首页

> 学术发表知识库

首页 学术发表知识库 问题

煤制甲烷工艺研究进展论文

发布时间:

煤制甲烷工艺研究进展论文

I.(1)根据盖斯定律可知,将①×2+②+③可得:2C(s)+2H2O(g)=CH4 (g)+CO2 (g)△H=(+131kJ/mol)×2+(-41kJ/mol)+(-206kJ/mol)=+15 kJ/mol,故答案为:2C(s)+2H2O(g)=CH4 (g)+CO2 (g)△H=+15 kJ/mol (2)煤转化为水煤气(CO和H2)作为燃料时,燃烧更充分,煤的利用率更高,产生的污染物少,故答案为:提高煤的利用率(节约能源或节约资源)、减少污染;(3)在碱性甲烷燃料电池中,甲烷在负极放电,考虑到是碱性环境,故生成CO32-,故负极反应式为:CH4-8e-+10OH-=CO32-+7H2O,故答案为:CH4-8e-+10OH-=CO32-+7H2O;Ⅱ、(1)实验②与①相比温度不变,体积增大,则压强减小,速率减慢,平衡不移动,体积增大一倍,浓度时原来的一半;实验③与②相比较压强不变,温度升高,速率加快,平衡逆向移动,二氧化碳的浓度减小,但小于实验①的浓度,据此画图为:故答案为:(2)平衡时n(CO2)=0.20mol/L×2.0L=0.40mol                 CO(g)+H2O(g) CO2 (g)+H2(g)起始物质的量/mol  1.00   1.00             1.00       1.00变化物质的量/mol  0.40   0.40             0.40       0.40平衡物质的量/mol  0.60   0.60             0.40       0.40故平衡常数 K═=0.4mol/L×0.4mol/L0.6mol/L×0.6mol/L=0.44 起始时充入容器的物质的量,n(CO)=n(H2O)=n(CO2)=n( H2)=1.00mol时,C(CO)=C(H2O)=C(CO2)=C( H2)=0.5mol/L,此时浓度商Qc==0.5mol/L×0.5mol/L0.5mol/L×0.5mol/L=1.0可知Qc>K,故反应向逆反应方向(生成CO和H2O的方向)进行,故答案为:反应向逆反应方向进行.

我想楼主说的dakota是美国达科他州的煤制天然气项目吧 查看原帖>>

总感觉大规模利用煤炭资源不应该是能源战略,而是适度开发利用,这种战略储备为主的,煤制甲烷相对于天然气没有什么经济优势,那么大规模发展的情景何在呢? 查看原帖>>

如何看待此问题,是个见仁见智的事!确实从能源转化上来看,是不合适的,但也应该看到:1、煤的品种和运输问题,可能就只能在当地进行转化,要么就在那埋着不能用2、从环保来看,可以将污染尽量减少,如煤还有的硫等 查看原帖>>

甲烷最新研究进展论文

摘要: 地底下有一种神秘的古菌,力量无穷,可以在适当的情境下,把很多物质分解。这种新型产甲烷古菌有可能作为一种全新的合成生物学底盘细胞,具有广泛的应用前景。

地底下到底在发生什么,对于人类来说,还有很多未解之谜。

最近,中国科学家和英国科学家,几乎同时发现一个惊人秘密:即在地球深层,有一种神秘的古微生物,可以在地底下把二氧化碳和石油等碳烃物质,降解为甲烷。

来自中国农业农村部沼气科学研究所的专家发现,一种来自油藏的新型产甲烷古菌,可在厌氧环境下直接氧化原油中的长链烷基烃产生甲烷,突破了产甲烷古菌只能利用简单化合物生长的传统认知,拓展了对产甲烷古菌碳代谢功能的认知。

而来自英国牛津大学的专家发现,把二氧化碳注入地底下,通过产甲烷微生物作用,可将一部分二氧化碳转化为甲烷。

我们知道,甲烷是一种比二氧化碳更强的温室气体,但由于其高度可燃性,通常是作为燃料(天然气及沼气等的主要成分)为我们日常生活所用。并且甲烷也可作为化工原料,广泛应用于氢气、一氧化碳、乙炔及甲醛等的制造。

2021年12月23日,《自然》杂志在线同时刊登了这两个发现成果。两者的基本原理都差不多,但是在不同的应用场景中发现。这些成果在实际生产中有广泛用途。

01 英国科学家:地下注入二氧化碳产生了甲烷

在过去的50年里,大气中的二氧化碳(CO₂)水平显著增加,导致全球气温升高和地球气候的突然变化。碳捕获和封存(CCS)是科学家希望在应对气候危机方面发挥重要作用的新技术之一。

CCS包括从工业过程排放的气体中捕获CO₂,或者从发电过程中燃烧化石燃料中捕获CO₂,然后将其储存在地下的地质构造中。如果我们想要从碳氢化合物系统中“清洁燃烧”生产氢气,CCS也将是关键。

英国政府最近选择了四个地点来开发数十亿英镑的CCS项目,这是英国到2030年每年从重工业中削减2000万至3000万吨CO₂计划的一部分。其他国家也做出了类似的碳减排承诺。

二氧化碳驱油法(CO₂-EOR)是作为提高石油开采率的一种手段,CO₂ 历史 上曾被注入到许多枯竭的碳氢化合物油藏中。这提供了一个独特的机会来评估注入碳在工程时间尺度上的(生物)地球化学行为。

“CCS将是我们避免气候变化斗争中的关键工具。除了计算机建模和基于实验室的实验,了解CCS在实践中是如何工作的,对于提供安全可靠的CO₂地质封存是至关重要的。”牛津大学地球科学系Rebecca Tyne博士说。

