我认为这次取得的科研突破非常具有意义,该技术性能够归类和跟踪机构样板中不一样种类的体细胞,全方位的探测到人类小脑发育全过程中体细胞种类和基因表达的分子结构图谱,该技术可以探寻促进人类小脑发育的基因遗传程序和一些遗传疾病的病征发源,在医疗、科研领域加强人们对自身小脑的认识。
细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!
细胞因子的生物学活性
关键字: 细胞因子
细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。
一、免疫细胞的调节剂
免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)
二、免疫效应分子
在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。
三、造血细胞刺激剂
从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。
四、炎症反应的促进剂
炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。
五、其它
许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。
细胞衰老的分子生物学机制
摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。
关键词:细胞衰老;分子生物学;机制研究
细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。
细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。
衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。
1 细胞衰老的特征
科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。
衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。
2 分子水平的变化
①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。
3 细胞衰老原因
迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。
3.1差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。
3.1.1自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。
英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。
生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。
3.1.2端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。
3.2遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。
参考文献:
[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.
[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.
[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.
生物是由初始的单细胞发展到多细胞,含有叶绿素可进行光合自养发展到不含叶绿素进行捕食异养。科学家们发现,叶绿体的结构和最原始的单细胞生物--蓝藻的结构很相似,猜想高等植物体内的叶绿体就是由原始的无叶绿体细胞吞噬蓝藻细胞而发育来的。细胞的发展过程告诉我们进化是无时无刻不存在的,自然选择,适者生存!
据日前发布在《自然·神经科学》上的毕业论文,美国西雅图少年儿童研究所的研究人员初次详细说明了小脑发育的室内空间和体细胞种类,致力于能够更好地掌握人类小脑的发育。
小脑是人类后脑勺的关键构造,针对完成几类健身运动作用及其认知能力、调节情绪和语言表达解决尤为重要。殊不知,与大脑皮质对比,大家对这一构造的研究依然相对性较少,对其随时间的发育全过程也了解很少。
研究人员金伯利·诺斯丁格博士等应用了由美国华盛顿大学的研究人员开发设计的单细胞转录组测序技术性,该技术性能够归类和跟踪机构样板中不一样种类的体细胞。运用此项技术性和激光器捕捉技术性来完成室内空间上界定的祖细胞地区的显微镜解剖学,该精英团队能专业捕捉全部发育中的小脑体细胞种类的转录组,包含发育中的人类小脑中存有的十分少见的体细胞。
研究人员凯瑟琳·米伦博士称,先前,很多人类小脑发育和病征的模型全是根据以耗子为管理中心的数据信息创建的。那时候都还没有关人类小脑发育的数据信息,但大家如今了解,人类小脑的发育与小白鼠的小脑发育有很大的不一样。
“大家制作了第一份全方位的人类小脑发育全过程中体细胞种类和基因的表达的分子结构图普。它是科技界探寻促进人类小脑发育和病征发源的基因遗传程序流程的丰富多彩资源。”诺斯丁格说。
据统计,研究人员收集的叙述人类小脑发育的第一批分子结构数据信息如今可被世界各国的别的生物学家共享资源得到,或将协助科技界和医疗界能够更好地了解危害小脑的神经系统发育阻碍的缘故,如先天畸形、儿童自闭症和少年儿童小脑癌等。
据研究人员详细介绍,她们还欠缺好多个关键小脑体细胞问世的初期时间点的分子结构数据信息,也欠缺将发育时间点与完善的成年人体细胞种类联络起来的数据信息。为了更好地能够更好地界定推动祖细胞规格型号和分裂的体制,她们已经开展数据信息的深层次发掘。
尽管名字叫作小脑,占地面积也只是是“蜷曲”在大概八分之一大脑皮质的紧密容积中,但小脑整体实力但是一点很大,事关人类痛疼、健身运动、逻辑思维和感情的作用都强劲得很。小脑的伸缩方法比较复杂,且意味着了人类个人行为和思维能力的与众不同演变。一直以来,大家对小脑发育仅有比较粗略地的模型,当然也对有关病症觉得繁杂,但如今,“拼图”已经渐渐地被融合,未来十年,这一研究行业毫无疑问将有更多的可能性。
因为在《自然》杂志发表的这项论文中写出对于秃头人群来说,他们的头发很有可能在一定的条件下能够重新生长。
