生感觉及实现高级脑功能的高级神经中枢。

脊椎动物的端脑在胚胎时是神经管头端薄壁的膨起部分,以后发展成大脑两半球,主要包括大脑皮质、大脑髓质和基底核等三个部分。大脑皮质是被覆在端脑表面的灰质、主要由神经元的胞体构成。皮质的深部由神经纤维形成的髓质或白质构成。髓质中又有灰质团块即基底核,纹状体是其中的主要部分。

扩展资料:

大脑结构其实“男女有别”:

男性的脑容量往往大于同龄女性,大脑皮层的质量男性也通常大于女性,但皮层厚度女性更厚一些。有学者在公开发表的论文中更详尽地分析了这个问题:研究发现女性额叶、顶叶和枕叶某些区域的灰质体积显著大于男性。

女性海马、扣带回以及胼胝体等区域具有更高的各向异性,表明女性这些区域的髓鞘化程度较男性更高;女性局部脑结构上的信息传递效率较男性更为高效。

以往的研究表明男性的右脑更发达,而女性则更擅长使用左脑。这些差异也在人的行为、认知上得到了体现。男性较女性具有更高的空间认知能力和逻辑思维能力, 而女性在言语能力上较男性更胜一筹,如言语流畅性、言语记忆等。

参考资料来源:百度百科-大脑 (生物学)

参考资料来源:人民网-大脑结构其实“男女有别”

运动除了能够促进大脑功能,还会影响儿童的大脑生理结构。现在大家都知道“大脑可塑性”概念。

家长在日常生活中通过正确引导孩子所观所感来潜移默化改变孩子行为相类似,人的大脑也会受到外界的影响而产生相应变化。

实际上,人们的有意行为均是由大脑发出指令而产生的。

那么运动对儿童大脑结构可塑性的影响具体表现为哪些方面呢?

机体各部位的协调动作都是在神经系统的统一控制和调节下进行的,因此儿童在运动的同时,大脑结构也发生了变化,脑区之间的连接性增强。

Chaddock-Heyman教授在2014年的研究结果证实了运动对儿童大脑白质结构的促进作用:即有氧体能越高的孩子,其脑部脑区之间的神经连接性更强。而教授也认为,这种由脑区向脑网络的转变,对儿童的认知功能和学业成绩有重要促进作用。

此外,儿童时期的学习还处于灌输式、记忆式的学习,由此可见记忆能力对孩子的重要性。那么多学多背就能够达到学习的目标吗?