Rebecca Tyne博士是这个项目合作团队人员之一,也是《自然》杂志论文的作者。她和牛津大学地球科学系Chris Ballentine教授带领一个国际合作者团队调查了美国路易斯安那州一个CO₂-EOR驱油油田中CO₂的变化。

他们比较了驱油开采油田中CO₂与相邻油田的(生物)地球化学组成。相邻油田从未进行过CO₂采油。

数据显示,在驱油开采的油田中,CO₂提高采收率后留下的高达74%的二氧化碳溶解在地下水中。出人意料的是,通过生产甲烷微生物作用,注入的CO₂中高达13-19%转化成了甲烷。

“与CO₂相比,甲烷的溶解性、可压缩性和反应性更低,因此,如果能产生甲烷,我们可以安全地向这些地点注CO₂。现在这个过程已经被确定,我们可以在未来的CCS选址中考虑到这一点。” Chris Ballentine教授说。

此外,作者认为,这一过程也发生在其他富含CO₂的天然气田和驱油开采油田中。温度是一个关键的考虑因素,许多 CCS 地质目标对于微生物的运行来说太深太热。然而,如果CO₂从较深的热系统泄漏到类似的较浅、较冷的地质结构中,那里存在微生物,CO₂转化为甲烷这一过程可能会发生。

这项研究对确定未来的CCS目标、建立安全的基线条件和长期监测计划至关重要,而这对低风险、长期碳储存非常重要。

02 中国科学家:神秘古菌以“一己之力”生产甲烷

传统原油开采技术,难以驱动地下油藏全部原油的运移,仍然有过半原油开采不出来。科学家相信,能在油藏环境中存活的厌氧微生物有望成为人类的帮手。利用沼气发酵原理,将液态原油降解成气态甲烷,形成油气共采,是科学家 探索 的一条道路。

据《中国科学报》报道,来自中国农业农村部沼气科学研究所(下称“沼科所”)能源微生物创新团队,与深圳大学、德国马克斯·普朗克海洋微生物研究所、中国石化微生物采油重点实验室等单位研究人员合作,发现了一种来自油藏的新型产甲烷古菌,可在厌氧环境下直接氧化原油中的长链烷基烃产生甲烷,突破了产甲烷古菌只能利用简单化合物生长的传统认知,拓展了对产甲烷古菌碳代谢功能的认知。

原油的主要成分是由几十个碳链形成的比较复杂的碳氢化合物。

早在上世纪末,德国科学家首次在《自然》报道了石油烃可以被厌氧微生物降解转化为甲烷。但是,这种生物降解过程与传统的沼气发酵类似,需要多种不同类型的细菌和古菌,通过互营代谢来完成。

论文共同通讯作者、深圳大学教授李猛告诉《中国科学报》,互营代谢是指有机质分解降解产生甲烷的时候,需要细菌和产甲烷古菌两种不同类型的微生物通过彼此依赖、互不可分的方式合作。

“在缺氧环境下,有机质被降解产生甲烷的过程俗称沼气发酵。”论文作者、沼科所研究员白丽萍说,过去的观点认为,产甲烷古菌仅能通过乙酸发酵、CO₂还原、甲基裂解和氧甲基转化等4条途径产生甲烷。其所能利用的底物非常简单,主要是一碳或者二碳化合物。

“以前的教科书告诉我们,对于由几十个碳组成的烷烃和烷基烃这种复杂有机物,产甲烷古菌是不可能直接‘吃’掉它们的。之前,也没有微生物直接降解石油烃生成甲烷或者CO₂的研究报道。”论文通讯作者、沼科所研究员承磊说。

论文第一作者、沼科所周卓介绍,厌氧微生物是地球上数量最多、物种最丰富的生物资源。但由于技术原因,目前分离鉴定的厌氧微生物物种不足0.1%,大部分还属于“微生物暗物质”。科学家知道其存在,但是不知道它们是一种什么样的存在。

产甲烷古菌就是一种独特的厌氧微生物,对氧气敏感,通常在空气中暴露几分钟就会死亡。它之所以被称为“古菌”,是因为这种独特的生命早在35亿年前就存在于地球上。它拥有很多头衔:地球上最早的生命形式之一、全球大气甲烷排放主要贡献者、沼气发酵过程中的关键功能微生物。

“找到这种新的产甲烷古菌是一个意外的发现。”承磊说,其团队从2005年开始进行厌氧烃降解产甲烷的研究,但工作开展起来非常难。

“第五种甲烷产生途径的提出,完善了我们 探索 全球碳素生物地球化学循环的认知。”承磊说。

论文作者、中国石化微生物采油重点实验室教授汪卫东告诉《中国科学报》,这也说明在油藏条件下,还有丰富的未知微生物存在,它们有着不同的功能。其中一些微生物以不同的方式降解原油,将其转化成甲烷或天然气。

03 多样化的应用前景

传统的原油开采技术,主要是应用化学物质或水压力来驱动地下深层的原油运移。“这种利用物理和化学方法采油的技术,导致超过一半的原油残留在地下油藏,难以被开采利用。”汪卫东说,基于这项研究成果,将有可能利用地下厌氧微生物的作用,把液态的原油降解变成气态的甲烷,形成油气共采,最终达到较高的原油开采利用率。这也可延长油藏的开发寿命,有望让老油田“复活”。