所以说对于秃头群体来说,他们作为关心的问题也在这篇论文中有了相应的回答,所以说对于他们来说他们知道了这一个好消息,所以说引发了他们的关注。而且科学家也在这篇论文中详细的解释了脱头产生的原因,就是因为人体头部的上面的干细胞出现了一定的问题,所以说就会导致一定的脱发和头发不生长,如果能够改变这一现状的话,那么对于这些头头群体来说,能够在一定的条件下重新让头发生长出来,所以说对于这些秃头群体来说是一个利好消息。
而且之前自然杂志上面也发表了多篇论文来论述干细胞的相应的研究成果,而且从多篇论文当中我们也能够看得出来相应的头头群体,他们的干细胞能够在相应的环境下进行一定的改善,如果能够经过一定的治疗的话,那么对于这类群体的话,他们头部上面的干细胞还能够重新生长,能够重新让自己的头发长出来,所以说对于头头群体来说,他们可以通过改变自己的饮食习惯和接受一定的治疗来获得相应的改善。
而且对于人体的干细胞来说,我们整个人类的相应的研究水平也比较高,相应的研究力度也比较大,干细胞能够通过分泌一种特殊的物质,然后促进相应的毛细血管的增长,通过这样的方式来改善整个头部的环境,从而促进头发的生长。所以说对于秃头群体来说,他们很有可能会在今年或者说是十几年内能够看到这项研究成果运用到实际的生产当中去,而且对于他们来说,他们也能够用一个比较小的成本来改善自己的头发形象。
连续不断推出世界性的科研成果,黄禹锡被不少韩国民众捧为领导韩国科技未来的重要人物,鲜花、掌声、荣誉不断飞来:2005年首尔大学国际干细胞研究中心成立,黄禹锡担任主任;韩国政府授予其“韩国最高科学家”荣誉;韩国政府向其研究小组提供数百亿韩元资金用于研究;黄禹锡不断出现在国内外各种学术会议和公开场合,成了一位韩国“国宝”级人物,甚至享受政府提供的保镖服务。“黄禹锡神话”破灭始于2005年年底,韩国文化广播公司新闻节目《PD手册》报道黄禹锡在研究过程中“取用研究员的卵子”的丑闻。其后,该台被揭发编采人员在采访期间以威吓方式向研究员逼供。随后,他的研究小组成员指出2005年论文中有造假成分。首尔大学随后的调查证实,黄禹锡发表在《科学》杂志上的干细胞研究成果均属子虚乌有。黄禹锡“学术造假”丑闻令科学界震惊,他本人也名誉扫地。首尔大学解除了他的教授职务,韩国政府也取消了授予他的“最高科学家”称号。黄禹锡名誉扫地,韩国也为之蒙羞,但惟一让韩国人稍感欣慰的是,调查委员会确认,黄禹锡的主要“成果”之一、全球首只克隆狗“斯纳皮”并无造假成分。韩国检察部门在2006年5月对黄禹锡提起诉讼,并于2009年8月份对黄禹锡提出、侵吞研究经费和非法买卖人体卵子违反《生命伦理法》等指控,要求法院判处其有期徒刑4年。2009年10月26日,韩国法院当天进行了长达100分钟的宣判。判决称,黄禹锡不仅非法利用人体卵子,还以做假账等手段取、冒领经费达8.3亿韩元(1美元约合1180韩元),犯罪性质严重。法院同时认定,黄禹锡此前在美国《科学》杂志上发表的有关人体干细胞的研究论文部分造假事实成立。但法院考虑到黄禹锡本人在科研领域的贡献等几方面因素,决定对其处以缓刑。针对检察部门对黄禹锡提出的指控,法院认定,黄禹锡从韩国SK财团和金融机构领取的20亿韩元研究经费并未违反《特定经济犯罪加重处罚法》,罪名不成立。法院当天还对黄禹锡科研小组的数名成员判处缓刑或处以罚金。最终韩国首尔中央地方法院对历时3年多的黄禹锡案作出一审判决,以侵吞政府研究经费和非法买卖卵子罪,判处黄禹锡有期徒刑2年,缓期3年执行。
细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!
细胞因子的生物学活性
关键字: 细胞因子
细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。
一、免疫细胞的调节剂
免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)
二、免疫效应分子
在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。
三、造血细胞刺激剂
从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。
四、炎症反应的促进剂
炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。
五、其它
许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。
细胞衰老的分子生物学机制
摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。
关键词:细胞衰老;分子生物学;机制研究
细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。
细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。
衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。
1 细胞衰老的特征
科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。
衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。
2 分子水平的变化
①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。
3 细胞衰老原因
迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。
3.1差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。
3.1.1自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。
英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。
生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。
3.1.2端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。
3.2遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。
参考文献:
[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.
[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.
[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.