相信众多家长已经发现,压力下的死记硬背效果并不明显。那何不让孩子在学习之余来一次运动放松呢,既能够缓解学习的紧张情绪和改善身体不适,又能够增强记忆能力。

后者已经得到了实证数据的支持,研究者发现有氧体能越高的孩子,其双侧海马体体积越大,并且记忆任务成绩越好,海马体主要负责学习记忆能力。

大脑半球的背侧面,各有一条斜向的沟,称为侧裂(lateral fissure)。侧裂的上方,约当半球的中央处,有一由上走向前下方的脑沟,称为中央沟(central fissure)。每一半球又分为四个叶(lobe)。在中央沟之前与侧裂之上的部位,成为额叶(frontal lobe),为四个脑叶中之最大者,约占大脑半球的三分之一;侧裂以下的部位,称为颞叶(temporal lobe);中央沟之后与侧裂之上的部分,称为顶叶(parietal lobe);顶叶与颞叶之后,在小脑之上大脑后端的部分,称为枕叶(occipital lobe)。以上各脑叶,均向半球的内侧面和底面延伸,而在各脑叶区域内,各有许多小的脑沟,其中蕴藏着各种神经中枢,分担不同的任务,形成了大脑皮质的分区专司功能。各叶的主要功能如下:前额叶 - 负责思维、计划,与个体的需求和情感相关。顶叶 - 响应疼痛、触摸、品尝、温度、压力的感觉,该区域也与数学和逻辑相关。颞叶 - 负责处理听觉信息,也与记忆和情感有关。枕叶 - 负责处理视觉信息。边缘系统 - 与记忆有关,在行为方面与情感有关。在正常情形之下,大脑两半球的功能是分工合作的,胼胝体是两半球信息交流的桥梁,完成各功能区的分工合作。对大脑半球的功能,可归纳为以下几点认识:大脑分左右两个半球,每一半球上分别有运动区、体觉区、视觉区、听觉区、联合区等神经中枢。由此可见,大脑两半球是对称的。 在神经传导的运作上,两半球相对的神经中枢,彼此配合,发生交叉作用:两半球的运动区对身体部位的管理,是左右交叉、上下倒置的;两半球的视觉区与两眼的关系是:左半球视觉区管理两眼视网膜的左半,右半球视觉区管理两眼视网膜的右半;两半球的听觉区共同分担管理两耳传入的听觉信息。两半球的联合区,分别发挥左右半球相关各区的联合功能。在整个大脑功能上,两半球并不是各自独立的,两者之间仍具有交互作用;而交互作用的发挥,乃是靠胼胝体的连接,得以完成。在正常情形之下,大脑两半球的功能是分工合作的,在两半球之间,由神经纤维构成的胼胝体,负责沟通两半球的信息。如果将胼胝体切断,大脑两半球被分割开来,各半球的功能陷入孤立,缺少相应的合作,在行为上会失去统合作用。人类大脑的两半球,在功能划分上,大体上是左半球管右半身,右半球管左半身。每一半球的纵面,在功能上也有层次之分,原则上是上层管下肢,中层管躯干,下层管头部。如此形成上下倒置,左右分叉的微妙构造。在每一半球上,有各自分区为数个神经中枢,每一中枢各有其固定的区域,分区专司形成大脑分化而又统合的复杂功能。在区域的分布上,两半球并不完全相同:其中布氏语言区与威氏语言区,只分布在左脑半球,其他各区则两半球都有。运动区(motor area)运动区是管理身体运动的神经中枢,其部位在中央沟之前的皮质内,身体内外所有随意肌的运动,均受此中枢的支配。运动中枢发出的神经冲动,呈左右交叉上下倒置的方式进行。体觉区(somatosensory area)体觉区是管理身体上各种感觉的神经中枢。身体上所有热觉、冷觉、压觉、触觉、痛觉等,均受此中枢的管理。体觉区位于顶叶的皮质内,隔中央沟与运动区相对。体觉区的功能与身体各部位的关系,也是上下颠倒与左右交叉的。视觉区(visual area)视觉区是管理视觉的神经中枢。视觉区位于两个半球枕叶的皮质内,交叉控制两只眼睛。由视神经通路(neural pathway)可以看出:每只眼球内视网膜(retina)的左半边,均经由视神经通路,与左半球的视觉区连接。这说明左半球的视觉区,同时控制左右两只眼睛。同样,右半球的视觉区也同时控制左右两只眼睛。视野(visual field)是指在眼不转头不摇的情形下目光所见及的广阔面;只有出现在视野之内的东西,才有可能看见。视网膜是光线刺激的感受器,其功用相当于照相用的软片。视神经(optic nerve)是传导视觉神经冲动的神经元。视交叉(optic chiasma)位于视丘之下,是视神经通路的交会点。视神经(optic tract)是两眼视神经冲动会合后通往视觉中枢的通路。听觉区(auditory area)听觉区是管理两耳听觉的神经中枢。位于两半球的外侧,属于颞叶的区域。每一半球的听觉区均与两耳的听觉神经连接,但与视觉区的特征又不相同。每一半球的听觉区,均具有管理两耳听觉的功能,其中一半球的听觉区受到伤害时,对个体的听觉能力只有轻微的影响。联合区(association area)联合区是具有多种功能的神经中枢。在每一半球上均有两个联合区。其一是从额叶一直延伸到运动区的一大片区域,成为前联合区(frontal association area)。它的功能主要是于解决问题的记忆思考有关。其二是后联合区(posterior association area),分散在各主要感觉区附近。如:额叶的下部就与视觉区有关,此区域受伤会减低视觉的辨识力,对物体的不同形状,就不容易辨识。大脑包括左、右两个半球及连接两个半球的中间部分,即第三脑室前端的终板。大脑半球被覆灰质,称大脑皮质,其深方为白质,称为髓质。髓质内的灰质核团为基底神经节。在大脑两半球间由巨束纤维—相连。具体内容有大脑半球各脑叶、大脑皮质功能定位、大脑半球深部结构、大脑半球内白质、嗅脑和边缘系统五大部分。 大脑半球表面凹凸不平,布满深浅不同的沟,沟间的隆凸部分称脑回。1、额叶:位于中央沟以前。在中央沟和中央前沟之间为中央前回。在其前方有额上沟和饿下沟,被两沟相间的是额上回、额中回和额下回。额下回的后部有外侧裂的升支和水平分支分为眶部、三角部和盖部。额叶前端为额极。额叶底面有眶沟界出的 直回和眶回,其最内方 的深沟为嗅束沟,容纳嗅束和嗅球。嗅束向后分为内侧和外侧嗅纹,其分叉界出的三角区称为嗅三角,也称为前穿质,前部脑底动脉环的许多穿支血管由此入脑。在额叶的内侧面,中央前、后回延续的部分,称为旁中央小叶。2、顶叶:位于中央沟之后,顶枕裂于枕前切迹连线之前。在中央沟和中央后沟之间为中央后回。横行的顶间沟将顶叶余部分为顶上小叶和顶下小叶。顶下小叶又包括缘上回和角回。3、颞叶:位于外侧裂下方,由颞上、中、下三条沟分为颞上回、颞中回、颞下回。隐在外侧裂内的是颞横回。在颞叶的侧面和底面,在颞下沟和侧副裂间为梭状回,,侧副裂与海马裂之间为海马回,围绕海马裂前端的钩状部分称为海马钩回。4、枕叶:位于枕顶裂和枕前切迹连线之后。在内侧面,,距状裂和顶枕裂之间为楔叶,与侧副裂候补之间为舌回。5、岛叶:位于外侧裂的深方,其表面的斜行中央钩分为长回和短回。大脑皮质为中枢神经系统的最高级中枢,各皮质的功能复杂,不仅与躯体的各种感觉和运动有关,也与语言、文字等密切相关。根据大脑皮质的细胞成分、排列、构筑等特点,将皮质分为若干区。现在按Brodmann提出的机能区定位简述如下:皮质运动区:位于中央前回(4区),是支配对侧躯体随意运动的中枢。它主要接受来自对侧骨骼肌、肌腱和关节的本体感觉冲动,以感受身体的位置、姿势和运动感觉,并发出纤维,即锥体束控制对侧骨骼肌的随意运动。皮质运动前区:位于中央前回之前(6区),为锥体外系皮质区。它发出纤维至丘脑、基底神经节、红核、黑质等。与联合运动和姿势动作协调有关,也具有植物神经皮质中枢的部分功能。皮质眼球运动区:位于额叶的8枢和枕叶19区,为眼球运动同向凝视中枢,管理两眼球同时向对侧注视。皮质一般感觉区:位于中央后回(1、2、3区),接受身体对侧的痛、温、触和本体感觉冲动,并形成相应的感觉。顶上小叶(5、7)为精细触觉和实体觉的皮质区。额叶联合区:为额叶前部的9、10、11区,与智力和精神活动有密切关系。视觉皮质区:在枕叶的距状裂上、下唇与楔叶、舌回的相邻区(17区)。每一侧的上述区域皮质都接受来自两眼对侧视野的视觉冲动,并形成视觉。听觉皮区:位于颞横回中部(41、42区),又称Heschl氏回。每侧皮质均按来自双耳的听觉冲动产生听觉。嗅觉皮质区:位于嗅区、钩回和海马回的前部(25、28、34)和35区的大部分)。每侧皮质均接受双侧嗅神经传入的冲动。内脏皮质区:该区定位不太集中,主要分布在扣带回前部、颞叶前部、眶回后部、岛叶、海马及海马钩回等区域。语言运用中枢:人类的语言及使用工具等特殊活动在一侧皮层上也有较集中的代表区(优势半球),也称为语言运用中枢。它们分别是:①运动语言中枢:位于额下回后部(44、45区,又称Broca区)。②听觉语言中枢:位于颞上回42、22区皮质,该区具有能够听到声音并将声音理解成语言的一系列过程的功能。③视觉语言中枢:位于顶下小叶的角回,即39区。该区具有理解看到的符号和文字意义的功能。④运用中枢:位于顶下小叶的缘上回,即40区。此区主管精细的协调功能。⑤书写中枢:位于额中回后部8、6区,即中央前回手区的前方。大脑半球深部结构基底神经节:基底神经节是大脑皮质下的一组神经细胞核团,它包括纹状体、杏仁核和屏状核(带状核)。 纹状体又包括尾状核、豆状核两部分。纹状体是丘脑锥体外系重经结构之一,是运动整合中枢的一部分。它主要接受大脑皮质、丘脑、丘脑底核和黑质的传入冲动,并与红核、网状结构等形成广泛的联系,以维持肌张力和肌肉活动的协调。内囊:内囊位于豆状核、尾状核和丘脑之间,是大脑皮层与下级中枢之间联系的重要神经束的必经之路,形似宽厚的白质纤维带。内囊可分三部,额部称前肢,枕部称后肢,两部的汇合区为膝部。 大脑半球内的白质为有髓纤维所组成,也称为髓质。它分为三类。连合系:即两侧大脑半球之间或两侧的其他结构之间的纤维束。主要的有3个连合纤维:胼胝体、前连合、海马连合。固有连合系:固有连合系为大脑半球同侧各部皮质之间互相联合的纤维。 投射系:投射系是指大脑皮质、基底神经节、间脑、脑干、脊髓等结构之间的连接纤维,如内囊的纤维,视放射的纤维等。 嗅脑:位于脑的底面,包括嗅球、嗅束和梨状皮质。边缘系统:由皮质结构和皮质下结构两部分组成。皮质结构包括海马结构(海马和齿状回)、边缘叶(扣带回、海马回和海马回钩)、脑岛和额叶眶后部等。边缘系统不是一个独立的解剖学和功能性实体,它是管理着学习经验、整合新近与既往经验,同时为启动和调节种种行为和情感反应的复杂神经环路中重要的一部分。