沼科所所长王登山认为,这项由“0”到“1”的基础研究认知,为人们开发“地下沼气工程”奠定了理论基础。

“地下的油不用抽出来,可以直接把油变成气,让气体出来,进行甲烷的收集。这相当于我们把沼气池修在了几千米的地下油藏中,形成平方公里尺度的巨大‘地下沼气池’。”王登山说,因此,基于该项成果的技术攻关一旦突破,对枯竭油藏进行油气共采,增产的油气总量将达到数亿吨,这将为缓解我国能源对外依赖度、保障国家能源安全提供科学支撑。

此外,这种新型产甲烷古菌有可能作为一种全新的合成生物学底盘细胞,具有广泛的应用前景。

参考资料:

[1]中国科学报:神秘古菌以“一己之力”产甲烷

[2]

[3]

[4]

文:综合自《中国科学报》、sciencedaily

近日,中国科学院深海科学与工程研究所地外海洋系统研究室研究员刘翠艳作为共同作者在全球气候变化领域期刊Nature Climate Change上发表了题为Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic 的文章。该研究在北极地区甲烷净排放量方面取得新进展。 研究人员将最近在北极矿物土壤中发现的高亲和力甲烷氧化菌(HAMs;甲烷氧化细菌)和产甲烷菌的动力学整合到包含永冻层土壤有机碳动力学的生物地球化学模型中。新模型预测,由于永冻层中的有机碳在较暖和的气候下会更容易被微生物降解,在2017年至2100年之间湿地甲烷排放量将增加一倍。但是,高地冻土由HAMs主导的甲烷汇强度同时也在增加,因而抵消了大部分湿地甲烷的排放,令北极地区甲烷净排放量仅增加18%。预计由于HAMs和产甲烷菌对温度上升所作出的生理反应有异,北极地区甲烷净排放量可能会进一步降低。 图.从2017年到2100年北极(北纬50°以上)年度净甲烷排放量预测

氢制甲醇研究进展论文

近日,中国科学院副院长、院士张涛公开表示,利用可再生能源发电制取绿氢,再和二氧化碳结合生成方便储运的绿色甲醇,是通向零碳排放的重要路径。

在氢的制、储、运、加环节成本居高不下,基础设施建设跟进缓慢的背景下,绿色甲醇经济或将推进氢能产业链降本增效,疏通产业“堵点”。

可作为安全高效的储氢载体

在张涛看来,绿色甲醇能量密度高,是理想的液体能源储运方式。

“甲醇是非常好的运氢、储氢的载体,甲醇和水反应的产氢量是同容积液氢的两倍。”澳大利亚国家工程院外籍院士刘科曾表示。

中科院大连化学物理研究所张家港产业技术研究院院长韩涤非认为:“甲醇作为常温常压下的液体燃料,可安全高效经济便捷储运。结合氢能产业发展现状,以甲醇作为高密度储氢材料,每吨甲醇与水重整可制出超过180公斤氢气,较之高压或低温液态储氢方式具有更高的的储氢能量密度。”

实际上,储能并不仅仅局限于储电,绿色甲醇就是一种理想的储能方式。在韩涤非看来,出于对储运安全和经济性的考量,甲醇是目前大规模安全高效储能的有效解决方案。“‘十四五’规划及2035年远景目标,都积极倡导发展可再生能源及大规模储能,而绿色甲醇可以在消纳可再生能源的同时,解决大规模储能问题,并最大程度实现二氧化碳减排。”

助力氢能各环节降本

韩涤非表示,甲醇制氢可大幅降低用氢成本。“甲醇价格一般在2000-3000元/吨,今年受新冠肺炎疫情及页岩油气价格战等因素影响,市场需求一度趋弱,甲醇市场价格偏低,西部地区不到1500元/吨,东部地区不到2000元/吨。随着市场转暖,近期价格反弹到2300元/吨以上。”

刘科也表示,在氢能使用成本方面,甲醇制氢的成本在理想情况下可低至15元/公斤,而国际上最低的综合用氢成本高达66.4元/公斤。

与此同时,甲醇也可实现氢能的即制即用。

韩涤非表示,利用甲醇储运的便捷性,可在氢能应用端开发建设加氢站,并在现场根据需求制氢,且氢气制备成本不高,终端应用,加氢价格低于35元/公斤,可有效打通可再生能源大规模电解水制氢、甲醇合成储运及现场制氢加氢站等整个产业链。“甲醇储运和汽油储运成本几乎持平,终端应用的加氢价格也能真实反映出整个制、储、运、加环节的成本。”

助推氢能产业链“绿色升级”

在张涛看来,绿色甲醇作为能源转化中枢,能够在碳足迹全流程上解决能源的清洁性问题,并起到拓展氢能应用产业链、降低碳排放、实现碳利用等一举多得的效果。

“可再生能源制氢结合煤化工制备甲醇,可减少二氧化碳排放,增加了甲醇产量,有效解决我国化石能源的进口依存度及碳排放量过高等能源安全和生态环境问题,有利于实现传统煤化工产业的新旧动能转换和绿色低碳发展。”韩涤非表示,“利用可再生能源电解水制氢与煤化工耦合生产甲醇,1.5吨煤可增产2吨甲醇,并减少3吨二氧化碳排放,比传统煤化工更经济环保。”

中国科学院大连化学物理研究所研究员、中国科学院院士李灿认为,绿色甲醇可有效解决跨季储能及长周期储能问题,成为除特高压输电外的另一种规模化输送能源的途径。

广东醇氢新能源研究院有限公司是甲醇制氢设备与技术的专业供应商,产品氢气主要应用于:粉末冶金、金属冶炼、新能源、燃料电池、化工、多晶硅、工业气体、电子、制药、浮法玻璃、食品加氢、军工、航天、环保等领域。