结果表明那就是个笑话,韩国人亲手扼杀了自己的英雄
机体在长期的进化过程中,在病原生物的压力下,适应产生了两套免疫系统,即天然免疫(innate immunity)和获得性免疫(acquired or adaptive immuniy)。天然免疫或称非特异免疫,存在于所有的多细胞生物,与生俱来,包括多种效应细胞和分子,如各种粒细胞、单核/巨噬细胞、树突状细胞(DC)、NK细胞和体液杀菌成分如补体、抗微生物肽、溶菌酶等。获得性免疫即特异性免疫,到脊椎动物才出现,是在个体发育过程中通过体细胞lg超家族基因重排而产生的抗原识别细胞,包括T和B淋巴细胞。自20世纪50年代末BURNET[1]提出克隆选择学说以来,对获得性免疫系统进行了广泛深入的研究,获得性免疫应答所涉及的细胞、蛋白质和基因的结构、功能及其机制诸方面均取得了许多重大的进展和突破,而天然免疫的研究进展缓慢。然而,90年代以来多种天然免疫识别分子的发现,其结构、功能的初步阐明,导致了90年代后期“天然免疫研究之崛起”[2]及其“复兴时代的到来”[3]。本文仅就其核心问题—“分子模式识别作用”及其免疫生物学意义作一概略介绍。1天然免疫识别分子及其“分子模式识别作用”1.1天然免疫识别分子的种类天然免疫识别分子都是由胚系基因编码的蛋白质,根据结构特征分为7个家族(见表1),但一些分子如补体经典途径识别分子C1q、旁路途径识别分子C3、肽聚糖识别蛋白等尚未归类,而且,新的天然免疫识别分子还在不断发现之中。还可以从功能上将天然免疫识别分子分为循环于血浆中的体液蛋白、表达于细胞表面的内吞受体和细胞表面或细胞内的信号受体;按识别方式可分直接识别分子如CD14、DEC-205、胶凝素等和间接识别分子(识别天然免疫系统与病原体反应后的产物)如补体受体、Toll受体等。
这些当然是我们研究的内容了,但这么直接向我们要论文,未必有点……仅凭20分我们是大学里高生物的,
细胞,说了这么久,它究竟是什么,是什么构成了它,它有什么作用? 细胞,是由有机物和无机物组成的,有机物包括蛋白质,核酸,糖类和脂质,而无机物就有氺和无机盐!这些化合物共同构成了这生命的瑰宝!细胞,能为我们提供能量,绿色植物更可以光合作用不但提供有机物还对我们的大气有换气作用! 在人的一生中,多少细胞增值和分化又有多少细胞凋亡和衰老,它们建立了我们人类的有机体,它们多么的神奇有待我们在学习中继续探讨! 够浅显了,费了我高一一年的力气,希望你能用到!谢谢!凡事都要自己的一丁点努力,照搬别人的,最终至少你没有得益,明白没有~
给你贴一个吧,不知道你能不能用:当前猪高热复合症的治疗方法及预防对策近几年,猪的高烧不退,即所谓的猪“高热复合症”发生较多,给养猪业带来严重的损失,以致许多猪场倒闭,许多农户不敢养猪。猪高热复合症是由多种病原体引起的一种以病猪持续高温、食欲废绝、皮肤发红为主要特征的复合性传染病,主要有猪附红细胞体病、猪伪狂犬病、非典型性猪瘟、蓝耳病、圆环病毒病、传染性胸膜肺炎等引起,多为混合感染或继发感染。该病自去年六月份发病以来,发病状况及发病原因与往年不同,出现了一些新特点,因而在诊断和治疗我们研究所总结了一些切实可行的治疗方法及预防对策,现介绍如下,供同行参考:1 主要临床症状病猪体温升高40OC-42OC,食欲减退或废绝,精神沉郁,淌眼屎,卧地不起,运动失调,呼吸急促,鼻流清涕,粪便干硬,小便发黄,全身皮肤发红,或腹部、耳尖发绀;或在耳根、腹部、四肢内侧等处出现紫红色血点;或眼圈青紫,肛门周围青紫。个别猪发病数天后皮肤黄染或苍白,少部分猪毛孔针尖状出血。有的猪腹泻,发抖、消瘦。四肢、眼睑周围水肿,体表淋巴结肿大。公猪不育,母猪不易受孕,怀孕猪易早产,死胎、木乃伊胎。2 剖检变化 从对病猪剖检情况来看,病猪的病变以肺部变化为主,肺脏有的苍白,有的有出血点、出血斑;有的肺脏水肿,呈斑驳状到褐色大理石样病变,有的实质变性,如海绵状,可在水中飘浮;有的似水煮状;更有很多病猪的肺脏多处部位肉变,特别是尖叶、心叶和膈叶的前缘,,部分病变肺叶支气管内充满脓性分泌物;气管内有较多的泡沫,部分气管环黏膜充血。心肌有出血点,心包积液,为淡黄色液体。肝脏有的灰白色;有的有坏死灶;有的有出血点,有的肿大变性呈黄棕色,表面有黄色条纹状或灰白色坏死灶。肾脏肿大、呈褐色或土黄色,质地较脆,有淤血现象;有的有大量针尖状出血点;有的表现典型的大理石样花纹;有的有坏死点、坏死斑。脾脏肿大、边缘有多处梗死灶。胃充血、出血;部分猪胃底粘膜出血、坏死、溃疡,回盲肠有大量溃疡灶。肠出血严重,特别是小肠和结肠多数有坏死灶。淋巴结广泛肿大,特别是腹股沟淋巴结和肺门淋巴结。部分病猪喉头粘膜水肿、出血,猪膀胱粘膜出血。