首页

> 学术发表知识库

首页 学术发表知识库 问题

一致收敛毕业论文

发布时间:

一致收敛毕业论文

毕业论文降低重复率技巧如下:

① “删除大法”就挺好

如果有同学复制粘贴太多的话,很容易出现大段大段“标红”的情况,那么,对于这种情况,可能最快最有效的降重方法就是“删除”,干净利落,不留一点痕迹。

前提是这些内容删除后不影响整个论文的架构,不能是关键信息。否则,我们只能通过下面的方法来进行重写了。

② 用自己的话复述一遍

随着人工智能相关技术的发展,“自然语言处理”水平也是越来越高,而论文查重系统使用最基本的技术就是“自然语言处理”,这也让论文查重系统越来越智能,越来越不好“”。

不光能通过句子、词语识别来判断你论文的重复率,还能够通过语义分析进行判断,所以,大家千万不要小看现在的论文查重系统。

如果你有大段内容重复的话,可能简单调整语序、被动句改主动句、更换部分关键词、关键句子都不一定有用。

所以,这种情况下,我们只能在读懂原文的基础上,使用自己的话再复述一遍,说白了,就是重写。这,可能就有点考验我们的文字功底了,不过,大家也不必太紧张,口水一点也没有关系,只要能降重就可以。

③ “词语近义词替换、句子语序替换”

对于个别重复的语句,改起来相对来说还是比较容易的。

我们可以采用同义词替换,只留下关键的专有名词等,然后我们还可以进行语序调整,比如句子分割、改被动为主动等方法。

举个例子:在动车组上线运行过程中,为解决在关门时有异物阻挡在门的运动行程内造成门扇的机械损伤的问题,同时也避免旅客在上下列车的过程中被车门挤伤,塞拉门系统中有三种方式同时进行障碍物探测。

修改后:动车组在上线运行过程中,如果有异物阻挡在门的运动行程内,然后在关门时就有可能导致门扇的机械损伤,同时,也有可能挤伤乘客,为解决这个问题,有三种方式应用于塞拉门系统中,可同时检测障碍物。

1、选题尽量与日常工作结合起来一是便于收集数据,二是通过论文写作,对考生今后工作也有帮助,一举两得。反之,选一个与工作毫不相干的题目,从头开始,只能落得个事倍功半的结果。2、选择感兴趣的题目做论文是原创性的工作,因此,考生对某个方面感兴趣,会促使自己积极主动地探讨这方面的问题,强烈的成就动机将是做一篇优秀论文的基础。3、学术类文献综述类题目尽量不要选对所有参加自学考试的考生来讲,做学术论文是一件极具挑战性的工作,绝不是想象中那样轻松。自考过程中,考生可以通过强化复习通过考试,但做研究是完全不同的过程。只有在考生花费精力查阅大量文献后,才能知道可以做什么课题,还需要考生自己去收集数据,分析数据,撰写报告。综述性论文需要查阅大量的参考文献,从选题到提交论文,一般仅有3个月时间,真正码字可能就一两个星期的时间,在这么短的时间内要查阅到写综述的参考文献,难度相当大。时间短难度大,很少考生能将这些类型的论文写得好和有一定深度。不过,如果你实力很强,那也是可以的。当然,每次没能通过论文答辩的考生,绝大部分都是选择了这些雷区类型题目,希望大家吸取教训。

模型有三个层次:

第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。

第二个层次,描述性统计,分析数据分布特征。

第三个层次,计量分析,建立模型。而计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理。

第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。模型,建立一套研究范式,然后按此模型进行研究。

选题与预估计

问题1:暂定一个题目(包括研究对象、研究问题、拟使用的理论或方法等方面,可使用副标题,副标题一般指向研究方法或研究角度)。

问题2:给出研究目标与研究问题,并初步进行回答(研究之前必须要有预设的初步结论。所谓“实证分析”,可以将其看作是对所提出的初步结论的检验)。

问题3:给出文献综述(要求:①文献综述的内容必须与你的研究紧密相关,即根据自己研究的问题或内容梳理、概括相关文献(要注意相关性);②文献综述要能构成你研究的基础,可将其视为你的研究的理论知识平台或背景;③文献综述必须能够引出你所研究的问题,即根据自己的边际贡献或研究特点评述已有文献(要注意针对性))。

