首页

> 学术发表知识库

首页 学术发表知识库 问题

论文格密码学研究

发布时间:

论文格密码学研究

密码学论文写作范例论文

随着网络空间竞争与对抗的日益尖锐复杂,安全问题以前所未有的深度与广度向传统领域延伸。随着移动互联网、下一代互联网、物联网、云计算、命名数据网、大数据等为代表的新型网络形态及网络服务的兴起,安全需求方式已经由通信双方都是单用户向至少有一方是多用户的方式转变。如果你想深入了解这方面的知识,可以看看以下密码学论文。

题目:数学在密码学中的应用浅析

摘要:密码学作为一门交叉学科,涉及学科广泛,其中应用数学占很大比例,其地位在密码学中也越来越重要,本文简单介绍密码学中涉及数学理论和方法计算的各种算法基本理论及应用,并将密码学的发展史分为现代密码学和传统密码学,列举二者具有代表性的明文加密方法,并分别对其中一种方法进行加密思想的概括和阐述。

关键词:密码学 应用数学 应用

随着信息时代的高速发展,信息的安全越来越重要,小到个人信息,大到国家安全。信息安全主要是将计算机系统和信息交流网络中的各种信息进行数学化的计算和处理,保护信息安全,而密码学在其中正是处于完成这些功能的技术核心。在初期的学习当中,高等数学、线性代数、概率论等都是必须要学习的基础学科,但是涉及密码学的实际操作,数论和近世代数的'数学知识仍然会有不同程度的涉及和应用,本文在这一基础上,讨论密码学中一些基本理论的应用。

一、密码学的含义及特点

密码学是由于保密通信所需从而发展起来的一门科学,其保密通讯的接受过程如下: 初始发送者将原始信息 ( 明文) 进行一定方式转换 ( 加密) 然后发送,接受者收到加密信息,进行还原解读 ( 脱密) ,完成保密传输信息的所有过程,但是由于传输过程是经由有线电或无线电进行信息传输,易被窃取者在信息传输过程中窃取加密信息,在算法未知的情况下恢复信息原文,称为破译。

保密信息破译的好坏程度取决于破译者的技术及经验和加密算法的好坏。实际运用的保密通信由两个重要方面构成: 第一是已知明文,对原始信息进行加密处理,达到安全传输性的效果; 第二是对截获的加密信息进行信息破译,获取有用信息。二者分别称为密码编码学和密码分析学,二者互逆,互相反映,特性又有所差别。

密码体制在密码发展史上是指加密算法和实现传输的设备,主要有五种典型密码体制,分别为: 文学替换密码体制、机械密码体制、序列密码体制、分组密码体制、公开密钥密码体制,其中密码学研究目前较为活跃的是上世纪70年代中期出现的公开密钥密码体制。

二、传统密码应用密码体制

在1949年香农的《保密系统的通信理论》发表之前,密码传输主要通过简单置换和代换字符实现,这样简单的加密形式一般属于传统密码的范畴。

置换密码通过改变明文排列顺序达到加密效果,而代换密码则涉及模运算、模逆元、欧拉函数在仿射密码当中的基本理论运用。

传统密码应用以仿射密码和Hill密码为代表,本文由于篇幅所限,就以运用线性代数思想对明文进行加密处理的Hill密码为例,简述其加密思想。

Hill密码,即希尔密码,在1929年由数学家Lester Hill在杂志《American Mathematical Monthly》

上发表文章首次提出,其基本的应用思想是运用线性代换将连续出现的n个明文字母替换为同等数目的密文字母,替换密钥是变换矩阵,只需要对加密信息做一次同样的逆变换即可。

三、现代密码应用

香农在1949年发表的《保密系统的通信理论》上将密码学的发展分为传统密码学与现代密码学,这篇论文也标志着现代密码学的兴起。

香农在这篇论文中首次将信息论引入密码学的研究当中,其中,概率统计和熵的概念对于信息源、密钥源、传输的密文和密码系统的安全性作出数学描述和定量分析,进而提出相关的密码体制的应用模型。

