首页

> 学术发表知识库

首页 学术发表知识库 问题

细胞器论文

发布时间:

细胞器论文

给点对文特尔的评价

论细胞生物学的发展 悠悠300余年,关于细胞的研究硕果累累;近50年来更进入了分子水平,老树又绽新花。许多研究成果已经或将要走进我们的生活:植物细胞在培养瓶中悄然长成幼苗;动物体细胞核移植诞生了克隆动物;不同生物细胞间DNA的转移创造出新的生物类型及其产品;病危的生命期盼着干细胞移植的救助…… 现在,生物学在人类的生产生活中的使用愈加广泛。美国细胞生物学家威尔逊曾经说过:“每一个生物科学问题的答案都必须在细胞中。”这句话明显说明了细胞生物学对整个生物科学的研究有着怎样的重要性。细胞生物学的发展,越来越受到人们的重视。 谈起细胞生物学,不得不提的是建立于19世纪的《细胞学说》。《细胞学说》的建立可谓是自然科学史上的一座丰碑。《细胞学说》的两位建立者——德国科学家施莱登和施旺。经过长时间不断的探索和研究,分别从结构、功能和分裂三个方面对细胞进行了探究,并从中提炼出了三个要点,构成了《细胞学说》的主体。《细胞学说》的建立,不仅为达尔文的《进化论》奠定了基础,更为后人对细胞生物学的研究,做出了巨大贡献。 在细胞学说创立的100年间,人们对细胞的研究基本停留在简单观察和形态描述的水平,细胞在生物学家的眼中多多少少还像一团胶状物,里面杂乱地散布着一些含混不清的东西。此时出现了一名科学家——美国的细胞生物学科学家克劳德,他决心把细胞内部的组分分离开,探索细胞内组分的结构和功能。当时分离细胞器所遇到的困难是今天的人们难以想象的。许多人对他冷嘲热讽,认为把好好的细胞弄碎是毫无意义的。但是克劳德坚信,要深入了解细胞的秘密,就必须将细胞内的组分分离出来。经过艰苦的努力,他终于摸索出采用不同的转速对破碎的细胞进行离心的方法,将细胞内的不同组分分开。这就是一直沿用至今的“转速离心法”。 如果说《细胞学说》是通往细胞生物学的一扇门,那么我认为克劳德的“转速离心法”便是这扇门的钥匙。这种方法的发现,使人类对细胞内部的进一步探究,有着非常重要的意义。 随着对细胞内更深入的探究,人类发现了细胞中一个新的世界。细胞中每个组分如此精巧,一个个小小的细胞器,在细胞中都起到了非常关键的作用。霍中和院士在《细胞生物学》中写到:“我确信哪怕最简单的一个细胞,也比迄今为止设计出的任何只能电脑更精巧。”人类也曾经试图组装出一个细胞。1990年,科学家发现人体生殖道支原体可能是最小、最简单的细胞。1995年,美国科学见文特尔领导的研究小组,对这种支原体的基因组进行了测序,发现它仅有480个基因。如果在480个基因中辨认出对细胞生活必不可少的“基本基因”,那么就有希望人工合成这些基因——一段不很长的DNA分子。 文特尔的方法是破坏一个又一个的基因,看那些基因是绝对不可或缺的,终于筛选出了300个对生命活动必不可少的基因,但其中100个基因的重要性尚不清楚。 文特尔以及其他一些科学家认为,如果能人工合成这300个基因的DNA分子,再用一个细胞膜把它和环境分隔开,在培养基中培养,让他能够生存、生长和繁殖,组装细胞就成功了。科学家现在已经能够合成长度为5000个碱基因对的DNA片段,文特尔估计生殖道支原体的DNA的碱基对比这要多100倍,因此,DNA的人工合成还需要方法上的创新。怎样给DNA分子包上细胞膜也是一个难题。他们的设想是,把生殖道支原体细胞的DNA破坏掉,再把人工合成的基因组“注入”支原体细胞。 有关实验还在进行中,不过可以确信的是,人类对细胞生物学的研究愈加深入,对人类今后的发展就愈加有利。通过不断的科学探究和深入研究,我相信在不久的将来,细胞生物学将成为一个重要的科学领域,会吸引更多的人去探索、研究。它也会绽放出他耀眼的光辉,来迎接着这崭新的时代!