当今社会,化石能源枯竭、全球变暖等能源和环境危机是人类面临的重大问题。CO2加氢反应是低碳化学中的重要反应,一方面可以直接减少CO2的排放,缓解温室效应;另一方面可以合成燃料和化学品,实现人工碳循环,缓解化石能源的短缺。在实际催化过程中,各种各样的反应路径可能共同存在,这极大得限制了目标产物的选择性。因此,优化CO2加氢反应路径是调控目标产物选择性和反应活性的重要策略。

烷烃脱氢研究进展论文

年抢六元环网间拖欠防疫的烟速,可以上百度就能搜索这些因素影响最终产品的发布和收入。

这不是闺房记乐,这是闲情记趣中的。绝 是说 花多,不断绝。你自己参照百度吧属 是一类的意思 。联系上下文,是寻觅昆虫善 这一句翻译为,岂不是很好吗行 试验,或者说做了 。何妨而效之 , 何不仿效一下。或抱花梗,或踏草叶,栩栩如生,宛然动人。上文说以针刺死,做了标本,所以有这句。浮生六记记得是芸这个人,表现的是一个知己与伴侣的妻子,你从这方面来回答吧。既然是闲情,也何必计较呢,应试教育真是糟蹋东西。我闲居在家的时候,案头上的插花盆景长续不断。芸说,你的插花啊,能表现出雨露风晴中的各种自然韵味,可谓精妙入神。然后画法中有一种草木与昆虫共同相处的方法,你为何不效仿一下呢。我说,虫儿会爬会乱动,怎么可能像作画一般呢?芸说,我有一种办法,不过恐怕会被(后人)作为始作俑者而引起罪过呢。我说,那你说说看。芸说,虫儿死后,它的颜色神态并不会有多大改变,(我们)找到螳螂产蝉蝶之类用针刺死,然后用细丝捆在它们的脖子上,系在草木间,再整理它们的脚足,或抱花梗,或踏草叶,栩栩如生,(这样)岂不是很好吗?我很高兴,按她的办法去试了,看见的人没有不赞美称绝的。求于闺中的意见,当今世上恐怕未必再有这样会心的人了吧。