个别患猪表现多发性浆液纤维素性胸膜炎和腹膜炎。3 实验室检查情况 猪瘟、猪流感和饲料霉菌毒素检测采用ELISA方法检测,猪繁殖与呼吸综合征病毒(PRRSV)、伪狂犬病毒(PRV)、猪圆环病毒(PCV-Ⅱ)用RT-PCR(聚合酶链式反应)方法检测,分离到的细菌用生化试验鉴定,弓形体、附红小体的检测分别用脾触片和血涂片进行检查。从实验室检查情况来看,通过对部分发病猪场进行的实验室检测结果发现,猪高热复合症今年的发病状况与往年(2001年-2005年)不同,2005年前在临床中主要以附红细胞体感染为主,少见附红细胞体与蓝耳病、伪狂犬、链球菌等病混合感染;而今年六月份以后,蓝耳病、伪狂犬、圆环病毒的发病率明显高于去年。病毒以猪繁殖与呼吸综合征病毒(PRRSV)、猪圆环病毒(PCV-II)、猪流感病毒(SIV)、伪狂犬病毒(PRV)猪瘟病毒(HC)、为主,细菌主要为猪胸膜肺炎放线杆菌(APP)、副猪嗜血杆菌病(HP)、猪链球菌属2型(SS-II)、多杀性巴氏杆菌(PM)等。
第二节 附红细胞体病的分布与危害附红细胞体病为人兽共患病,不仅引起动物的发病和死亡,给畜牧业带来很大的经济损失,同时也危害人类健康。目前,本病已引起世界各国畜牧兽医界、外贸界的高度关注,同时这种人兽共患病对人类的危害也正受到医学界的注意。人感染附红细胞体以后虽然不出现临床症状,但却增加了对其他疾病的易感性,同时人感染本病后通过输血和垂直传播途径可引起其他人群和胎儿感染。随着人附红细胞体病临床病例的增多,近几年家畜附红细胞体病的暴发和流行从公共卫生的角度也引起了人们极大的重视。1992年我国卫生部组成了全国附红细胞体流行病学调查组,对我国人畜附红细胞体病的流行情况进行了调查研究。2002年农业部再次组织调查了动物附红细胞体病的流行情况,证明本病的发生有逐年上升的趋势,而且致病性也不断显示出来,不仅导致动物皮毛、肉、奶产量降低和繁殖率下降,而且有时还引起较为严重的临床表现甚至动物死亡。猪附红细胞体病已被广泛报道,包括北美洲、南美洲、非洲、欧洲和亚洲。目前世界各大洲的30多个国家和地区均有本病发生和流行,先后已有美国、南非、阿尔及利亚、肯尼亚、伊朗、法国、挪威、英国、芬兰、澳大利亚、前苏联、日本、荷兰、马达加斯加、葡萄牙、尼日利亚、西班牙、奥地利、比利时、印度、以色列、南朝鲜、新西兰、埃及、南斯拉夫、阿根廷、巴基斯坦、匈牙利、爱尔兰、德国、古巴、意大利、丹麦、捷克、莫桑比克、巴西、中国等国家和地区报道发生本病。
一、基因疫苗的诞生自1796年英国医生琴娜(Jener)首次采用牛痘苗以来,疫苗已在世界范围内被广泛应用,200多年来各种疫苗已经帮助人类战胜了包括天花在内的多种传染病.然而,现有的疫苗主要有两种:第一种疫苗是传统疫苗,即弱毒活苗和灭活苗,如鸡新城疫弱毒苗,猪瘟灭活苗,它是直接将无毒或减毒的病原体作为疫苗接种到人或动物体内,刺激机体免疫系统产生特异性免疫应答,从而预防疾病的发生;第二种疫苗是基因工程苗,它是通过基因工程,先分离得到具有强烈免疫原性但无毒性的抗原蛋白的编码基因,然后导入表达载体中,再在宿主细胞表达出重组抗原蛋白,经分离纯化后的重组抗原蛋白作为疫苗接种如重组乙肝疫苗。但它存在一些不可忽视的缺陷如:灭活疫苗难以诱发细胞免疫,需多次免疫注射;亚单位疫苗免疫原性差;减毒活疫茵存在毒性回升的危险等问题.因此,现在对一些传染病仍缺乏相应的安全有效的疫苗. 第三代疫苗基因疫苗的问世,为解决这些难题带来了希望.基因疫苗(genetic vaccine)又称核酸疫苗(nucleic acid vaccine)或DNA疫苗,是在基因治疗(genetic therapy)技术的基础上发展而来的。基因治疗是从20世纪80年代发展起来用于预防和治疗疾病的最具革命性的生物医学医疗技术,其原理是将人或动物的正常基因或有治疗作用的基因通过一定方式导入人体靶细胞以纠正基因的缺陷或发挥治疗作用,从而达到治疗疾病目的。1990年Wolff JA等在进行基因治疗试验时,以裸DNA注射作对照,结果意外发现裸DNA可被骨骼肌细胞吸收并表达出外源性蛋白。1992年Tang 、 DC等首次证明经基因免疫产生的外源性蛋白质——人生长激素可刺激小鼠免疫系统产生特异性抗体,而且加强免疫后抗体效价增加,从而宣告基因疫苗的诞生。(注:1)概括起来,基因疫苗就是指将编码外源性抗原的基因插入到含真核表达系统的载体上,然后直接导入人或动物体内,让其在宿主细胞中表达抗原蛋白,该抗原蛋白可直接诱导机体产生免疫应答。抗原基因在一定时限内的持续表达,不断刺激机体免疫系统产生应答反应,从而达到预防疾病的目的。二、核酸免疫的作用机理目前对核酸免疫作用机理的认识主要还仅限于理论推测,且多数资料来自基因治疗试验,二者在作用机理上很相似。