他的论述成果为现代密码学的发展及进行信息破译的密码分析学奠定理论基础,现代的对称密码学以及公钥密码体制思想对于香农的这一理论和数论均有不同程度的涉及。

现代密码应用的代表是以字节处理为主的AES算法、以欧拉函数为应用基础的RSA公钥算法以及运用非确定性方案选择随机数进行数字签名并验证其有效性的El Gamal签名体制,本文以AES算法为例,简述现代密码应用的基本思想。

AES算法的处理单位是计算机单位字节,用128位输入明文,然后输入密钥K将明文分为16字节,整体操作进行十轮之后,第一轮到第九轮的轮函数一样,包括字节代换、行位移、列混合和轮密钥加四个操作,最后一轮迭代不执行列混合。

而且值得一提的是在字节代换中所运用到的S盒置换是运用近世代数的相关知识完成加密计算的。

四、结语

本文通过明确密码学在不同发展阶段的加密及运作情况,然后主要介绍密码学中数学方法及理论,包括数论、概率论的应用理论。

随着现代密码学的活跃发展,数学基础作为信息加密工具与密码学联系越来越密切,密码学实际操作的各个步骤都与数学理论联系甚密,数学密码已经成为现代密码学的主流学科。

当然,本文论述的数学理论与密码学的应用还只是二者关系皮毛,也希望看到有关专家对这一问题作出更深层次的论述,以促进应用数学理论与密码学发展之间更深层次的沟通与发展。

毕业论文总结 2007年3月,我开始了我的毕业论文工作,时至今日,论文基本完成。从最初的茫然,到慢慢的进入状态,再到对思路逐渐的清晰,整个写作过程难以用语言来表达。历经了几个月的奋战,紧张而又充实的毕业设计终于落下了帷幕。回想这段日子的经历和感受,我感慨万千,在这次毕业设计的过程中,我拥有了无数难忘的回忆和收获。3月初,在与导师的交流讨论中我的题目定了下来,是:8031单片机控制LED显示屏设计。当选题报告,开题报告定下来的时候,我当时便立刻着手资料的收集工作中,当时面对浩瀚的书海真是有些茫然,不知如何下手。我将这一困难告诉了导师,在导师细心的指导下,终于使我对自己现在的工作方向和方法有了掌握。在搜集资料的过程中,我认真准备了一个笔记本。我在学校图书馆,大工图书馆搜集资料,还在网上查找各类相关资料,将这些宝贵的资料全部记在笔记本上,尽量使我的资料完整、精确、数量多,这有利于论文的撰写。然后我将收集到的资料仔细整理分类,及时拿给导师进行沟通。4月初,资料已经查找完毕了,我开始着手论文的写作。在写作过程中遇到困难我就及时和导师联系,并和同学互相交流,请教专业课老师。在大家的帮助下,困难一个一个解决掉,论文也慢慢成型。4月底,论文的文字叙述已经完成。5月开始进行相关图形的绘制工作和电路的设计工作。为了画出自己满意的电路图,图表等,我仔细学习了Excel的绘图技术。在设计电路初期,由于没有设计经验,觉得无从下手,空有很多设计思想,却不知道应该选哪个,经过导师的指导,我的设计渐渐有了头绪,通过查阅资料,逐渐确立系统方案。方案中LED显示屏行、列驱动电路的设计是个比较头疼的问题,在反复推敲,对比的过程中,最终定下了行驱动电路采用74LS154译码器,列驱动电路采用74HC595集成电路。当我终于完成了所有打字、绘图、排版、校对的任务后整个人都很累,但同时看着电脑荧屏上的毕业设计稿件我的心里是甜的,我觉得这一切都值了。这次毕业论文的制作过程是我的一次再学习,再提高的过程。在论文中我充分地运用了大学期间所学到的知识。我不会忘记这难忘的3个多月的时间。毕业论文的制作给了我难忘的回忆。在我徜徉书海查找资料的日子里,面对无数书本的罗列,最难忘的是每次找到资料时的激动和兴奋;亲手设计电路图的时间里,记忆最深的是每一步小小思路实现时那幸福的心情;为了论文我曾赶稿到深夜,但看着亲手打出的一字一句,心里满满的只有喜悦毫无疲惫。这段旅程看似荆棘密布,实则蕴藏着无尽的宝藏。我从资料的收集中,掌握了很多单片机、LED显示屏的知识,让我对我所学过的知识有所巩固和提高,并且让我对当今单片机、LED显示屏的最新发展技术有所了解。在整个过程中,我学到了新知识,增长了见识。在今后的日子里,我仍然要不断地充实自己,争取在所学领域有所作为。脚踏实地,认真严谨,实事求是的学习态度,不怕困难、坚持不懈、吃苦耐劳的精神是我在这次设计中最大的收益。我想这是一次意志的磨练,是对我实际能力的一次提升,也会对我未来的学习和工作有很大的帮助。在这次毕业设计中也使我们的同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解知识,所以在这里非常感谢帮助我的同学。在此更要感谢我的导师和专业老师,是你们的细心指导和关怀,使我能够顺利的完成毕业论文。在我的学业和论文的研究工作中无不倾注着老师们辛勤的汗水和心血。老师的严谨治学态度、渊博的知识、无私的奉献精神使我深受启迪。从尊敬的导师身上,我不仅学到了扎实、宽广的专业知识,也学到了做人的道理。在此我要向我的导师致以最衷心的感谢和深深的敬意。 文秘杂烩网