绿色催化剂的应用及进展摘要]对新型绿色催化剂杂多化合物的研究进展进行了综述,主要介绍了杂多化合物在催化氧化、烷基化、异构化等石油化工领域的研究现状,并对其应用和发展前景做了总结和评述。[关键词]杂多化合物;绿色化工催化剂;展望随着人们对环保的日益重视以及环氧化产品应用的不断增加,寻找符合时代要求的工艺简单、污染少、绿色环保的环氧化合成新工艺显得更为迫切。20世纪90年代后期绿色化学[1,2]的兴起,为人类解决化学工业对环境污染,实现可持续发展提供了有效的手段。因此,新型催化剂与催化过程的研究与开发是实现传统化学工艺无害化的主要途径。杂多化合物催化剂泛指杂多酸及其盐类,是一类由中心原子(如P、Si、Fe、B等杂原子及其相应的无机矿物酸或氢氧化物)和配位原子(如Mo、W、V、Ta等多原子)按一定的结构通过氧原子桥联方式进行组合的多氧簇金属配合物,用HPA表示[3-6]。HPA的阴离子结构有Keggin、Dawson、Anderson、Wangh、Silverton、Standberg和Lindgvist 7种结构。由于杂多酸直接作为固体酸比表面积较小(<10 m2/g),需要对其固载化。固载化后的杂多酸具有“准液相行为”和酸碱性、氧化还原性的同时还具有高活性,用量少,不腐蚀设备,催化剂易回收,反应快,反应条件温和等优点而逐渐取代H2SO4、HF、H3PO4应用于催化氧化、烷基化、异构化等石油化工研究领域的各类催化反应。1杂多酸在石油化工领域的研究进展随着我国石油化工工业的快速发展,以液态烃为原料制取乙烯的生产能力在不断增长,而产生的副产物中有大量的C3~C9烃类,其化工综合利用率却仍然较低,随着环保法规对汽油标准中烯烃含量的严格限制,如何在不降低汽油辛烷值的情况下,生产出高标号的环境友好汽油已是我国炼油业面临的又一个技术难题。目前,催化裂化副产物C3~C9烃类的催化氧化、烷基化、芳构化以及C3~C9烃类的回炼技术已成为研究的热点。因此,催化裂化C3~C9烃类的开发与应用将有着强大的生产需求和广阔的市场前景。1.1催化氧化反应杂多酸(盐)作为一类氧化性相当强的多电子氧化催化剂,其阴离子在获得6个或更多个电子后结构依然保持稳定。通过适当的方法易氧化各种底物,并使自身呈还原态,这种还原态是可逆的,通过与各种氧化剂如O2、H2O2、过氧化尿素等相互作用,可使自身氧化为初始状态,如此循环使反应得以继续。用杂多酸作催化剂使有机化合物催化氧化作用有两种路线是可行的[7]:①分子氧的氧化:即氧原子转移到底物中;②脱氢反应的氧化。将直链烷烃进行环氧化是生产高辛烷值汽油的重要途径之一。Bregeault等[8]研究了在CHCl3-H2O两相中,在作为具有催化活性的过氧化多酸化合物的前体的杂多负离子[XM12O40]n-和[X2M18O62]m-以及同多负离子[MxOy]z-(M=Mo6+或W6+;X=P5+,Si4+或B3+)的存在下,用过氧化氢进行1-辛烯的环氧化反应时,负离子[BW12O40]5-、[SiW12O40]4-和[P2W18O62]6-都是非活性的,并且许多光谱分析法表明它们的结构在反应过程中没有发生变化。[PMo12O40]3-表现出很低的活性,而[PW12O40]3-、H2WO4和[H2W12O42]10-都表现出高活性。反应中Keggin型杂多负离子[PW12O40]3-被过量的过氧化氢分解而形成过氧化多酸{PO4[WO(O2)2]4}3-和[W2O3(O2)4(H2O)2]2-,而这两种活性物种在环氧化反应中起到了重要的作用。1.2烷基化反应石油炼制工业上,烷烃烷基化、烯烃烷基化及芳烃烷基化反应是生产高辛烷值清洁汽油组分的环境友好工艺。但以浓硫酸和氢氟酸作为催化剂的传统烷基化工艺因氢氟酸的毒性和浓硫酸的严重腐蚀性受到了很大的限制。C4抽余液是蒸气裂解装置产生的C4馏份经抽提分离丁二烯后的C4剩余部分,其中富含大量的1-丁烯和异丁烯。如何利用C4抽余液中的异丁烯和1-丁烯是C4抽余液化工利用的关键。异丁烯是一种重要的基本有机化工原料,主要用于制备丁基橡胶和聚异丁烯,也用来合成甲基丙烯酸酯、异戊二烯、叔丁酚、叔丁胺等多种有机化工原料和精细化工产品。1-丁烯是一种化学性质比较活泼的a-烯烃,其主要用途是作为线性低密度聚乙烯(LLDPE)的共聚单体,也用于生产聚丁烯、聚丁烯酯、庚烯和辛烯等直链或支链烯烃、仲丁醇、甲乙酮、顺酐、环氧丁烷、醋酸、营养药、农药等。特别是自20世纪70年代LLDPE工业化技术开发成功以来,随着LLDPE工业生产的蓬勃发展,国内外对1-丁烯的需求与日俱增,已成为发展最快的化工产品之一。刘志刚[9]等用浸渍法制备了Cs+、K+、NH4+的SiPW12杂多酸盐类和SiO2负载的SiPW12杂多酸,在超临界条件下评价了它们对异丁烷和丁烯烷基化的催化作用。结果表明,它们的活性和选择性大小顺序是当阳离子数相同时,Cs+盐>K+盐>NH4+盐。(NH4)2.5H1.5SiW12O40尽管催化活性不高,但对C8产物的选择性达到83.48%;Cs2.5H1.5SiW12O40具有很高的催化活性,但其对C8产物的选择性却只有62.47%。1.3异构化反应汽油的抗爆性用异辛烷值表示,直链烃异构化是生产高辛烷值汽油的重要手段。C5~C6烷烃骨架异构化旨在提高汽油总组成的辛烷值,反应受平衡限制,低温有利于支链异构化热动力学平衡。为达到最大的异构化油产率,C5~C6烷烃异构化应在尽可能低的温度和高效催化剂存在下进行。烷烃骨架异构化是典型的酸催化反应,最近发现有较多的固体酸材料(其酸强度高于H-丝光沸石)可用于轻质烷烃骨架异构化,其中,最有效的有基于杂多酸(HPA)的催化材料和硫酸化氧化锆、钨酸化氧化锆(WOx-ZrO2)。2绿色催化剂绿色化学对催化剂也提出了相应的要求[1,2]:(1)在无毒无害及温和的条件下进行;(2)反应应具有高的选择性,人们将符合这两点的催化剂称之为绿色催化剂。由于一些杂多酸化合物表现出准液相行为,极性分子容易通过取代杂多酸中的水分子或扩大聚合阴离子之间的距离而进入其体相中,在某种意义上吸收大量极性分子的杂多酸类似于一种浓溶液,其状态介于固体和液体之间,使得某些反应可以在这样的体相内进行。作为酸催化剂,其活性中心既存在于“表相”,也存在于“体相”,体相内所有质子均可参与反应,而且体相内的杂多阴离子可与类似正碳离子的活性中间体形成配合物使之稳定。杂多酸有类似于浓液的“拟液相”,这种特性使其具有很高的催化活性,既可以表面发生催化反应,也可以在液相中发生催化反应。准液相形成的倾向取决于杂多酸化合物和吸收分子的种类以及反应条件。正是这种类似于“假液体”的性质致使杂多酸即可作均相及非均相反应,也可作相转移催化剂。陈诵英[10]等用二元杂多酸为催化剂,双氧水为氧化剂,醋酸为溶剂,催化氧化三甲基苯酚(TMP)合成三甲基苯醌(TMBQ),这与传统方法先用发烟硫酸磺化TMP,然后在酸性条件下用固体氧化剂氧化得到TMBQ相比,能减少排放大量废水以及10 t以上的固体废物,且其摩尔收率可达86%,大大提高了原子利用率。刘亚杰[11]等采用一种性能优良的环境友好的负载型杂多酸催化剂(HRP-24)合成二十四烷基苯。HR-24属于一种大孔、细颗粒、强酸性的固体酸催化剂,大孔和细颗粒有利于大分子烯烃的扩散,且不容易被长链烯烃聚合形成的胶质堵塞孔道,而强酸性可使催化剂在较低温度下就具有较高的催化活性。实验表明,在反应温度和压力较低的情况下(120℃和0.1~0.2 MPa),烯烃的转化率和二十四烷基苯的选择性都接近100%。Furuta等[12]采用Pd-H3SiW12O40催化乙烯在氧气和水存在下氧化一步合成了乙酸乙酯,简化合成工艺,与绿色化学相适应。刘秉智[13]以活性炭负载磷钼钨杂多酸为催化剂,用30%双氧水催化氧化苯甲醇合成苯甲醛,苯甲醛收率可达74.8%。与国内同类产品的生产工艺相比,其具有催化活性好,反应条件温和,生产成本低廉,催化剂可重复使用,对设备无腐蚀性,不污染环境,是一种优良的新型合成工艺路线,具有一定的工业开发前景。3展望虽然绿色化工催化剂理论发展逐渐得到完善,但大多数催化剂仍停留在实验阶段,催化剂性能不稳定,制备过程复杂,性价比低是制约其工业化应用的主要原因,但从长远角度考虑,采用绿色化工催化剂是实现生产零污染的一个必然趋势。环境友好的负载型杂多酸催化剂既能保持低温高活性、高选择性的优点,又克服了酸催化反应的腐蚀和污染问题,而且能重复使用,体现了环保时代的催化剂发展方向。今后的研究重点应是进一步探明负载型杂多酸的负载机制和催化活性的关系,进一步解决活性成分的溶脱问题,并进行相关的催化机理和动力学研究,为工业化技术提供数据模型,使负载型杂多酸早日实现工业化生产,为石油化工和精细化工等行业创造更大的经济、社会效益。求最佳答案