在基因免疫中,含病原体抗原基因的核酸疫苗被导入宿主细胞,被周围的组织细胞、APC细胞或其它炎性细胞摄取,并在细胞内表达。表达产物作为抗原可能的呈递途径是:肌细胞直接摄入或经T小管和细胞样内陷摄取进入,在外源基因启动子作用下使外源基因表达,使产物在胞内水解酶的作用下分解成长短不一的多肽,其中的一部分被hsp70运到内质网,经网膜上的TAP分子转入膜内与主要组织相容性复合物(MHC)I类结合,最终在细胞膜表面被CDS十细胞识别;另一部分短肽进入溶酶体,与(MHC)Ⅱ分子结合,运到细胞表面被 CD4+细胞识别。这些多肽含有不同的抗原表位,它们将诱导细胞毒性T淋巴前体、B细胞和特异性辅助T细胞,产生细胞免疫和体液免疫。同时,基因表达可以通过细胞分泌和分裂的方式进入组织细胞间隙,以天然折叠方式被B淋巴细胞识别。核酸免疫后,还可以使肌细胞和抗原递呈细胞被感染,从而使CD4+和CD8+细胞亚群活化,产生特异的免疫应答。 CorrM等(1996)的研究表明,从转染DNA得肌肉组织释放出的抗原被APC摄入,运送到管状淋巴结中,在B淋巴细胞和T淋巴细胞表达, I类MHC限制的CTL应答可能主要以这种方式产生。以前曾认为该过程需要内源抗原的表达,但现在的研究表明,只要有外源抗原的存在,也能有效地引起I类MHC限制的CTL应答。 三、基因疫苗质粒载体的构建获得准确的抗原编码基因并将它插入到合适的载体DNA上,是发展基因疫苗的主要工作。1、编码抗原蛋白基因的分离制备DNA疫苗首先要获得编码抗原的基因,一般选择编码病原体表面糖蛋白的基因。抗原蛋白产生后可在宿主体内正确糖基化,从而诱导对病原体的免疫应答反应;对于易变异的病原体,最好选择各种变型都具有的核心蛋白保守的DNA序列,这样可对各种变异的病原体产生免疫应答反应,避免因病原体变异产生的免疫逃避问题。2 目的基因质粒的载体构建基因疫苗大多采用质粒作载体。一般说来,基因疫苗质粒载体至少包括5个主要的部件:(1)细菌复制子,以便质粒DNA在细菌体内复制扩增,得到大量的拷贝,但不能在宿主细胞(真核细胞)中复制;(2)原核生物选择性标记基因,如抗生素抗性基因,以筛选含有质粒DNA的阳性细菌克隆(菌株);(3)真核生物的启动子、增强子、终止子、内含子等转录调控元件;(4)编码抗原蛋白的目的基因序列;(5)多聚核苷酸信号序列,以保证mRNA翻译时适时终止。另外,基因疫苗质粒载体通常含有一段未甲基化的CpG序列,其具有刺激Th1细胞的免疫活性。四、严重创伤后全身性炎症反应综合征及免疫调节治疗严重创伤后机体免疫功能表现为双向性改变。一方面表现为以吞噬功能和白细胞介素-2(IL- 2)等产生降低为代表的免疫受抑状态;另一方面表现出以全身性炎症反应综合征为特征的过 度炎症反应。正是这二方面共同作用构成了创伤后机体免疫功能紊乱,诱发多器官功能不全综合症(Multiple Organ Dysfunction Syndrome,MODS)。下面就全身性炎症反应综合征和免疫调节治疗作一综述。
基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。下面是由我整理的基因工程学术论文,谢谢你的阅读。 基因工程学术论文篇一 摘 要:基因工程是在分子生物学和分子遗传学综合发展基础上于 20 世纪 70 年代诞生的一门崭新的生物技术科学。基因工程是一项很精密的尖端生物技术。可以把某一生物的基因转殖送入另一种细胞中,甚至可把细菌、动植物的基因互换。当某一基因进入另一种细胞,就会改变这个细胞的某种功能。这项工程创造出原本自然界不存在的重组基因。它不仅为医药界带来新希望,在农业上提高产量改良作物,并且对环境污染、能源危机提供解决之道,甚至可用在犯罪案件的侦查。基因工程的发展现状和前景是怎么样呢,而又有哪些利弊? 关键词:基因工程;发展现状;发展前景;基因工程利弊 一、基因工程 (一)基因工程的概念及发展 1.概念 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 2.发展 生物学家于20 世纪50 年代发现了DNA 的双螺旋结构,从微观层面更进一步认识了人类及其他生物遗传的物质载体,这是人类在生物研究方面的一次重大突破。60 年代以后,科学家开始破译生物遗传基因的遗传密码,简单地说,就是将控制生物遗传特征的每一种基因的核苷酸排列顺序弄清楚。在搞清楚某些单个基因的核苷酸排列顺序基础上,进而进行有计划、大规模地对人类、水稻等重要生物体的全部基因图谱进行测序和诠释。 (二)基因工程的发展现状及前景 1.发展现状 (1)基因工程应用于农业方面。