密码学论文sci

SCI期刊的分值,指的是SCI期刊的影响因子。高分至少5分以上。

一般SCI期刊的分值有一下几点说法:

第一、现在所说的影响因子(Impact Factor)是指期刊近两年来的平均被引率,也就是说期刊前两年发表的论文在评价当年被引用的平均次数,直接代表了期刊的影响力和水平。

第二、影响因子越大,说明期刊的影响越大,期刊的质量和水平越高。影响因子高的期刊往往是载有高质量论文的核心期刊,或者国际性强的期刊。然而不同学科之间的SCI期刊很难进行比较和评价的。

由于中国科学院文献情报中心将JCR(《期刊引用报告》)公布的期刊分为13大类,在每一类期刊中根据期刊的影响因子及被引频率等指标分成四个区,期刊档次由高到低排列,其中第一区期刊加上第二区少量期刊,被界定为顶级刊物。

发表在1区和2区的SCI论文,通常被认为是该学科领域的比较重要的成果。1区的分值也有比较低的,比如影响放射领域顶级期刊Radiology,影响因子只有5.726 。所以不能光看影响因子才评定这个期刊的影响力,我们还要借鉴下SCI期刊分区,我们可以通过MedSci工具来查看期刊的影响因子等等。

第三、某个参评期刊杂志被SCI检索系统收录,那么这个期刊就是SCI期刊,所谓分值(影响因子)不是指论文的影响因子,是期刊的影响因子,是根据这个期刊以往的发表文献被其它文章参考引用的次等及等级等多方面因素综合算出来的一个分数值。

第四、SCI是汤姆森公司评选的,高分指至少5分以上。

影响因子(Impact Factor,IF)是汤森路透(Thomson Reuters)出品的期刊引证报告(Journal Citation Reports,JCR)中的一项数据。 即某期刊前两年发表的论文在该报告年份(JCR year)中被引用总次数除以该期刊在这两年内发表的论文总数。这是一个国际上通行的期刊评价指标。

影响因子现已成为国际上通用的期刊评价指标,它不仅是一种测度期刊有用性和显示度的指标,而且也是测度期刊的学术水平,乃至论文质量的重要指标。影响因子是一个相对统计量。