绿色催化剂的应用及进展摘要]对新型绿色催化剂杂多化合物的研究进展进行了综述,主要介绍了杂多化合物在催化氧化、烷基化、异构化等石油化工领域的研究现状,并对其应用和发展前景做了总结和评述。[关键词]杂多化合物;绿色化工催化剂;展望随着人们对环保的日益重视以及环氧化产品应用的不断增加,寻找符合时代要求的工艺简单、污染少、绿色环保的环氧化合成新工艺显得更为迫切。20世纪90年代后期绿色化学[1,2]的兴起,为人类解决化学工业对环境污染,实现可持续发展提供了有效的手段。因此,新型催化剂与催化过程的研究与开发是实现传统化学工艺无害化的主要途径。杂多化合物催化剂泛指杂多酸及其盐类,是一类由中心原子(如P、Si、Fe、B等杂原子及其相应的无机矿物酸或氢氧化物)和配位原子(如Mo、W、V、Ta等多原子)按一定的结构通过氧原子桥联方式进行组合的多氧簇金属配合物,用HPA表示[3-6]。HPA的阴离子结构有Keggin、Dawson、Anderson、Wangh、Silverton、Standberg和Lindgvist 7种结构。由于杂多酸直接作为固体酸比表面积较小(<10 m2/g),需要对其固载化。固载化后的杂多酸具有“准液相行为”和酸碱性、氧化还原性的同时还具有高活性,用量少,不腐蚀设备,催化剂易回收,反应快,反应条件温和等优点而逐渐取代H2SO4、HF、H3PO4应用于催化氧化、烷基化、异构化等石油化工研究领域的各类催化反应。1杂多酸在石油化工领域的研究进展随着我国石油化工工业的快速发展,以液态烃为原料制取乙烯的生产能力在不断增长,而产生的副产物中有大量的C3~C9烃类,其化工综合利用率却仍然较低,随着环保法规对汽油标准中烯烃含量的严格限制,如何在不降低汽油辛烷值的情况下,生产出高标号的环境友好汽油已是我国炼油业面临的又一个技术难题。目前,催化裂化副产物C3~C9烃类的催化氧化、烷基化、芳构化以及C3~C9烃类的回炼技术已成为研究的热点。因此,催化裂化C3~C9烃类的开发与应用将有着强大的生产需求和广阔的市场前景。1.1催化氧化反应杂多酸(盐)作为一类氧化性相当强的多电子氧化催化剂,其阴离子在获得6个或更多个电子后结构依然保持稳定。通过适当的方法易氧化各种底物,并使自身呈还原态,这种还原态是可逆的,通过与各种氧化剂如O2、H2O2、过氧化尿素等相互作用,可使自身氧化为初始状态,如此循环使反应得以继续。用杂多酸作催化剂使有机化合物催化氧化作用有两种路线是可行的[7]:①分子氧的氧化:即氧原子转移到底物中;②脱氢反应的氧化。将直链烷烃进行环氧化是生产高辛烷值汽油的重要途径之一。Bregeault等[8]研究了在CHCl3-H2O两相中,在作为具有催化活性的过氧化多酸化合物的前体的杂多负离子[XM12O40]n-和[X2M18O62]m-以及同多负离子[MxOy]z-(M=Mo6+或W6+;X=P5+,Si4+或B3+)的存在下,用过氧化氢进行1-辛烯的环氧化反应时,负离子[BW12O40]5-、[SiW12O40]4-和[P2W18O62]6-都是非活性的,并且许多光谱分析法表明它们的结构在反应过程中没有发生变化。[PMo12O40]3-表现出很低的活性,而[PW12O40]3-、H2WO4和[H2W12O42]10-都表现出高活性。反应中Keggin型杂多负离子[PW12O40]3-被过量的过氧化氢分解而形成过氧化多酸{PO4[WO(O2)2]4}3-和[W2O3(O2)4(H2O)2]2-,而这两种活性物种在环氧化反应中起到了重要的作用。1.2烷基化反应石油炼制工业上,烷烃烷基化、烯烃烷基化及芳烃烷基化反应是生产高辛烷值清洁汽油组分的环境友好工艺。但以浓硫酸和氢氟酸作为催化剂的传统烷基化工艺因氢氟酸的毒性和浓硫酸的严重腐蚀性受到了很大的限制。C4抽余液是蒸气裂解装置产生的C4馏份经抽提分离丁二烯后的C4剩余部分,其中富含大量的1-丁烯和异丁烯。如何利用C4抽余液中的异丁烯和1-丁烯是C4抽余液化工利用的关键。异丁烯是一种重要的基本有机化工原料,主要用于制备丁基橡胶和聚异丁烯,也用来合成甲基丙烯酸酯、异戊二烯、叔丁酚、叔丁胺等多种有机化工原料和精细化工产品。1-丁烯是一种化学性质比较活泼的a-烯烃,其主要用途是作为线性低密度聚乙烯(LLDPE)的共聚单体,也用于生产聚丁烯、聚丁烯酯、庚烯和辛烯等直链或支链烯烃、仲丁醇、甲乙酮、顺酐、环氧丁烷、醋酸、营养药、农药等。特别是自20世纪70年代LLDPE工业化技术开发成功以来,随着LLDPE工业生产的蓬勃发展,国内外对1-丁烯的需求与日俱增,已成为发展最快的化工产品之一。刘志刚[9]等用浸渍法制备了Cs+、K+、NH4+的SiPW12杂多酸盐类和SiO2负载的SiPW12杂多酸,在超临界条件下评价了它们对异丁烷和丁烯烷基化的催化作用。结果表明,它们的活性和选择性大小顺序是当阳离子数相同时,Cs+盐>K+盐>NH4+盐。(NH4)2.5H1.5SiW12O40尽管催化活性不高,但对C8产物的选择性达到83.48%;Cs2.5H1.5SiW12O40具有很高的催化活性,但其对C8产物的选择性却只有62.47%。1.3异构化反应汽油的抗爆性用异辛烷值表示,直链烃异构化是生产高辛烷值汽油的重要手段。C5~C6烷烃骨架异构化旨在提高汽油总组成的辛烷值,反应受平衡限制,低温有利于支链异构化热动力学平衡。为达到最大的异构化油产率,C5~C6烷烃异构化应在尽可能低的温度和高效催化剂存在下进行。