真核细胞结构与功能研究进展论文

从细胞结构上讲:真核细胞有诸多复杂的细胞器,包括细胞核,线粒体,高尔基体,溶酶体、中心体等,使得细胞形成了区室化,使得细胞各部位的代谢与调控加以分工与协作,更加有序化.从细胞增殖上,真核细胞有有丝分裂和减数分裂两种,细胞增殖过程更加精密,并且使得有性生殖成为可能,在进化上一个子代同时可获得两个亲代的遗传信息.从细胞基因表达上,真核细胞有细胞核,使得细胞的基因表达调控有序化、复杂化了许多,使得基因表达调控实现了时间和空间上的多级调控机制,并且使得表观遗传调控出现,使得基因表达的最终产物的变化不一定必然是DNA序列变化,大大丰富了基因表达的内容;细胞核的出现也使得转录与翻译两大基因表达过程在时空加以分离;细胞核的出现也带了复杂的染色体结构和DNA修复机理,使得细胞的遗传信息稳定性增加.从细胞之间相互作用上讲,真核细胞大多形成复杂的多细胞机体,各种细胞分化为多种组织,形成了系统化的多细胞生物体,原核生物之间虽然也有菌量感测,但是还是各个单个细菌之间的联系,并不是一群细菌形成系统化的有机体.