意义

影响因子并非一个最客观的评价期刊影响力的标准。一般来说影响因子高,期刊的影响力就越大。对于一些综合类,或者大项的研究领域来说,因为研究的领域广所以引用率也比较高。比如,生物,和化学类的期刊,这类期刊一般情况下就比较容易有较高的影响力。

影响因子虽然可在一定程度上表征其学术质量的优劣,但影响因子与学术质量间并非呈线性正比关系,比如不能说影响因子为5.0的期刊一定优于影响因子为2.0的期刊,影响因子不具有这种对学术质量进行精确定量评价的功能。

国内部分科研机构,在进行科研绩效考评时常以累计影响因子或单篇影响因子达到多少作为量化标准,有的研究人员可能因影响因子差0.1分而不能晋升职称或评定奖金等,这种做法绝对是不可取的。

影响因子(Impact factor,缩写IF)是指某一期刊的文章在特定年份或时期被引用的频率,是衡量学术期刊影响力的一个重要指标,由美国科学情报研究所(ISI)创始人尤金·加菲得(Eugene Garfield)在1960年代创立,其后为文献计量学的发展带来了一系列重大革新。

appliedintelligence的proof需要具体看应用的类型,一般来说,appliedintelligence的proof需要花费一些时间来完成,可能需要几天或者几周。

1.可以去常用的SCI论文查找网站PubMed:https://pubmed.ncbi.nlm.nih.gov/(撤稿快讯)2.可以在你想查找的SCI论文所发表的期刊官网查找,各大期刊官网都可以在LetPub网站找到,直接检索期刊名称或关键词即可:https://www.letpub.com.cn/index.php?journalid=9377&page=journalapp&view=detail(撤稿快讯)还可以在PaperNeed网站查找,可以从影响因子、发表时间、文章类型、期刊名称、语言类别等多方向查找:https://paperneed.cn/articles?q=(撤稿快讯)3.还有最简单的方法,直接百度,度娘什么都知道

应用智能(Applied Intelligence)的proof一般指的是把技术应用到实际的场景中,以验证其可行性和有效性。一般来说,这个proof的时间取决于项目的复杂程度,以及所需要的数据量和计算量。

密码学的论文题目

各种广告哈哈。。。。找你们还不如去知网下啊?密码学,网络攻防,信息管理都可以写,题目得找导师要,难道你们导师要你自个人想题目?太扯了吧

古典密码:1、Hill体制 2、维吉尼亚体制 3

随着计算机网络的普及和计算机技术在生活中的各个领域的广泛应用,网络信息的安全这几年备受人们的关注。计算机网络技术提供巨大的信息含量和交互功能,提高了各个领域的工作效率,但计算机网络信息安全即影响网络稳定运行又影响用户的正常使用,可以造成重大的经济损失,信息一旦泄露将造成无法估量的损失。因此网络的安全性是我们必须重视的也是非常重要的。下面学术堂整理了关于网络信息安全的毕业论文题目,欢迎大家查看。1、探讨计算机网络安全中的防火墙技术2、计算机网络安全防范在大数据时代的探讨3、网络型病毒与计算机网络安全4、网络安全管理技术分析5、浅谈计算机网络安全与防火墙设计6、网络安全信息关联分析技术的运用与问题阐述7、美国网络安全专业教育体系建设及其启示8、基于威胁传播的多节点网络安全态势量化评估方法9、基于大数据时代下的网络安全问题分析10、信息化网络安全的建设与防护技术分析11、空间信息网络安全协议综述12、电子商务网络安全技术研究13、基于并行约简的网络安全态势要素提取方法14、欧盟NIS指令研究对我国网络安全保障实施的启示15、论拒不履行信息网络安全管理义务罪