问题4:论证你所研究的问题以及其重要性(先列出“重要性”的论点,然后给出相应的论据)。

问题5:尝试运用计量软件(如:Eviews、SPSS、STATA或R)导入数据,对数据进行初步描述性分析与预估计。

集合论 初中毕业升入高一级学校的同学们会一致发现自己所学的第一个数学概念都是:集合。这门研究集合的数学理论在现代数学中被恰当地称为集合论。它是数学的一个基本分支,在数学中占据着一个极其独特的地位,其基本概念已渗透到数学的所有领域。如果把现代数学比作一座无比辉煌的大厦,那么可以说集合论正是构成这座大厦的基石,由此可见它在数学中的重要性。其创始人康托尔也以其集合论的成就被誉为对二十世纪数学发展影响最深的学者之一。下面就让我们一起去探究一下这门独特而重要的数学理论的来龙去脉,追觅它所走过的曲折历程吧。集合论的诞生 集合论是德国著名数学家康托尔于19世纪末创立的。 十七世纪数学中出现了一门新的分支:微积分。在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果。其推进速度之快使人来不及检查和巩固它的理论基础。十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动。正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端。到1874年康托尔开始一般地提出“集合”的概念。他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素。人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日。康托尔的不朽功绩 在中学数学中我们所学习的只是集合论的最基本知识。学习过程中,同学们或许觉得一切都是很自然与简单的,根本无法想象它在诞生之日遭到激烈反对的情景,也体会不到康托尔的功绩之所在。前苏联数学家柯尔莫戈洛夫评价康托尔的工作时说:“康托尔的不朽功绩在于他向无穷的冒险迈进”。因而只有当我们了解了康托尔在对无穷的研究中究竟做出了些什么结论后才会真正明白他工作的价值之所在和众多反对之声之由来。 数学与无穷有着不解之缘,但在研究无穷的道路上却布满了陷阱。因为这一原因,在数学发展的历程中,数学家们始终以一种怀疑的眼光看待无穷,并尽可能回避这一概念。但试图把握无限的康托尔却勇敢地踏上了这条充满陷阱的不归路。他把无穷集这一词汇引入数学,从而进入了一片未开垦的处女地,开辟出一个奇妙无比的新世界。对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子。下面就让我们来看一下盒子打开后他释放出的是什么。 “我们把全体自然数组成的集合简称作自然数集,用字母N来表示。”学过集合那一章后,同学们应该对这句话不会感到陌生。但同学们在接受这句话时根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作。在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释。无限永远处在构造中,永远完成不了,是潜在的,而不是实在。这种关于无穷的观念在数学上被称为潜无限。十八世纪数学王子高斯就持这种观点。用他的话说,就是“……我反对将无穷量作为一个实体,这在数学中是从来不允许的。所谓无穷,只是一种说话的方式……”而当康托尔把全体自然数看作一个集合时,他是把无限的整体作为了一个构造完成了的东西,这样他就肯定了作为完成整体的无穷,这种观念在数学上称为实无限思想。由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是无足为怪的。然而康托尔并未就此止步,他以完全前所未有的方式,继续正面探讨无穷。他在实无限观念基础上进一步得出一系列结论,创立了令人振奋的、意义十分深远的理论。这一理论使人们真正进入了一个难以捉摸的奇特的无限世界。 最能显示出他独创性的是他对无穷集元素个数问题的研究。他提出用一一对应准则来比较无穷集元素的个数。他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势。由于一个无穷集可以与它的真子集建立一一对应――例如同学们很容易发现自然数集与正偶数集之间存在着一一对应关系――也就是说无穷集可以与它的真子集等势,即具有相同的个数。这与传统观念“全体大于部分”相矛盾。而康托尔认为这恰恰是无穷集的特征。在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集。又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集。后来当他又证明了代数数[注]集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集。