烷烃骨架异构化是典型的酸催化反应,最近发现有较多的固体酸材料(其酸强度高于H-丝光沸石)可用于轻质烷烃骨架异构化,其中,最有效的有基于杂多酸(HPA)的催化材料和硫酸化氧化锆、钨酸化氧化锆(WOx-ZrO2)。2绿色催化剂绿色化学对催化剂也提出了相应的要求[1,2]:(1)在无毒无害及温和的条件下进行;(2)反应应具有高的选择性,人们将符合这两点的催化剂称之为绿色催化剂。由于一些杂多酸化合物表现出准液相行为,极性分子容易通过取代杂多酸中的水分子或扩大聚合阴离子之间的距离而进入其体相中,在某种意义上吸收大量极性分子的杂多酸类似于一种浓溶液,其状态介于固体和液体之间,使得某些反应可以在这样的体相内进行。作为酸催化剂,其活性中心既存在于“表相”,也存在于“体相”,体相内所有质子均可参与反应,而且体相内的杂多阴离子可与类似正碳离子的活性中间体形成配合物使之稳定。杂多酸有类似于浓液的“拟液相”,这种特性使其具有很高的催化活性,既可以表面发生催化反应,也可以在液相中发生催化反应。准液相形成的倾向取决于杂多酸化合物和吸收分子的种类以及反应条件。正是这种类似于“假液体”的性质致使杂多酸即可作均相及非均相反应,也可作相转移催化剂。陈诵英[10]等用二元杂多酸为催化剂,双氧水为氧化剂,醋酸为溶剂,催化氧化三甲基苯酚(TMP)合成三甲基苯醌(TMBQ),这与传统方法先用发烟硫酸磺化TMP,然后在酸性条件下用固体氧化剂氧化得到TMBQ相比,能减少排放大量废水以及10 t以上的固体废物,且其摩尔收率可达86%,大大提高了原子利用率。刘亚杰[11]等采用一种性能优良的环境友好的负载型杂多酸催化剂(HRP-24)合成二十四烷基苯。HR-24属于一种大孔、细颗粒、强酸性的固体酸催化剂,大孔和细颗粒有利于大分子烯烃的扩散,且不容易被长链烯烃聚合形成的胶质堵塞孔道,而强酸性可使催化剂在较低温度下就具有较高的催化活性。实验表明,在反应温度和压力较低的情况下(120℃和0.1~0.2 MPa),烯烃的转化率和二十四烷基苯的选择性都接近100%。Furuta等[12]采用Pd-H3SiW12O40催化乙烯在氧气和水存在下氧化一步合成了乙酸乙酯,简化合成工艺,与绿色化学相适应。刘秉智[13]以活性炭负载磷钼钨杂多酸为催化剂,用30%双氧水催化氧化苯甲醇合成苯甲醛,苯甲醛收率可达74.8%。与国内同类产品的生产工艺相比,其具有催化活性好,反应条件温和,生产成本低廉,催化剂可重复使用,对设备无腐蚀性,不污染环境,是一种优良的新型合成工艺路线,具有一定的工业开发前景。3展望虽然绿色化工催化剂理论发展逐渐得到完善,但大多数催化剂仍停留在实验阶段,催化剂性能不稳定,制备过程复杂,性价比低是制约其工业化应用的主要原因,但从长远角度考虑,采用绿色化工催化剂是实现生产零污染的一个必然趋势。环境友好的负载型杂多酸催化剂既能保持低温高活性、高选择性的优点,又克服了酸催化反应的腐蚀和污染问题,而且能重复使用,体现了环保时代的催化剂发展方向。今后的研究重点应是进一步探明负载型杂多酸的负载机制和催化活性的关系,进一步解决活性成分的溶脱问题,并进行相关的催化机理和动力学研究,为工业化技术提供数据模型,使负载型杂多酸早日实现工业化生产,为石油化工和精细化工等行业创造更大的经济、社会效益。[参考文献][1][2][3][4][5][6][7][8][9][10][11][12][13]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1997,170-195.夏恩冬,王鉴,李爽.杂多酸氧化-还原催化应用及研究进展[J].天津化工,2007,21(3):20-23.Aubry C,Chottard G,Bregeault J,et al.Reinvestigationof epoxidation using tungsten-based precursors andhydrogen peroxide in a biphase medium[J].Inorg Chem.,1991,30(23):4 409-4 415.刘志刚,刘植昌,刘耀芳.SiW12杂多酸盐在C4烷基化反应中应用的研究[J].天然气与石油,2005,23(1):17-19.陈诵英,陈蓓,王琴,等.环境友好氧化催化剂杂多酸的应用[J].宁夏大学学报,2001,(2):98-99.刘亚杰,温朗友,吴巍,等.负载型杂多酸催化剂合成二十四烷基苯[J].石油炼制与化工,2002,33(12):18-21.Futura M,Kung H H.Applied Catalysis A:General[J],2000,201:9-11.刘秉智.固载杂多酸催化氧化合成苯甲醛绿色新工艺[J].应用化工,2005,(9):548-549.Anastasp,Will Iamsont.Green Chemistry TheoryandPractice[M].Oxford:Oxford University Press,1998.Trostbm.The atom economy:a search for synthetic effi 2ciency[J].Science,1991,254(5037):1 471-1 477.Misono M,Okuhara T.Chemtech[J],1993,23(11):23-29.Kozhevrukov.Catal Rev-Sei Eng.[J],1995,37(2):311-352.温朗友,闵恩泽.固体杂多酸催化剂研究新进展[J].石油化工,2000,(1):49-55.