问题2的答案CAESAR体制;双字的Playfair体制;维吉尼亚体制;Hill体制具体:1、CAESAR体制 CAESAR 体制是一种单表加性密码体制,其明文字母表、密文字母表和密钥字母表相同,比如英文字母表。加密步可由如下简单的式子表示:y=x+k,其中x∈X, y∈Y,k∈K。最简单的一种就是第一个明文字母由其右边的第三个字母代替,由D代替,B由E代替,…,Y,由B代替,Z由C代替。广义的CAESAR体制引入两个密钥参数,加密步变为y=k1x+k2,其中x∈X,y∈Y,k1,k2∈K。 2、双字的Playfair体制 1854 年,查尔斯.惠斯通(Charles Wheatstone)发明了一种特殊的双叶双码代替密码,他的朋友莱昂.普莱弗尔(Lyon Playfair)将其推荐给政府和军界的高层人士。这种体制的首次使用是在克里米亚战争期间,正式报道的使用是在Boer战争中,其名称也就以 Playfair命名。军队很看重它的一点就是此方法既不需要表也不需要器械,易作为战地密码。英国军队差不多用了一个世纪,而且保证它一直是保密的。然而在一次世界大战中的1915年,德国人将其破译了。 PLAYFAIR加密步按如下方式进行:由一个口令字开始,将一个Z25上的置换表(省去了Z26中的Z)排成5×5方阵。 P A L M E R S T O N B C D F G H I K Q U V W X Y Z 或 T O M R S D F G B C K Q U H I X Y Z V WL M E P A 加密步没有定义双字母是同一字母的情况,还有最后一个字母不成对的情况。上述两个例子的结果是相同的。如果一个双字母的两个字母在同一行(或一列),则它们就用其右边(相应地,底下)的字母所代替,比如:am→LE ,dl→KT。另一种情况是,两个字母不在同一行或同一列,则第一个字母由同一行中且在第二个字母的那一列的字母代替;第二个字母则由同一行中,且是第一个字母所在那一列的字母所代替,比如:ag→EC ,ho→QR。 3、维吉尼亚体制 维吉尼亚体制是最古老而且最著名的多表密码体制之一,它以法国密码学家Blaise de Vigenere(1523--1596)命名。与CAESAR密码体制相似,其密钥是逐步变化的。一般是用维吉尼亚方阵来进行加密和解密的。每列都可以看成是一个CAESAR体制,其中密钥是0、1、2...25。加密时,将在方阵中查找明文字母所在的行及CAESAR体制密钥所在的列,来确定密文字符。通常CAESAR体制的密钥用密钥字来表示。比如,用KEYSTREAM来加密TWOPERSONS,首先在方阵中查找第T行第K列的字母,则得到T 对应的密文字母D,以此类推。解密时,则查找D在K列的行位置。通常密钥字要重复使用,特别是对较长的明文。 加密方阵作为多表体制的基础,它具有多样性,即可选择其它容易记忆的方阵。这里值得一提的就是Beaufort方阵,它的行是维吉尼亚方阵行的逆序。 4、Hill体制 在Hill 密码体制中,明文空间和密文空间是相同的,比如英文字母集。首先对字母集中的字母进行编号,比如A为0号,B为1号,Z为25号,后面所有的运算都要模 26。然后选择一个可逆的d维方阵M,其元素是介于0和25之间的整数。加密过程为MP=C,当然这里的P和C都是d维列向量。更确切地说,每个d元明文字符定义了列向量P,分量是d元明文字符的编号。计算得到的列向量C再被译为d元密文字符。 尽管希尔密码体制看起来几乎没有实用价值,但它对密码学的发展却产生了深刻的影响。希尔发明的重要性在于它无可辩驳地表明:数学方法在密码学中的地位是不容置疑的。随后在30年代,大批数学家投身于密码学研究。 尽管古典密码体制受到当时历史条件的限制,没有涉及到非常高深或者复杂的理论,但在其慢长的发展演化过程中,已经充分表现出了现代密码学的两大基本思想-代替和换位,而且还将数学的方法引入到密码分析和研究中。这为后来密码学成为系统的学科以及相关学科的发展奠定了坚实的基础,如计算机科学、复杂性理论等等。