但出乎意料的是,他在1873年证明了实数集的势大于自然数集。这不但意味着无理数远远多于有理数,而且显然庞大的代数数与超越数相比而言也只成了沧海一粟,如同有人描述的那样:“点缀在平面上的代数数犹如夜空中的繁星;而沉沉的夜空则由超越数构成。”而当他得出这一结论时,人们所能找到的超越数尚仅有一两个而已。这是何等令人震惊的结果!然而,事情并未终结。魔盒一经打开就无法再合上,盒中所释放出的也不再限于可数集这一个无穷数的怪物。从上述结论中康托尔意识到无穷集之间存在着差别,有着不同的数量级,可分为不同的层次。他所要做的下一步工作是证明在所有的无穷集之间还存在着无穷多个层次。他取得了成功,并且根据无穷性有无穷种的学说,对各种不同的无穷大建立了一个完整的序列,他称为“超限数”。他用希伯莱字母表中第一个字母“阿列夫”来表示超限数的精灵,最终他建立了关于无限的所谓阿列夫谱系 它可以无限延长下去。就这样他创造了一种新的超限数理论,描绘出一幅无限王国的完整图景。可以想见这种至今让我们还感到有些异想天开的结论在当时会如何震动数学家们的心灵了。毫不夸张地讲,康托尔的关于无穷的这些理论,引起了反对派的不绝于耳的喧嚣。他们大叫大喊地反对他的理论。有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”。作为对传统观念的一次大革新,由于他开创了一片全新的领域,提出又回答了前人不曾想到的问题,他的理论受到激烈地批驳是正常的。当回头看这段历史时,或许我们可以把对他的反对看作是对他真正具有独创性成果的一种褒扬吧。公理化集合论的建立 集合论提出伊始,曾遭到许多数学家的激烈反对,康托尔本人一度成为这一激烈论争的牺牲品。在猛烈的攻击下与过度的用脑思考中,他得了精神分裂症,几次陷于精神崩溃。然而集合论前后经历二十余年,最终获得了世界公认。到二十世纪初集合论已得到数学家们的赞同。数学家们为一切数学成果都可建立在集合论基础上的前景而陶醉了。他们乐观地认为从算术公理系统出发,借助集合论的概念,便可以建造起整个数学的大厦。在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了。今天,我们可以说绝对的严格已经达到了。”然而这种自得的情绪并没能持续多久。不久,集合论是有漏洞的消息迅速传遍了数学界。这就是1902年罗素得出的罗素悖论。罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R。现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不应属于自身,即R不属于R;另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R。这样,不论何种情况都存在着矛盾。这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地。绝对严密的数学陷入了自相矛盾之中。这就是数学史上的第三次数学危机。危机产生后,众多数学家投入到解决危机的工作中去。1908年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称ZF公理系统。原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现。这就是集合论发展的第二个阶段:公理化集合论。与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论。公理化集合论是对朴素集合论的严格处理。它保留了朴素集合论的有价值的成果并消除了其可能存在的悖论,因而较圆满地解决了第三次数学危机。公理化集合论的建立,标志着著名数学家希耳伯特所表述的一种激情的胜利,他大声疾呼:没有人能把我们从康托尔为我们创造的乐园中赶出去。 从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等。而这一切都是与康托尔的开拓性工作分不开的。因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结。 它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一。 超限算术是数学思想的最惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一。 这个成就可能是这个时代所能夸耀的最伟大的工作。 康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献之一。注:整系数一元n次方程的根,叫代数数。如一切有理数是代数数。大量无理数也是代数数。如根号2。因为它是方程x2-2=0的根。实数中不是代数数的数称为超越数。相比之下,超越数很难得到。第一个超越数是刘维尔于1844年给出的。关于π是超越数的证明在康托尔的研究后十年才问世。