在形态结构方面,一般细胞都具有细胞膜、细胞质(包括各种细胞器)和细胞核的结构。少数单细胞有机体不具核膜(核物质存在于细胞质中的一定区域),称为原核细胞(prokaryotic cell),如细菌、蓝藻。具核膜的细胞就是细胞有真正的细胞核,称为真核细胞(eu-karyotic cell)。在机能方面:1.细胞能够利用能量和转变能量。例如细胞能将化学键能转变为热能和机械能等,以维持细胞各种生命活动;2.具有生物合成的能力,能把小分子的简单物质合成大分子的复杂物质,如合成蛋白质、核酸等;3.具有自我复制和分裂繁殖的能力,如遗传物质的复制,通过细胞分裂将细胞的特性遗传给下一代细胞。此外,还具有协调细胞机体整体生命的能力等。 细胞是一团原生质(protoplasm),由它分化出细胞膜、细胞核、细胞质和各种细胞器等(图1—4)。原生质这个概念一直在沿用着,有人认为从分子水平看,原生质这个名称是笼统的不明确的。 (一)细胞膜或质膜(cell membrane或 plasma membrane, plasmolemma)包围在细胞的表面,为极薄的膜。一般在光学显微镜下看不见。不过,在显微解剖镜下,如用微针轻轻地压细胞的表面,可见细胞有明显的皱纹。如果把不能透过细胞膜的染料用微吸管注入细胞,结果细胞就变得有颜色,而且只限在质膜以内。用电子显微镜观察,大部分细胞膜为3层(内外两层为致密层,中间夹着不太致密的一层),称为单位膜(unit membrane),厚度一般为 7nm—10nm,主要由蛋白质和脂类构成。一般认为2层致密层相当于蛋白质成分,中间的一层由2层磷脂分子所组成(不同种膜的脂类和蛋白质的化学组成不同),蛋白质排列很不规则,在磷脂双分子层的内外表面,并以不同的深度伸进脂类双分子层中,有的从膜内伸到膜外(图1—5)。对膜的分子结构存在着不同的看法。20世纪70年代以来,不少科学家用各种物理化学新技术研究膜的结构,提出膜不是静止的,而是动态的结构。主要认为质膜是由球形蛋白分子和连续的脂类双分子层构成的流体。由于膜脂具有流动性,所以质膜也有流动性。现对膜的分子结构已有较为一致的看法(图1—5)。细胞膜有维持细胞内环境恒定的作用,通过细胞膜有选择地从周围环境吸收养分,并将代谢产物排出细胞外。已有大量实验证据说明,细胞膜上的各种蛋白质,特别是酶,对多种物质出入细胞膜起着关键性作用。同时细胞膜还有信息传递、代谢调控、细胞识别与免疫等作用。正确认识细胞膜的结构与机能,对深入了解有关人和动物的一些生理机能的作用机理、对控制动物和医学实践都有重要意义。(二)细胞质(cytoplasm)在细胞膜以内、细胞核以外的部分为细胞质。用光学显微镜观察活的细胞(如成纤维细胞),可见细胞质呈半透明、均质的状态,粘滞性较低。若用微针刺细胞膜时感到有阻力,但穿过细胞膜到细胞质中则不感到有阻力,微针能自由活动。在细胞质中还可见不同大小的折光颗粒,这是细胞器和内含物等。细胞器(organelle)又称“细胞器官”,简称“胞器”,是细胞生命活动所不可缺少的,具有一定的形态结构和功能。内含物(inclusions)是细胞代谢的产物或是进入细胞的外来物,不具代谢活性。除去细胞器和内含物,剩下的均质、半透明的似无什么结构的胶体物质,称为基本细胞质或细胞质基质(fundamental or basic or ground cyto-plasm或 cytoplasmic matrix)。虽然它在光学显微镜下看来没什么结构,但在电子显微镜下却呈现出很复杂的内膜系统,是为内质网。因此细胞质基质的概念受电子显微镜检的影响很大,不过有条件的理解,基质的含义仍然不变,即在细胞中除了可见的结构外,均质透明的部分为基质。在细胞质中包含下列各重要的细胞器:1.内质网(endoplasmic reticulum,简写 ER)首次在电子显微镜下发现这种膜系统是在细胞的内质中(K.R.Porter和A.D.Claude,1945),因此称为内质网(图1-4)。它是由膜形成的一些小管、小囊和膜层(扁平的囊)构成的。普遍存在于动植物细胞中(哺乳动物的红血细胞除外),形状差异较大,在不同类的细胞中,其形状、排列、数量、分布不同,即使在同种细胞,不同发育时期也不同。但在各类型的成熟细胞内,内质网有一定的形态特征。根据内质网形态的不同可分为几种,主要的是糙面型或颗粒型(rough ER或 granular ER)及滑面型或无颗粒型(smooth ER或 agranular ER)。糙面内质网的主要特点,是在内质网膜的外面附有颗粒,这些颗粒叫做核(糖核)蛋白体(ribosome)或称核糖体。核蛋白体由2个亚单位构成,它们相互吻合构成直径约20nm的完整单位。核蛋白体含有丰富的核糖核酸和蛋白质,是蛋白质合成的主要部位。这种类型的内质网常呈扁平囊状,有时也膨大成网内池(cisterna)。滑面内质网的特点是膜上无颗粒,膜系常呈管状,小管彼此连接成网。这二种内质网可认为是一个系统,因为它们在一个细胞内常是彼此连接的,而且糙面内质网又与核膜相连。糙面内质网不仅能在其核蛋白体上合成蛋白质,而且也参加蛋白质的修饰、加工和运输。滑面内质网与脂类物质的合成、与糖原和其他糖类的代谢有关,也参与细胞内的物质运输。整个内质网提供了大量的膜表面,有利于酶的分布和细胞的生命活动。2.高尔基器(Golgi apparatus)或称高尔基体(Golgi body)、高尔基复合体(Golgi complex)。用一定的固定、染色技术处理高等动物的细胞,高尔基器呈现网状结构,大多数无脊椎动物则呈现分散的圆形或凹盘形结构。但在电子显微镜下观察,高尔基器也是一种膜结构(图1—6)。它是由一些表面光滑的大扁囊(或称网内池)和小囊构成的。几个大扁囊平行重叠在一起,小囊分散于大扁囊的周围。高尔基器参与细胞分泌过程,将内质网核蛋白体上合成的多种蛋白质进行加工、分类和包装,或再加上高尔基器合成的糖类物质形成糖蛋白转运出细胞,供细胞外使用,同时也将加工分类后的蛋白质及由内质网合成的一部分脂类加工后,按类分送到细胞的特定部位。高尔基器也进行糖的生物合成。3.溶酶体(lysosome)这种细胞器是1955年才发现的。应用生化和电子显微镜技术的研究已经证明,溶酶体是一些颗粒状结构,大小一般在0.25μm~0.8μm之间,实际界于光学显微镜的分辨范围。表面围有一单层膜(一个单位膜),其大小、形态有很大变化。其中含有多种水解酶,因此称为溶酶体,就是能消化或溶解物质的小体。现至少已鉴定出60多种水解酶,特征性的酶是酸性磷酸酶。这些酶能把一些大分子(如蛋白质、核酸、多糖、脂类等大分子)分解为较小的分子,供细胞内的物质合成或供线粒体的氧化需要。溶酶体主要有溶解和消化的作用。它对排除生活机体内的死亡细胞、排除异物保护机体,以及胚胎形成和发育都有重要作用。对病理研究也有重要意义。比如当细胞突然缺乏氧气或受某种毒素作用时,溶酶体膜可在细胞内破裂,释放出酶,消化了细胞本身,同时也向细胞外扩散损伤其他结构。又如过量的维生素A可使溶酶体膜破裂,造成自发性骨折等。根据上述对溶酶体作用的了解,可以考虑以药物来控制溶酶体膜的破裂。比如对溶酶体膜有稳定作用的药物,可在临危条件下,用来保护细胞;或对膜有特异性削弱作用的药物,可以用来清除不需要的甚至是对机体有害的细胞(如癌细胞等)。已制成人工溶酶体,它在试管中的作用与在机体内的作用相同。4.线粒体(mitochondrium)线粒体是一些线状、小杆状或颗粒状的结构。