密码学论文交流群

秘密分享的动机是源於金钥安全管理,发展出来的密码技术。在加密系统中,主金钥是系统安全的关键,主金钥存放於一处,可能由於设备遭到损毁等因素,而导致无法读取主金钥的危险,或因为主金钥复制多份而降低系统安全性。为解决以上问题而发展出来的秘密分享技术,其概念为:将机密分割为多等份,其中”足够多”之部份即可以回复原始机密。秘密分享的技术扩展到很多领域与实务系统,如影像、语音等领域,是理论与实务结合的技术。本文将介绍秘密分享之基本方法,包含Shamir秘密分享方法、Blakkey秘密分享方法、Karnin-Greene-Hellman秘密分享方法、与Asmuth-Bloom秘密分享方法,并介绍秘密分享方法的应用,由於应用层面领域非常广,仅浅显介绍广义秘密分享、多个秘密分享、视觉秘密分享、与听觉秘密分享。 秘密分享技术 秘密分享一般的模式为门槛方法,一般用(m,n)-门槛方法表示,其中n > m,在这个方法中,将主金钥分成n 个次金钥,分别储存於n 个参与者保存,当次金钥超过m 个数目时,可以回复主金钥,而次金钥少於m 个时,没有足够讯息,无法推导得主金钥。在运用上可以有不同的选择,依照系统的安全需求,调整门槛值m与次金钥值。如果这个方法在次金钥少於m 个时,对於推导主金钥是没有帮助,则这一个方法的安全性是完美的。 秘密分享的方法有很多,应用的范围也很广,一般基本方法有四种:(1) Shamir方法、(2)Blakley方法、(3)Karnin-Greene-Hellman方法与(4)Asmuth-Bloom方法。 参考文献[1] Brace Schneier, “ Applied Cryptoghy 2nd,” John Wiley & Sons, Inc, 1996.[2] G.J. Simmons, “Contemporary Cryptology – The Science of Information Integrity,” IEEE Press, 1992.[3] G. R. Blakley, “Safeguarding Cryptographic Keys,” AFIPS Conference Processing, 1979.[4] L. Harn, “Generalized Secret Sharing Scheme with Perfect Secrecy.”[5] “资讯安全通讯”, 中华民国资讯安全学会,第五卷第四期,Sep 1999.[6] 赖溪松等三位,”近代密码学及其应用”,松岗电脑图书,1995。

在某些情况下,我们在沟通时,并不想让这个资讯让他人截获。比如男女主人公约会时,会说老地方见(除了他们俩,鬼知道老地方是哪里);两个山寨头子第一次见面时,先对一下暗号,“天王盖地虎,宝塔镇河妖”等等。

于是自然而然就有了密码学最开始的状态。

两千年前,古罗马名将恺撒为了防止敌方截获情报,将罗马字母建立一张对应表,这样如果不知道密码本,即使截获一段信息也看不懂。 这种编码方式史称“恺撒密码”。

如对应表如下:

使用时,加密者查找明文字母表中需要加密的消息中的每一个字母所在位置,并且写下密文字母表中对应的字母。需要解密的人则根据事先已知的密钥反过来操作,得到原来的明文。例如:

但是这种简单的对照表,只要多截获一些一些情报,就可以破解出来。比如B字母出现的概率为4.5%,那么概率在其上下浮动的密文字母就很有可能指向B。

所以电视剧里面那些,根据一组数字,这些数字对应圣经/康熙字典的页码和位置的加密方式,是很容易通过统计学的方法破译出来的。

好的密码必须要做到,根据已知明文和密文的对应推断不出新的密文内容。即无法用统计的方式找到明文和密文之间的转换规律。

从数学的角度讲,加密的过程可以看做是一个函数的运算,解密的过程是反函数的运算。明码是自变量,密码是函数值。好的密码就是不应该通过一组自变量和函数值就能推导出函数。