运用基因工程方法,把负责特定的基因转入农作物中去,构建转基因植物,有抗病虫害,抗逆,保鲜,高产,高质的优点。 下面列举几个代表性方法。 ①增加农作物产品营养价值如:增加种子、块茎蛋白质含量,改变植物蛋白必需氨基酸比例等。 ②提高农作物抗逆性能如:抗病虫害、抗旱、抗涝、抗除草剂等性能。 ③生物固氮的基因工程。若能把禾谷等非豆科植物转变为能同根瘤菌共生,或具固氮能力,将代替无数个氮肥厂。④增加植物次生代谢产物产率。植物次生代谢产物构成全世界药物原料的 25% ,如治疗疟疾的奎宁、治疗白血病的长春新碱、治疗高血压的东莨菪碱、作为麻醉剂的吗啡等。 ⑤运用转基因动物技术,可培育畜牧业新品种。 二、基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快产业之一,前景广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。对预防人类肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 并且应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。 三、基因工程应用于环保方面 工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,基因工程技术可提高微生物净化环境的能力。美国利用DNA 重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4 种菌体基因链接,转移到某一菌体中构建出可同时降解4 种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3 烃类降解完,而天然菌株需 1 年之久。90 年代后期问世的DNA 改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR 技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。 (一)发展前景 基因工程应用重组DNA 技术培育具有改良性状的粮食作物的工作已初见成效。重组DNA 技术的一个显著特点是,它注往可以使一个生物获得与之固有性状完全无关的新功能,从而引起生物技术学发生革命性的变革,使人们可以在大量扩增的细胞中生产哺乳动物的蛋白质,其意义无疑是相当重大的。将控制这些药物合成的目的基因克隆出来,转移到大肠杆菌或其它生物体内进行有效的表达,于是就可以方便地提取到大量的有用药物。目前在这个领域中已经取得了许多成功的事例,其中最突出的要数重组胰岛素的生产。 重组DNA 技术还有力地促进了医学科学研究的发展。它的影响所及有疾病的临床诊断、遗传病的基因治疗、新型疫苗的研制以及癌症和艾滋病的研究等诸多科学,并且均已取得了相当的成就。 (二)基因工程的利与弊 1.基因工程的利 遗传疾病乃是由于父或母带有错误的基因。基因筛检法可以快速诊断基因密码的错误;基因治疗法则是用基因工程技术来治疗这类疾病。产前基因筛检可以诊断胎儿是否带有遗传疾病,这种筛检法甚至可以诊断试管内受精的胚胎,早至只有两天大,尚在八个细胞阶段的试管胚胎。做法是将其中之一个细胞取出,抽取DNA,侦测其基因是否正常,再决定是否把此胚胎植入母亲的子宫发育。胎儿性别同时也可测知。 基因筛检并不改变人的遗传组成,但基因治疗则会。目前全世界正重视发展永续性农业,希望农业除了具有经济效益,还要生生不息,不破坏生态环境。基因工程正可帮忙解决这类问题。基因工程可以改良农粮作物的营养成分或增强抗病抗虫特性。可以增加畜禽类的生长速率、牛羊的泌乳量、改良肉质及脂肪含量等。 2.基因工程的弊 广泛的基因筛检将会引起一连串的社会问题。虽然基因筛检可帮助医生更早期更有效地治疗病人,但可能妨碍他的未来生活就业。基因工程会产生“杀虫剂”的作物,也可能对大环境有害,它们或许会杀死不可预期的益虫,影响昆虫生态的平衡。转基因食品不同于相同生物来源之传统食品,遗传性状的改变,将可能影响细胞内之蛋白质组成,进而造成成份浓度变化或新的代谢物生成,其结果可能导致有毒物质产生或引起人的过敏症状,甚至有人怀疑基因会在人体内发生转移,造成难以想象的后果。转基因食品潜在危害包括:食物内所产生的新毒素和过敏原;不自然食物所引起其它损害健康的影响;应用在农作物上的化学药品增加水和食物的污染;抗除草剂的杂草会产生;疾病的散播跨越物种障碍;农作物的生物多样化的损失;生态平衡的干扰。 四、结束语 随着社会科技的进步,基因工程的发展将成为必然。尽管它会给我们带来一些危害但是仍然为我们带来了很多好处。