在活细胞中可用占纳司绿(Janus green)染成蓝绿色。在电子显微镜下观察,线粒体表面是由双层膜构成的。内膜向内形成一些隔,称为线粒体嵴(cristae)。在线粒体内有丰富的酶系统。线粒体是细胞呼吸的中心,它是生物有机体借氧化作用产生能量的一个主要机构,它能将营养物质(如葡萄糖、脂肪酸、氨基酸等)氧化产生能量,储存在ATP(腺苷三磷酸)的高能磷酸键上,供给细胞其他生理活动的需要,因此有人说线粒体是细胞的“动力工厂”。根据对线粒体机能的了解,近些年来试验用“线粒体互补法”进行育种工作,即将两个亲本的线粒体从细胞中分离出来并加以混合,如果测出混合后呼吸率比两亲本的都高,证明杂交后代的杂种优势强,应用这种育种方法,能增强育种工作的预见性,缩短育种年限。5.中心粒(centriole)这种细胞器的位置是固定的,具有极性的结构。在间期细胞中,经固定、染色后所显示的中心粒仅仅是1或2个小颗粒。而在电子显微镜下观察,中心粒是一个柱状体,长度约为0.3μm~0.5μm,直径约为0.15μm,它是由9组小管状的亚单位组成的,每个亚单位一般由3个微管构成。这些管的排列方向与柱状体的纵轴平行。中心粒通常是成对存在,2个中心粒的位置常成直角。中心粒在有丝分裂时有重要作用。在细胞质内除上述结构外,还有微丝(microfilament)和微管(microtubule)等结构,它们的主要机能不只是对细胞起骨架支持作用,以维持细胞的形状,如在红血细胞微管成束平行排列于盘形细胞的周缘,又如上皮细胞微绒毛中的微丝;它们也参加细胞的运动,如有丝分裂的纺锤丝,以及纤毛、鞭毛的微管。此外,细胞质内还有各种内含物,如糖原、脂类、结晶、色素等。(三)细胞核(nucleus)是细胞的重要组成部分。细胞核的形状多种多样,一般与细胞的形状有关。如在球形、立方形、多角形的细胞中,核常为球形;在柱形的细胞中,核常为椭圆形,但也有不少例外。通常每一个细胞有一个核,也有双核或多核的。在核的外面包围一层极薄的膜,称为核膜或核被膜(nuclear membrane或 nuclear envelope)。在活细胞核膜的里边,在暗视野下呈光学“空洞”,只可见其中有一、二个核仁(nucleolus)。经固定、染色后,一般可分辨出核膜、核仁、核基质(或称核骨架,nuclear matrix或nuclear skeleton)和染色质(chromatin)。 在电子显微镜下,可见核膜是由双层膜(2个单位膜)构成的,内外两层膜大致是平行的。外层与糙面内质网相连。核膜上有许多孔,称为核孔(nuclear pore),是由内、外层的单位膜融合而成的,直径约50nm,它们约占哺乳动物细胞核总表面积的10%。核膜对控制核内外物质的出入,维持核内环境的恒定有重要作用。核仁是由核仁丝(nucleolonema)、颗粒和基质构成的,核仁丝与颗粒是由核糖核酸和蛋白质结合而成的,基质主要由蛋白质组成。没有界膜包围核仁。核仁的主要机能是合成核蛋白体RNA(rRNA)、并能组合成核蛋白体亚单位的前体颗粒。在核基质中进行很多代谢过程,提供戊糖、能量和酶等。染色质是一种嗜碱性的物质,能用碱性染料染色,因而得名。染色质主要由DNA和组蛋白结合而成的丝状结构——染色质丝(chromatin filament)。染色质丝在间期核内是分散的,因此在光学显微镜下一般看不见丝状结构。在细胞分裂时,由于染色质丝螺旋化,盘绕折叠,形成明显可见的染色体(chromosome)。在染色体内不仅有DNA和组蛋白,还有大量的非组蛋白和少量的RNA。染色体上具有大量控制遗传性状的基因(gene)。基因是遗传的常用单位,从分子水平看,基因相当于DNA(有些病毒为RNA)分子的一段,也就是决定某种蛋白质分子结构的相应的一段DNA。我们认为生物体各种性状的控制,都是以遗传密码(genetic code)的形式编码在核酸分子上,通过核酸复制把遗传信息(genetic information)传到后代去。遗传信息通过转录(由DNA密码转录为mRNA密码)和翻译(由mRNA密码翻译为蛋白质的过程)(图1—7),把上一代的遗传特性遗传到后代去。现今人们正在深入研究、利用遗传工程技术,并将其应用于医学实践和定向地控制、改造生物。在这方面已获得了有价值的重大突破。细胞核的机能是保存遗传物质,控制生化合成和细胞代谢,决定细胞或机体的性状表现,把遗传物质从细胞(或个体)一代一代传下去。但细胞核不是孤立的起作用,而是和细胞质相互作用、相互依存而表现出细胞统一的生命过程。细胞核控制细胞质;细胞质对细胞的分化、发育和遗传也有重要的作用。 存在于质膜与核被膜之间的原生质称为细胞质(cytoplasm),细胞之中具有可辨认形态和能够完成特定功能的结构叫做细胞器(organelles)。除细胞器外,细胞质的其余部分称为细胞质基质(cytoplasmicmatrix)或胞质溶胶(cytosol),其体积约占细胞质的一半。细胞质基质并不是均一的溶胶结构,其中还含有由微管、微丝和中间纤维组成的细胞骨架结构。一细胞质基质的功能:1)具有较大的缓冲容量,为细胞内各类生化反应的正常进行提供了相对稳定的离子环境。2)许多代谢过程是在细胞基质中完成的,如①蛋白质的合成、②mRNA的合成、③脂肪酸合成、④糖酵解、⑤磷酸戊糖途径、⑥糖原代谢、⑦信号转导。3)供给细胞器行使其功能所需要的一切底物。4)细胞骨架参与维持细胞形态,做为细胞器和酶的附着点,并与细胞运动、物质运输和信号转导有关。5)控制基因的表达与细胞核一起参与细胞的分化,如卵母细胞中不同的mRNA定位于细胞质不同部位,卵裂是不均等的。6)参与蛋白质的合成、加工、运输、选择性降解。二主要细胞器 ⒈内质网(endoplasmicreticulum):由膜围成一个连续的管道系统。;粗面内质网(roughendoplasmicreticulum,RER),表面附有核糖体,参与蛋白质的合成和加工;光面内质网(smoothendoplasmicreticulum,SER)表面没有核糖体,参与脂类合成。⒉高尔基体(Golgibody;Golgiapparatus;Golgi):由成摞的扁囊和小泡组成,与细胞的分泌活动和溶酶体的形成以及植物有丝分裂末期形成细胞壁有关。⒊溶酶体(lysosome):动物细胞中进行细胞内消化作用的细胞器,含有多种酸性水解酶。⒋线粒体(mitochondrion):由双层膜围成的与能量代谢有关的细胞器,主要作用是通过氧化磷酸化合成ATP。⒌叶绿体(chloroplast):植物细胞中与光合作用有关的细胞器,由双层膜围成。⒍细胞骨架(cytoskeleton):是由蛋白质纤维组成的网架结构,与细胞运动,分裂,分化和物质运输,能量转换,信息传递等生命活动密切相关。⒎中心粒(centriole):位于动物细胞的中心部位,故名,由相互垂直的两组9+0三联微管组成。中心粒加中心粒周物质称为中心体(centrosome)。⒏微体(microbody):由单层单位膜围成的小泡状结构,含有多种氧化酶,与分解过氧化氢和乙醛酸循环有关。⒐微管(microtubule):微管是一种具有极性的细胞骨架。它是由13 条原纤维(protofilament)构成的中空管状结构,直径22—25纳米。⒑核糖体(Ribosome):为椭球形的粒状小体,核糖体无膜结构,主要由蛋白质(histone)(40%)和rRNA(60%)构成,是细胞内蛋白质合成的场所。