密码的最高境界是,地方在截获密文后,对我方所知没有任何增加,用信息论的专业术语讲,就是信息量没有增加。

现代密码学基于信息论的理论基础,不只关注信息保密问题,还同时涉及信息完整性验证(消息验证码)、信息发布的不可抵赖性(数字签名)、以及在分布式计算中产生的来源于内部和外部的攻击的所有信息安全问题。

密码学主要有三个分支:哈希密码,对称密码,非对称密码。

又称对称秘钥算法,私钥加密,共享秘钥加密。 这类算法在加密和解密时使用相同的密钥,或是使用两个可以简单地相互推算的密钥。事实上,这组密钥成为在两个或多个成员间的共同秘密,以便维持专属的通信联系。

常用的对称加密算法有:DES、3DES、 AES 、Blowfish、IDEA、RC5、RC6

注:对称加密也分为很多的门派,有兴趣的同学可以看这篇 博客

所以在远距离传输消息时,秘钥该如何交换呢?没有秘钥怎么加密?不加密怎么安全的传输秘钥?这是一个先有鸡还是先有蛋的问题。

那么该怎么解决这个难题呢?

在此之前,我们要先了解一下什么是单向函数。

单向函数wiki百科:对于每一个输入,函数值都容易计算(多项式时间),但是给出一个随机输入的函数值,算出原始输入却比较困难(无法在多项式时间内使用确定性图灵机计算)。 单向函数是否存在仍然是计算机科学中的一个开放性问题。

我们先假定,A色值混合B色值,可以得到C色值,但是只知道A和C,无法推导出B的色值,即这是一个单向函数。

1.甲、乙两个人约定一个公开的色值A 2.甲混合A、B色值,得到X,传给乙;乙混合A、C色值,得到Y,传给甲 3.这是甲得到Y,混合B得到Z;乙获得X,混合C同样可以获得Z。

这是一个比较简单的数学问题,即 : A + B = X; A + C = Y; 则: X + C = Y + B = A + B + C = Z;

而第三者可以获取的信息是 A、X、Y,根据单向函数的定义,无法反推出Z

视频地址

这就是迪菲赫尔曼秘钥交换的原理所在,在数学上找到单向函数是主要突破点。

目前主流的方法,是使用离散对数作为单向函数。

离散对数:基于同余和原根的对数运算

离散对数至今没有比较好的办法去解决,使用穷举法的话,复杂度为 ,n这里是群的大小的二进制表示的长度,也可以理解为key的二进制长度。如果用1024位的key,这个复杂度在目前的计算速度下基本可视作无法解决。 (天河二号运算速度3.39亿亿次/s)

所以我们会把离散对数问题认为是一个“很难”的问题,即它是一个单向函数。

迪菲赫尔曼秘钥交换通过单向函数的特性,给出了一种秘钥交换解决方案。

但是另一个问题又浮出水面了。如果我们全部使用对称加密的方式,那跟n个人聊天,就要保存n-1个秘钥,进行n-1次秘钥交换;而且一旦对方被突破,双方就都没有什么信息安全可言了。

非对称加密应运而生。具体请看我的下一篇博客。

中国地质大学有,信息安全系的

电子密码锁毕业论文研究计划

随着人们生活水平的提高和安全意识的加强,对锁的要求也越来越高,既要安全可靠的防盗,又要使用方便。这就使得传统的锁防盗效果已经满足不了现代社会的防盗需要,而且还存在着随身带钥匙的不便,因此近几年,随着科学技术的不断发展,一种新型的电子密码锁应运而生。电子密码锁运用电子电路控制机械部分,使两者紧密结合,从而避免了因为机械部分被破坏而导致开锁功能失常的问题,而且密码输入错误是还有报警声,大大增加了电子密码锁的防盗功能。同时因为电子密码锁不需要携带钥匙,弥补了钥匙极易丢失和伪造的缺陷,方便了锁具的使用。

相关百科

热门百科

首页
发表服务