一致收敛性及应用毕业论文

目的:探讨更强的收敛条件意义:使极限与求导,积分运算可以相互交换运算次序,简化运算过程现状:不清楚

函数项级数一致收敛性的研究论文

f(x)就是极限值

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

先说下李莆希兹条件中的数列Cn为有界数列,不妨设为|Cn|0,把区间[a,b]等分成N1份,使得((b-a))/N1<ε,则任意一个等分点a+(k(b-a)/N1),(其中k=0,1,2,3,...,N1)由于{fn(x)}收敛于f(x),所以存在N2,当n>N2时,有|fn(a+(k(b-a)/N1))-f(a+(k(b-a))/N1))|<ε,取N=max{N1,N2}时,任意的x属于[a+(k(b-a))/N1,a+((k+1)(b-a))/N1],有|fn(x)-f(x)|=|fn(x)-fn(a+(k(b-a))/N1)+fn(a+(k(b-a))/N1)-f(a+(k(b-a))/N1)+f(a+(k(b-a))/N1)-f(x)|<|fn(x)-fn(a+(k(b-a))/N1)|+|fn(a+(k(b-a))/N1)-f(a+(k(b-a))/N1)|+|f(a+(k(b-a))/N1)-f(x)|

收敛极限毕业论文

如果一个数列an收敛,那么当n->∞时,有liman=A收敛速度就是数列靠近A的快慢比如当n->∞时,1/n和1/n^2都趋向于0,但是1/n^2比1/n更快地趋向于0,所以1/n^2的收敛速度比1/n快

我给个初稿吧假设{xn}、{yn}两数列在某变化过程中同时趋于A,记un=│xn-A│,vn=│yn-A│,B=limun/vn则un和vn都是无穷小量若B=0,则说xn比yn高阶,xn比yn的收敛速度快若B=常数b(b>0),则说xn的收敛速度是yn的1/b倍若B=∞,则说xn比yn低阶,xn比yn的收敛速度慢

根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)

关于收敛论文范文资料

1、定义不同

若函数f(x)在[a,b]上可积,且|f(x)|的无穷积分(从a到+∞)上收敛,则称 f(x) 的无穷积分(从a到+∞)绝对收敛。

条件收敛是一种微积分上的概念。如果级数ΣUn收敛,而Σ∣Un∣发散,则称级数ΣUn条件收敛。

首先要明确一个结论如果一个数列加上绝对值符号后收敛,那么这个数列一定收敛。

2、数列加绝对值后不同的表现

绝对收敛的数列加绝对值后是收敛的。

绝对收敛:如果一个数列加绝对值符号后收敛,那么称这个数列绝对收敛。

而条件收敛的数列加绝对值后是发散的。

条件收敛:如果一个数列加绝对值符号后发散,但这个数列本身却是收敛的,那么称这个数列条件收敛。

3、反向推断

所以绝对收敛可以得出这样的结论:这个数列加绝对值后收敛,并且这个数列本身也收敛。

所以条件收敛可以得出这样的结论:这个数列加绝对值后一定发散,但这个数列本身一定收敛。

所以绝对收敛和条件收敛的这个数列都是收敛的。

例题:

答案:

(1) 递减趋于 0 的交错级数,收敛,加绝对值后是 p=1/2 的调和级数,发散,因此条件收敛。

(2) |un|≤1/(n+1)²≤1/n²,而∑(1/n²)收敛,因此原级数绝对收敛。

扩展资料:

绝对收敛

绝对收敛级数一定收敛。

若函数f(x)在[a,b]上可积,且|f(x)|的无穷积分(从a到+∞)上收敛,则称 f(x) 的无穷积分(从a到+∞)绝对收敛。绝对收敛一定收敛

条件收敛

条件收敛是一种微积分上的概念。如果级数ΣUn收敛,而Σ∣Un∣发散,则称级数ΣUn条件收敛。

收敛

收敛数列令{a}为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|a-A|

参考资料来源:百度百科-绝对收敛

参考资料来源:百度百科-绝对收敛

2017大学数学论文范文

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。

几类特殊函数的性质及应用

【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。

【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分

1.引言

特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。

特殊函数定义及性质证明

特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。

特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。

2.伽马函数的性质及应用

2.1.1伽马函数的定义:

伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。

2.1.2Г函数在区间连续。

事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。

2.1.3,伽马函数的递推公式

此关系可由原定义式换部积分法证明如下:

这说明在z为正整数n时,就是阶乘。

由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....