脑功能的研究进展论文

你们学校没有CNKI吗??那里面你要的文章用卡车装。

好吧,十三求救,于是我尝试着讨论一下。这个问题谁也不敢说回答。我可以先把我们中科院神经所所长蒲慕明老师去年为牛顿科学世界刊物《潜入大脑》专刊写的卷首语转发一下,蒲老师是美国加州大学伯克利分校教授,美国科学院院士,中科院外籍院士,世界著名神经科学学家。对大脑结构与功能的理解是人类认知自然界及自身的终极挑战。大脑以其卓绝的能力使人类能够在各种环境下生存,能改造自然以趋利避害,并且能建立一个能将知识进行积累和传承的社会形态;因此,正是大脑使得人类能够从万物中脱颖而出。人类大脑这些独特的能力是如何在一个相对较短的进化过程中演化而来的呢?这些独特的能力又是如何在大脑结构的基础上产生的呢?因人而异的经历如何塑造了个人不同的个性与能力呢?这些有意思的问题已让科学家们着迷多年。在过去的一个世纪中,主要通过两种途径对大脑的结构和功能进行了研究。第一种途径是去发现特定的脑功能是由哪些脑区负责的。以前,这一途径是通过识别人类(实验动物)中针对特定脑区的脑损伤或脑疾病会对哪些特定脑功能造成伤害而实现的。而如今,得益于近期脑成像技术所取得的进展,已经实现对参与了执行正常脑功能的各个脑区非侵入性的识别。在第二种途径中,通过对动物大脑在细胞层次的解剖学和生理学研究,我们不仅了解了构建大脑的基石--神经细胞的特性和功能,而且了解了由特定神经细胞组成的神经网络如何能够进行感觉信号处理中运动的协调和一些简单的认知功能。 虽然这两种途径取得的巨大进展实现了自上而下(top-down)的对脑功能定位的了解,以及自下而上(bottom-up)的对神经细胞和神经网络功能的理解;在这两层面的了解之间仍然存在着一个巨大的沟壑。我们甚至还不清楚在我们脑中由成千上万个神经元组成的神经网络具体是如何实现一些简单的功能。比如说如何记住你奶奶的面容,下次见到她时如何能认识她,或者告诉她你爱她。从这一期大脑专刊的内容我们可以看出:在过去的数十年中,不论是对宏观脑功能还是微观神经环路特性的理解,脑科学研究在各个领域均取得了快速的进展。然而,这两个层次的研究之间的沟壑仍然有待填补,而那里正是大脑奥秘的所在。在未来数十年中,脑科学家将要面对大量而困难的工作,因为揭开大脑奥秘需要整合不同学科的实验手段和一些新的概念构架(目前这些基本还没有)来联系在不同层次对大脑的了解。为什么在大脑的宏观和微观理解之间那尚未填补的沟壑上架起一座桥梁是如此重要呢?因为这是现代科学的目标 — 理解自然就是要理解一个自然现象如何从它组成部分的特性中呈展产生。所以,任何从认知、环路、细胞·分子等单一层次上对一个神经的现象进行的描述,若不能联系上与更高或更低层次上的因果关系,这种描述都是不完整的,也不可能令人满意。目前,神经科学家对某些脑区参与了某个特定脑功能的这种描述已不会感到满意。我们更需要知道的是实现这些脑功能的神经环路,神经元类型和塑造这些神经环路的突触联系方式,以及负责这些个体神经元发育、功能和可塑性的遗传和分子机制。这期专刊中介绍的脑科学研究进展为我们呈现了几个窥视大脑奥秘的窗口。如何破解这些大脑的奥秘正是未来几代人,可能包括读者您自己,所要面对的最令人兴奋和最具挑战性的任务。华丽的分割线.==============================对于楼下,我可以把这些进展都讨论一下,比较其中一个还是我们所的,复旦马兰老师也是非常熟悉的前辈工作,还在一起合作来着。慢慢写啊,时间有限。满意请采纳