合成气制甲醇研究进展和现状论文

您好,您问的是万吨合成气可以制多少吨甲醇,根据研究,一万吨合成气可以制备约7000吨甲醇。甲醇是一种重要的有机化工原料,它可以用来制造各种有机产品,如聚氯乙烯、聚乙烯、聚氨酯、苯乙烯等,这些有机产品可以用来制造塑料、橡胶、涂料、染料、洗涤剂等。甲醇的制备过程需要消耗大量的能源,因此,在制备甲醇时,应尽量采用节能技术,以节约能源,减少环境污染。

用含有氢气和碳氧化物的合成气,在含铜催化剂、20—120巴的压力和200—350℃的温度下生产甲醇。将该合成气通过第一合成反应器,其由竖式反应器组成并含有含铜催化剂的固定床。在竖式反应器中的反应是在绝热条件下进行的并且合成气不循环。在第一合成反应器中未反应的气体混合物与循环气一起通过含有含铜催化剂的第二合成反应器,该催化剂是置于管子中的并用沸水间热冷却。合成气中10—30%的碳氧化物在第一合成反应器中反应而形成了甲醇。 天然气主要成分是甲烷和一氧化碳,只要有催化剂就可以制甲醇,催化循环过程有很多步,大概的过程就是过渡金属的不饱和配位化合物做催化剂,通过配位加成\氧化还原和解离完成催化循环。通常产生很多副产物。。。所以煤制甲醇副产物少,制甲醇好

甲醇是多种有机产品的基本原料和重要的溶剂,广泛用于有机合成、染料、医药、涂料和国防等工业。

一、甲醇产量逐年上升,2019年前三季度达到3683万吨

近年来,我国甲醇产量逐年上升。目前,我国由焦炉气等原料制造甲醇的产能出现富余,开发甲醇替代石油燃料具有充足的产量和产能保障。2018年,我国甲醇产量4756万吨,同比增长5.00%。截至2019年三季度中国甲醇产量为3683万吨。

二、甲醇市场快速扩充,需求持续增长

从需求方面来看,过去10多年来,我国的甲醇行业经过了高速发展,一方面下游应用产品的自给程度不断提升,带来了原料需求的快速增长,同时MTP/O项目的不断兴建亦拓展了大量的甲醇市场需求,我国甲醇市场快速扩充,需求持续增长。2018年甲醇表现消费量为5467.2万吨,同比增长了2.58%。

三、甲醇进口大于出口,对外依存度有所下降

根据海关总署的统计数据,2018年1-12月,中国甲醇月均进口量达61.91万吨,累计达742.7万吨,同比减少8.7%。2019年1-10月份我国甲醇进口总量共计878.14万吨。

根据海关总署的统计数据,2018年1-12月,中国甲醇出口量累计31.7万吨,同比增加18.98万吨。2019年1-10月份我国甲醇出口量为16.72万吨。

从进口依存度来看,2014-2016年,进口依存度逐渐增加,2016年由于烯烃工厂的大量需求,进口依存度达到17%,随着国产甲醇产能投放,我国甲醇依存度不断降低,2018年进口依存度已下降至13.6%。

四、受宏观经济下行影响,甲醇未来表观需求将保持微副增长趋势

甲醇的诸多优势使得其成为后石油时代最具可行性的替代能源,由甲醇作为基础能源,其所具有的优势是其他能源无法比拟的。当化学回收自然界或者工业二氧化碳制备甲醇及其衍生物被广泛实施,通过“碳中和”与再生使用,甲醇经济的全部潜力将得以实现。2017-2018年甲醇行业表观消费量增速均在2.6%附近,前瞻预计由于受宏观下行的影响,2019-2025年我国甲醇行业表观消费量复合增速约为3%,预计到2025年我国甲醇表观消费量约为6724万吨。

——以上数据来源于前瞻产业研究院《中国甲醇行业市场调研与投资预测分析报告》。

相关百科

热门百科

首页
发表服务