不仅为我们提供了新的能源而且促进了各国的经济的发展,所以在我们发展基因工程的同时应该尽力避免一些危害,而让有利的方面尽可能应用。 参考文献: [1]陈宏.2004.基因工程原理与应用.北京:中国农业 出版社 [2]胡银岗.2006.植物基因工程.杨凌.西北农林科技大学出版社 [3]刘祥林.聂刘旺.2005.基因工程.北京:科学出版社 [4]陆德如.陈永青.2002.基因工程.北京:化学工业出版社 [5]王关林.方宏筠.2002.植物基因工程.北京:科学出版社 基因工程学术论文篇二 基因工程蛋白药物发展概况 【摘要】近些年,随着生物技术的发展,基因工程制药产业突飞猛进,本文就一些相关的重要蛋白药物的市场概况和研究进展作一概述。 【关键词】基因工程 蛋白药物 发展概况 中图分类号:R97 文献标识码:B 文章编号:1005-0515(2011)6-255-03 基因工程制药是随着生物技术革命而发展起来的。1980 年,美国通过Bayh-Dole 法案,授予科学家 Herbert Boyer 和 Stanley Cohen 基因克隆专利,这是现代生物制药产业发展的里程碑。1982 年,第一个生物医药产品在美国上市销售,标志着生物制药业从此走入市场[1]。 生物制药业有不同于传统制药业的特点:首先,生物制药具有“靶向治疗”作用;其次,生物制药有利于突破传统医药的专利保护到期等困境;再次,生物制药具有高技术、高投入、高风险、高收益特性;此外,生物制药具有较长的产业链[1]。生物制药业这一系列的特点决定了其在21世纪国民经济中的重要地位,历版中国药典收录的生物药物品种也是逐渐增多[2](图一)。 当前生物制药业的发展趋势在于不断地改进、完善和创新生物技术,在基因工程药物研发投入逐年增加的基础上,我国生物制药的产值及利润增长迅猛, 2006-2008年三年就实现了利润翻番[2](表一)。随着研究的深入,当前生物药的热点逐渐聚焦到通过新技术大量生产一些对医疗有重要意义且成分确定的蛋白上。研究表明,在我国的基因工程药物中,蛋白质类药物超过50%[3]。而这些源自基因工程菌表达的蛋白,如疫苗、激素、诊断工具、细胞因子等在生物医学领域的应用主要包括4个方面:即疾病或感染的预防;临床疾病的治疗;抗体存在的诊断和新疗法的发现。利用基因工程技术(重组DNA技术)生产蛋白主要有三方面的理由:1.需求性,天然蛋白的供应受限制,随需求的不断增加,数量上难以满足,使它得不到广泛应用;2.安全性,一些天然蛋白质的原料可能受到致病性病毒的污染,且难以消除或钝化;3.特异性,来自天然原料的蛋白往往残留污染,会引起诊断试验所不应有的背景[4]。 以下将介绍一些基因工程产物的市场概况和研究发展。 1 促红细胞生成素 是细胞因子的一种,在骨髓造血微环境下促进红细胞的生成。1985年科学家应用基因重组技术,在实验室获得重组人EPO(rhEPO),1989年安进(Amgen)公司的第一个基因重组药物Epogen获得FDA的批准,适应症为慢性肾功能衰竭导致的贫血、恶性肿瘤或化疗导致的贫血、失血后贫血等[5,6]。 2001年,EPO的全球销售额达21.1亿美元,2002年达26.8亿美元,2003年全世界EPO的年销售额超过50亿美元。创下生物工程药品单个品种之最,是当今最成功的基因工程药物。用过EPO的大多数病人感觉良好,在治疗期间无明显毒副作用或功能失调。重组体CHO细胞可以放大到生产规模以满足对EPO的需求。 2 胰岛素 自1921 年胰岛素被Banting 等人成功提取并应用于临床以来,已经挽救了无数糖尿病患者的生命。仅2000年,胰岛素在全球范围内就大约延长了5100万名I型糖尿病病人的寿命。20世纪80年代初,人胰岛素又成为了商业现实;80 年代末利用基因重组技术成功生物合成人胰岛素,大肠杆菌和酵母都被用作胰岛素表达的寄主细胞[7]。 国内外可工业化生产人胰岛素的企业只有美国的礼来公司、丹麦的诺和诺德公司、法国的安万特公司和中国北京甘李生物技术有限公司等,胰岛素类似物也仅在上述4个国家生产,且每个公司只能生产艮效或速效类似物巾的个品种,主要原因是要达到生物合成人胰岛素产业化的技术难度特别大,若无高精尖的高密度发酵技术、纯化技术和工业化生产经验是无法实现的[8]。 3 疫苗 在人类历史上,曾经出现过多种造成巨大生命和财产所示的疫症,而在预防和消除这些疫症的过程中疫苗发挥了十分关键的作用。所以疫苗被评为人类历史上最重大的发现之一。 疫苗可分为传统疫苗(t raditional vaccine) 和新型疫苗(new generation vaccine)或高技术疫苗( high2tech vaccine)两类,传统疫苗主要包括减毒活疫苗、灭活疫苗和亚单位疫苗,新型疫苗主要是基因工程疫苗。