21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球环境、食物、资源与健康等重大问题的解决,莫不寄希望于生命科学与生物技术的进步。 2· 08·生命科学将成为21世纪自然科学的带头学科 20世纪50年代DNA双螺旋结构模型的发现,随后遗传信息传递“中心法则”的确立与DNA重组技术的建立使生命科学的面貌起了根本性的变化。分子生物学与遗传学的结合将用10一15年测定出人类基因组30亿个碱基对(遗传密码)的全序列,人体细胞约有10万个基因。人类基因组的“工作草图”迄今20%的测序已达99.99%的准确率和完成率,今后将要继续发现与阐明大量新的重要基因,诸如控制记忆与行为的基因,控制细胞衰老与程序性死亡的基因,新的癌基因与抑癌基因,以及与大量疾病有关的基因。将利用这些成果去为人类健康服务。 70年代后,分子生物学的发展,以基因工程为代表的生物工程的出现,生物技术通过对DNA链的精确切割与有目的地重组,使有目的地改良生物的性状与品质成为可能。迄今生物工程所取得的成就已在生产上显示出诱人的前景,尽管还存在有不少争议的问题,但很有可能成为21世纪的新兴产业。 发育生物学将要快速地兴起,它将要回答无数科学家100多年来孜孜以求而未解决的重大课题,一个受精卵通过细胞分裂与分化如何发育成为结构与功能无比复杂的个体,阐明在个体发育中时空上有条不紊的程序控制机理,从而为人类彻底控制动植物生长、发育创造条件。 RNA分子既有遗传信息功能又有酶功能的发现,为数十年踏步不前的难题“生命如何起源”的解决提供了新的契机。在21世纪,人们还要试图在实验室人工合成生命体。人们己有可能利用生物技术将保存在特殊环境中的古生物或冻干的尸体的DNA扩增,揭示其遗传密码,建立已绝灭生物的基因库,研究生物的进化与分类问题。 神经科学的崛起,预示着生命科学又一个高峰的来临。脑是含有1011细胞的无比复杂的高级结构体系,21世纪初从分子到行为水平的各个层次对脑功能的研究都将有重大突破,在阐明学习。记忆。思维。行为与感情机理等方面也将有重大进展。脑机能在理论上的进展将会促进新一代智能计算机的研制,这可能成为未来生命科学对自然科学与技术科学回报的最好例子。 生态学可能是最直接为人类生存环境服务并对国民经济持续与协调发展起重要作用的科学。生态学的理论与实践为中国三峡水库建设提供的决策依据就是一个例证。保护生物的多样性是当前生命科学最紧迫的任务之一。据可靠的数据说明每天约有100多种生物在地球上绝灭,很多生物在没有被人类认识以前就已消亡,这对人类无疑是一种灾难。生态学与生物多样性保护与利用的研究成果将指导人类遵循自然规律积极保护自己生存环境,否则人类的物质文明与精神文明都要受到灾难性影响。 顺应生命科学迅速发展的形势,发达国家政府及一些国际组织先后提出了《国际地圈及生物圈计划》、《人类基因组作图与测序计划》、《人类前沿科学计划》、《脑的十年》及《生物多样性利用与保护研究》等投资巨大的生命科学研究计划。其中仅《人类基因组作图与测序计划》,一项预算就高达30亿美元。 由于生命科学的发展,人才的需求量激增,近年除越来越多的物理学家,化学家与技术科学家被吸引到生物学研究领域外,以美国为例,近年统计48万博士学位获得者中从事生命科学的占51%。优秀青年科学家流向生命科学前沿,这是21世纪生命科学欣欣向荣的动力与源泉。 2. 08. 2 21世纪初生命科学的重大分支学科和发展趋势 80年代有远见的生物学家把分子生物学(包括分子遗传学)、细胞生物学、神经生物学与生态学列为当前生物科学的四大基础学科,无疑是正确地反映了现代生命科学的总趋势。遗传学(主要是分子遗传学)不仅当前是生物科学的带头学科,在今后多年还将保持其在生命科学中的核心作用。 有些科学家早就预测到,由于分子生物学、细胞生物学与遗传学的结合,必然促进发育生物学的蓬勃发展,从而提出发育生物学将成为21世纪生命科学的“新主人”,这种预测已逐渐变为现实。 分子生物学(包括分子遗传学)在生命科学中的主流地位,以及它在推动整个生命科学发展中所起的巨大作用是无可争辩的。细胞是生命活动基本的结构与功能单位,细胞生物学作为生物科学的基础学科地位必须给予重视。 很多生物科学家认为神经科学或脑科学的崛起将代表着生命科学发展的下一个高峰,然后将促进认知科学与行为科学的兴起。 生态学可能是最直接为人类生存环境服务,井对国民经济持续与协调发展起重要作用的学科。 A.分子生物学 分子生物学是在分子水平上研究生命现象本质与规律的学科。核酸与蛋白质(有人认为还有糖)是生命的最基本物质,因此核酸与蛋白质结构与功能的研究今后仍然是分子生物学研究的主要内容。蛋白质是生命活动的主要承担者,几乎一切生命活动都要依靠蛋白质(包括酶)来进行。蛋白质分子结构与功能的研究除了要阐明由氨基酸形成的并有一定顺序的肽链结构外,今后将特别重视肽链拆叠成的特定的三维空间结构,因为蛋白质生物功能与它的空间构型关系极为密切,核酸是遗传信息的携带者与传递者,遗传信息由DNA~RNA一蛋白质的传递过程,称为遗传信息传递的“中心法则”,是分子生物学(分子遗传学)研究的核心。其基本问题己比较清楚,当前研究的重点是: ①约经10一15年,人类基因组30亿个碱基对全序列(遗传密码)可以测出,这是具有里程碑意义的工作; ②真核生物基因表达过程在各层次上调节的研究仍然是今后相当长一段时间的任务。 分子生物学的概念、方法与技术和各学科的渗透,正在形成很多新的学科,诸如分子遗传学、细胞分子生物学、神经分子生物学、分子分类学、分子药理学与分子病理学等等。因此分子生物学在生命科学中的主导作用还将要持续下去。 B.遗传学 遗传学比分子生物学更具有自己独立的学科体系。但现代遗传学与分子生物学是不可分割、相互交叉的两个学科,且很难截然分开。 有些著名的遗传学家把遗传学概括称为基因学,因为现代遗传学主要是研究生物体遗传信息传递与表达的学科。基因携带的信息是由基因的结构所决定,信息的表达是由基因的功能实现的,因此遗传学研究的是基因的结构与功能。从遗传学的角度看,所有生命现象的机制,追根究底都会与基因的结构与功能相关。因此遗传学在今后较长时间仍然是生命科学的核心学科和推动力。 有人估计人体细胞内约有10万个基因,迄今弄清楚的不到5%,所以与重要生命活动有关与疾病有关的新基因的发现与阐明将是今后几十年的重要任务。 C.细胞生物学 著名生物学家威尔逊(Wilson)早在20世纪20年代就提出一句名言“一切生物学关键问题必须在细胞中找寻”,至今还有着很深的内涵。魏斯曼与摩尔根都曾先后试图在细胞研究的基础上建立遗传、发育与进化统一的理论,虽然当时没有找到具体解决的途径,但关于细胞的知识在生物科学中的重要性是显而易见的。细胞是一切生命活动结构与功能的基本单位,细胞生物学是研究细胞生命活动基本规律的科学,细胞的结构。细胞代谢、细胞遗传、细胞的增殖与分化,细胞信息的传递与细胞的通讯等是细胞生物学主要研究内容。虽然今后细胞生物学研究的内容是全方位的,但概括起来可能是两个基本点: 一是基因与基因产物如何控制细胞的重要生命活动,如生长、增殖、分化与衰老等,在此要涉及到一个全新的问题,细胞内外信号如何传递;二是基因产物一一蛋白质分子与其他生物分子如何构建与装配成细胞的结构,并行使细胞的有序的生命活动。 今后20多年,以下一些问题可望取得重要进展与突破: ①遗传信息的储存、复制与表达的主要执行者——染色体的结构与功能可能在不同的结构层次上得到阐明。 ②细胞骨架(包括核骨架与染色体骨架)的研究将得到全方位的进展。 ③细胞生物学与分子生物学、遗传学的结合,将在细胞分化机理研究方面有重要突破,为发育生物学快速发展奠定基础。 ④细胞衰老与细胞程序化死亡的机理将在更深层次上阐明。 ⑤以细胞分子生物学为骨干学科与其他学科结合,人工装配生命体的理想可能逐步 实现。 D.发育生物学 从一个受精卵通过细胞分裂与分化如何发育成为一个结构与功能复杂的个体,是至今未能解决的生命科学的重大课题,也是发育生物学的主课题。由于近几十年分子生物学、遗传学与细胞生物学所取得一一系歹(突破性成果与知识的积累,已为解决这一重大课题创造了条件,这也就是今后发育生物学应运而飞速发展的原因。 发育生物学当今要解决的基本问题是细胞的基因如何按一定的时空关系选择性地表达专一性的蛋白质,从而控制细胞的分化与个体发育。阐明基因在多层次水平上控制胚胎的发育就不仅是涉及到个别基因的问题,而是一系列调节基因在时空上的联系与配合,从而支配发育的程序。虽然这是难度极大的课题,但近年已初见端倪并有所突破。估计今后发育生物学将沿着这条道路深入下去,并可望取得丰硕的成果。 E.神经科学(或脑科学) 神经科学是研究人与动物神经系统(主要是脑)的结构与功能,在分子水平、神经网络水平、整体水平乃至行为水平阐明神经系统特别是脑的活动规律的学科群。脑的结构与功能是无比复杂的高级体系,含有10 11细胞。它是感觉、运动、学习、记忆、感情、行为与思维的活动基础。大脑细胞,口何指导人与动物的行为是未来生物学中最富潜力与最吸引人的领域;神经科学的崛起,预示着生命科学又有一个高峰的来临。神经科学或脑科学必然在下世纪促进认知科学与行为科学的兴起。因此各国政府投入巨资支持这一课题,包括美国总统签署的“命名1990年1月1日为脑的10年”不是没有道理的。 在今后几十年内可以预示到的神经科学突破性的进展可能包括: ①在分子到行为的各层次上阐明学习、记忆与认知等活动的基础; ②很快会发现与阐明一系列与记忆、行为有关的基因与基因产物; ③神经细胞的分化与神经系统的发育研究会有重大进展; ④脑机能在理论上的进展与突破(如模式识别、联想记忆、思维逻辑机理的阐明)会 促进新一代智能计算机与智能机器人的研制; ⑤一系列神经性疾病与精神病的病因可望在神经生物学研究中得到解释。 F.主态学(包括物种多样性保护研究) 生态学是研究有机体与周围环境——包括非生物环境与生物环境相互关系的科学。 由于生态学理论与应用是与世界环境保护。资源合理开发与保护,以至人类本身在地球上继续生存紧密相关的,尤其是地球环境日益恶化的情况下,生态学的重要性就变得十分突出。未来生态学的主要任务是协调人类活动与环境的关系。所以生态学经典学科的概念与研究内容必然要适应人类生存环境的保护与社会经济持续发展的要求而不断改变。 今后生态学研究的重点可能表现在以下方面: ①生态群落的多样性、稳定性与演变规律与人类活动的关系; ②全球气候变化对生态系统结构与功能的影响; ③生物多样性的保护和永续利用也是保护人类自身生存环境尤其是拯救濒临绝灭的 生物种类更加具有紧迫性; ④城市生态学与经济生态学将迅速发展; ⑤生态工程与生态技术将在国民经济建设中发挥作用。 G.空间生命科学 空间环境向生命科学提出了新的挑战,也为生命科学的发展提供了机遇。 21世纪人类的空间活动将要离开地球附近,探索月球及其他太阳系的大体。这就要求人在地球外各种环境中能长期地生活和工作,首先是在,长期空间飞行器中航行,月球站以及火星或火卫站等,空间医学必须有重大突破,解决长期在地外空间所遇到的宇航员骨质疏松,肌肉萎缩和兔疫功能变化等生理学难题,同时,与开拓大疆相关联的是受控生态系统,创造一个不需要外界补给,而使人们能在其中长期生活的环境。这些问题有希望在21世纪20一30年代解决,其中空间生理学问题有可能利用中医和中药的方法取得某些重大突破。 地球外层空间为研究重力生物学提供了理想的条件,重力条件对各种层次结构生物的影响仍然是21世纪重力生物学的主题,今后的研究重点将集中于细胞,绿色植物,一些微生物和小动物。特别是重力环境对哺乳动物细胞形态、结构、变异和基因表达的影响将是一个热点。重力生物学的学术意义在于揭示重力效应在生物进化过程中的作用,是自然科学的基本问题;另一方面,重力生物学的成果将是空间制药及空间生态系统等应用领域的基础,重力生物学的学术和应用都是下个世纪的重要课题,可望在21世纪20-30年代取得突破性的进展。 地外生物探索是生命起源的重大课题,其中地球以外的智能生物探索是一个长期的 课题。地球上的人类正在向外层空间发射电波和接收讯号。外星人与地球人之间可能存在的学术和技术差距不仅是一种危险,也是自然科学的重大前沿问题,将被持续地研究下去。 2. 08. 5 21世纪初生命科学最有可能突破的领域 ①人类基因组的全序列(遗传密码)将在10一15年测定完毕,为全部遗传信息的破译奠定基础。 ②与生命活动有关的重要基因与重要疾病有关的基因将被陆续发现,其中特别引人注目的是控制记忆与行为的基因、控制衰老与细胞程序性死亡的基因、控制细胞增殖的系列基因、胚胎发育多层次网络调节基因。新的癌基因与抑癌基因的发现与其生物学功能的释明将大大提高对生命本质的了解。 ③人与动物的高级生命活动:感知、思维、记忆、行为与感情的发生与活动机制在脑科学研究突破的基础上,有更深的认识。 ④癌症的治疗将有全面的突破,爱滋病的防治得到控制。 ⑤在阐明地球上原始生命起源的基础上,人类还可能在实验室合成生命体,这种生命体应具有原始细胞的基本特征。 回答者: monkeynobd - 高级经理 六级 5-22 18:16给楼主论文: 分子细胞基因组的研究 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。 1 植物体细胞杂交后代胞质基因组重组的多样性 体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。 2 创制胞质杂种的方法 2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。 2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。 2.3 其它的可能途径 (1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。 3 胞质杂种中双亲胞质基因的传递遗传学 3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。 3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。 4 植物胞质基因组控制的重要性状 目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。 总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。是真的哦