2.1.4用Г函数求积分

2.2贝塔函数的性质及应用

2.2.1贝塔函数的定义:

函数称为B函数(贝塔函数)。

已知的定义域是区域,下面讨论的三个性质:

贝塔函数的性质

2.2.2对称性:=。事实上,设有

2.2.3递推公式:,有事实上,由分部积分公式,,有

由对称性,

特别地,逐次应用递推公式,有

而,即

当时,有

此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为

2.2.4

由上式得以下几个简单公式:

2.2.5用贝塔函数求积分

例2.2.1

解:设有

(因是偶函数)

例2.2.2贝塔函数在重积分中的应用

计算,其中是由及这三条直线所围成的闭区域,

解:作变换且这个变换将区域映照成正方形:。于是

通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。

2.3贝塞尔函数的性质及应用

2.3.1贝塞尔函数的定义

贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。

2.3.2贝塞尔函数的'递推公式

在式(5)、(6)中消去则得式3,消去则得式4

特别,当n为整数时,由式(3)和(4)得:

以此类推,可知当n为正整数时,可由和表示。

又因为

以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。

2.3.3为半奇数贝塞尔函数是初等函数

证:由Г函数的性质知

由递推公式知

一般,有

其中表示n个算符的连续作用,例如

由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。

2.3.4贝塞尔函数在物理学科的应用:

频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令

称为的Fourier变换。它的逆变换是

若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,

这就是Shannon取样定理。Shannon取样定理中的母函数是

由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:

以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。

首先建立取样定理

设:

其中是零阶贝塞尔函数。构造函数:

经计算:

利用分部积分法,并考虑到所以的Fourier变换。

通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:

类似地

经计算:

经计算得:

则有:设是的Fourier变换,

记则由离散取样值

因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。

例2.4,利用

引理:当

因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式

首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:

(1)

其中

函数的幂级数展开式为:

则关于幂级数展开式为: (2)

由引理及(2)可得

(3)

由阶修正贝塞尔函数

其中函数,且当为正整数时,取,则(3)可化为

(4)

通过(1)(4)比较系数得

又由被积函数为偶函数,所以

公式得证。

3.结束语

本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。

参考文献:

[1] 王竹溪.特殊函数概论[M].北京大学出版社,2000.5,90-91.

[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)

[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.

[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.

[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.

[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.

[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,1992.2.

[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.

[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.

[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.

一、性质不同

1、绝对收敛:一般用来描述无穷级数或无穷积分的收敛情况,如果级数ΣUn各项的绝对值所构成的级数Σ|Un|收敛,则称级数ΣUn绝对收敛,级数ΣUn称为绝对收敛级数。

2、条件收敛:一种微积分上的概念。如果级数ΣUn收敛,而Σ∣Un∣发散,则称级数ΣUn条件收敛。

二、经济学意义不同

1、绝对收敛:是不论条件如何,穷国比富国收敛更快。

2、条件收敛:是技术给定,其他条件一样的话,人均产出低的国家,相对于人均产出高的国家,有着较高的人均产出增长率,一个国家的经济在远离均衡状态时,比接近均衡状态时,增长速度快。

三、计算规则不同

1、绝对收敛:可以交换次序,可以相乘

2、条件收敛:相乘有限制条件,交换次序可以收敛到复平面上一条直线或整个复平面的任意一点。

参考资料来源:百度百科-条件收敛

参考资料来源:百度百科-绝对收敛

1、区别

绝对收敛和条件收敛都收敛,但是绝对收敛绝对值仍收敛,条件收敛绝对值发散。

2、例子及解答

相关百科

热门百科

首页
发表服务