疫苗的作用也从单纯的预防传染病发展到预防或治疗疾病(包括传染病) 以及防、治兼具[2]。 随着科技的发展,对付艾滋病、癌症、肝炎等多种严重威胁人类生命安全的疫苗开发取得巨大进展,这其中也孕育着巨大的商业机会[9], 2007年全球疫苗销售额就已达到163亿美元,据美林证券公布的一份研究报告显示,全球疫苗市场正以超过13%的符合增长率增长。而我国是疫苗的新兴市场,国内疫苗市场发展潜力巨大,年增长率超过15%。 在以细胞培养为基础的疫苗、抗体药物生产中,Vero细胞、BHK21细胞、CHO细胞和Marc145细胞是最常用的细胞,这些细胞的反应器大规模培养技术支撑着行业的技术水平[4]。建立细胞培养和蛋白表达技术平台,进一步完善生物反应器背景下的疫苗生产支撑技术是当前国际疫苗产业研究的重点。 4 抗体 从功能上划分,抗体可分为治疗性抗体和诊断性抗体;从结构特点上划分,抗体可分为单克隆抗体和多克隆抗体。抗体可有效地治疗各种疾病,比如自身免疫性疾病、心血管病、传染病、癌症和炎症等[10,11]。抗体药物的一大特点在于其较低甚至几乎可以忽略的毒性。另外一个优势是,抗体本身也许既可被当作一种治疗武器,也可被用作传递药物的一种工具。除了全人源化抗体以外,与小分子药物、毒素或放射性有效载荷有关的结合性抗体也已经在理论上显示出了强大的潜力,尤其是在癌症治疗方面[12]。 治疗性抗体是世界销售额最高的一类生物技术药物,2008 年治疗性抗体销售额超过了300 亿美元,占了整个生物制药市场40%。在美国批准的99 种生物技术药物中,抗体类药物就占了30 种;在633 种处于临床研究的生物技术药物中, 有192 种为抗体药物,而在抗癌及自身免疫性疾病的治疗研究中,治疗性抗体占了一半[2]。截止2007年,美国FDA批准上市的抗体药物见表二[13]。 参考文献 [1] 章江益, 孙瑜, 王康力. 美国生物制药产业发展及启示[J]. 江苏科技信息. 2011, 1(5): 11-14. [2] 王友同, 吴梧桐, 吴文俊. 我国生物制药产业的过去、现在和将来. 药物生物技术[J]. 2010, 17(1): 1-14. [3] 吴梧桐, 王友同, 吴文俊. 21世纪生物工程药物的发展与展望[J]. 药物生物技术. 2000, 7(2): 65-70. [4] 储炬, 李友荣. 现代工业发酵调控学(第二版)[M]. 化学工业出版社. [5] Koury MJ, Bondurant MC. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cell[J]. Cell Physiol, 1988, 137(1):65. [6] Cuzzole M, Mercurial F, Brugnara C. Use of recombinant human Erthro-poietin outside the setting of uremia[J]. Blood, 1997, 89(12): 4248-4267. [7] 李萍, 刘国良. 最新胰岛素制剂的研究进展概述[J]. 中国实用内科杂志. 2003, 23(1): 19-20. [8] 张石革, 梁建华. 胰岛素及胰岛素类似物的进展与应用[J]. 药学专论. 2005, 14(11): 21-23. [9] 徐卫良. 生物制品供应链优化与供货提前期缩短问题研究――基于葛兰素史克(中国)疫苗部的实例分析(硕士学位论文). 上海交通大学, 2005. [10] Presta LG. Molecular engineering and design of therapentic antilodies[J]. Curr Opin Immunol, 2008, 20(4): 460. [11] Liu XY, Pop LM, Vitetta ES. Engineering therapeutic monoclonal antibodies[J]. Immunol Rev, 2008, 222: 9. [12] 陈志南. 基于抗体的中国生物制药产业化前景. 中国医药生物技术[J]. 2007, 1(1): 2. [13] 于建荣, 陈大明, 江洪波. 抗体药物研发现状与发展态势[J]. 生物产业技术. 2009, 1(3): 49.看了"基因工程学术论文"的人还看: 1. 高中生物选修三基因工程知识点总结 2. 高二生物基因工程知识点梳理 3. 浅谈基因工程在农业生产中的应用 4. 植物叶绿体基因工程发展探析 5. 关于蔬菜种植的学术论文