电脑铰链的功能研究与实践论文

1.2 连杆机构的历史回顾和发展趋势在各种机构型式中,连杆机构的特点表现为具有多种多样的结构和多种多样的特性。仅就平面连杆机构而言,即使其连杆件数被限制在很少的情况下,大量的各种可能的结构型式在今天仍难以估计。它们的特性在每一方面是多种多样的,以致只能将其视为最一般形式的机械系统。在古代和中世纪许多实际应用方面的发明中就有连杆机构,例如我国东汉时期张衡发明的地震仪、列奥纳多•达•芬奇所描述的椭圆车削装置等,在这些发明中,都巧妙地应用了平面连杆机构。在近代,随着工业越来越高度自动化,在大量的自动化生产线上,许许多多的连杆机构得到了应用。特别是机器人学成为目前一个前沿学科,连杆机构又有了新的应用,例如日本等国家开发的类人型机器人等。在仿生学上,连杆机构巧妙地实现了人类关节的功能,例如国外研制的六杆假肢膝关节机构。当今,工业生产自动化程度越来越高,连杆机构以及它与其它类型的机构组成的组合机构将得到更加广泛的应用,特别是形状丰富多样的连杆曲线将应用在更多的场合中。1.3 课题的主要内容与意义连杆机构的最基本形式是平面四杆机构,它是其它连杆机构的基础。所以,对平面四杆机构进行研究可以概括连杆机构内在的基本原理,从而用以连杆机构的设计。机构运动学综合是按照给定的运动特性对机构进行系统的设计的过程,包括型综合和尺度综合两大主要内容,主要综合方法有解析法、作图法和实验法。作图法和实验法工作量大,设计精度低,仅适用于对机构精度要求不高的场合。近几十年来,随着工业技术的高速发展,人们对机构的复杂程度和精度要求越来越高,作图法和实验法已不能满足要求,而基于计算机辅助设计(CAD)的解析法得到了广泛的应用。本课题的主要内容是平面四杆机构的连杆曲线及轨迹综合,其意义在于:一、深入研究计算机在设计和仿真连杆机构连杆曲线方面的应用,从而指导实践;二、总结出四杆机构轨迹综合的理论基础,从而指导多杆或复杂的低副平面机构的综合。此课题的主要目标是系统地对平面四杆机构连杆曲线进行研究,从而来获得连杆机构基本的原理和综合方法,以便在实际中得到应用;主要特色是在各个设计进度中将会大量应用计算机高级语言编程来辅助设计和仿真平面四杆机构。

机电工程系副主任,机械制造与自动化专业带头人,学术梯队骨干教师,《机械设计基础》课程建设负责人,江阴市机械专业中心组成员,江阴市科技协会机电分会成员。教学教改卓有成效,公开发表《高职<机械设计基础>课程建设的探索与实践》教改论文一篇,参与《机械设计基础多媒体课件》制作,主编《机械设计基础技能训练指导书》和《机械设计基础习题集》,参编教材《机器设计》,《机械设计基础技能训练指导书》获院二等奖。机械设计基础教改组获院第一届优秀教学一等奖,在院中年教师示范教学观摩赛中获一等奖。科研工作成绩突出,《基于铰链磨损的机构可靠性研究与应用》等科研论文3篇,主持或参与《多功能弹性管接头》等科研项目5项,获专利1项。班主任工作言传身教,班集体先后被评为“五四红旗团支部”与“文明班集体”,多次被评为“省电大优秀班主任”和“院优秀班主任”。本着对教育事业的热爱,在平凡的工作岗位上勤奋踏实,为学院的发展添砖加瓦,多次被评为“优秀党员”。

相关百科

热门百科

首页
发表服务