在一项新的研究中,来自美国普林斯顿大学的研究人员惊奇地发现,他们以为是对癌症如何在体内扩散---癌症转移---的直接调查却发现了液-液相分离的证据:这个生物学研究的新领域研究生物物质的液体团块如何相互融合,类似于在熔岩灯或液态水银中看到的运动。相关研究结果作为封面文章发表在2021年3月的Nature Cell Biology期刊上,论文标题为“TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis”。

论文通讯作者、普林斯顿大学分子生物学教授Yibin Kang说,“我们相信这是首次发现相分离与癌症转移有关。”

他们的研究不仅将相分离与癌症研究联系在一起,而且融合后的液体团块产生了比它们的部分之和更多的东西,自组装成一种以前未知的细胞器(本质上是细胞的一个器官)。

Kang说,发现一种新的细胞器是革命性的。他将其比作在太阳系内发现一颗新的星球。“有些细胞器我们已经认识了100年或更久,然后突然间,我们发现了一种新的细胞器!”

论文第一作者、Kang实验室博士后研究员Mark Esposito说,这将改变人们对细胞是什么和做什么的一些基本看法,“每个人上学,他们都会学到‘线粒体是细胞的能量工厂’,以及其他一些有关细胞器的知识,但是如今,我们对细胞内部的经典定义,对细胞如何自我组装和控制自己的行为的经典定义开始出现转变。我们的研究标志着在这方面迈出了非常具体的一步。”

这项研究源于普林斯顿大学三位教授实验室的研究人员之间的合作。这三位教授是Kang、Ileana Cristea(分子生物学教授,活体组织质谱学的领先专家);Cliff Brangwynne(普林斯顿大学生物工程计划主任,生物过程中相分离研究的先驱)。

Kang说,“Ileana是一名生物化学者,Cliff 是一名生物物理学者和工程师,而我是一名癌症生物学家和细胞生物学者。普林斯顿大学刚好是一个让人们联系和合作的美妙地方。我们有一个非常小的校园。所有的科研部门都紧挨着。Ileana实验室实际上与我的实验室在Lewis Thomas的同一层楼! 这些非常紧密的关系存在于非常不同的研究领域之间,让我们能够从很多不同的角度引入技术,让我们能够突破性地理解癌症的代谢机制--它的进展、转移和免疫反应--也能想出新的方法来靶向它。”

这项最新的突破性研究,以这种尚未命名的细胞器为特色,为Wnt信号通路的作用增加了新的理解。Wnt通路的发现导致普林斯顿大学分子生物学教授Eric Wieschaus于1995年获得诺贝尔奖。Wnt通路对无数有机体的胚胎发育至关重要,从微小的无脊椎动物昆虫到人类。Wieschaus已发现,癌症可以利用这个通路,从本质上破坏了它的能力,使其以胚胎必须的速度生长,从而使肿瘤生长。

随后的研究揭示,Wnt信号通路在 健康 的骨骼生长以及癌症转移到骨骼的过程中发挥着多重作用。Kang和他的同事们在研究Wnt、一种名为TGF-b的信号分子和一个名为DACT1的相对未知的基因之间的复杂相互作用时,他们发现了这种新的细胞器。

Esposito说,把它想象成风暴前的恐慌购物。事实证明,在暴风雪前购买面包和牛奶,或者在大流行病即将到来时囤积洗手液和卫生纸,这不仅仅是人类的特征。它们也发生在细胞水平上。

下面是它的作用机制:惊慌失措的购物者是DACT1,暴风雪(或大流行病)是TGF-ß,面包和洗手液是酪蛋白激酶2(CK2),在暴风雪面前,DACT1尽可能多地抓取它们,而这种新发现的细胞器则把它们囤积起来。通过囤积CK2,购物者阻止了其他人制作三明治和消毒双手,即阻止了Wnt通路的 健康 运行。

通过一系列详细而复杂的实验,这些研究人员拼凑出了整个故事:骨肿瘤最初会诱导Wnt信号,在骨骼中传播(扩散)。然后,骨骼中含量丰富的TGF-b激发了恐慌性购物,抑制了Wnt信号传导。肿瘤随后刺激破骨细胞的生长,擦去旧的骨组织。( 健康 的骨骼是在一个两部分的过程中不断补充的:破骨细胞擦去一层骨,然后破骨细胞用新的材料重建骨骼)。这进一步增加了TGF-b的浓度,促使更多的DACT1囤积和随后的Wnt抑制,这已被证明在进一步转移中很重要。

通过发现DACT1和这种细胞器的作用,Kang和他的团队找到了新的可能的癌症药物靶点。Kang说,“比如,如果我们有办法破坏DACT1复合物,也许肿瘤会扩散,但它永远无法‘长大’成为危及生命的转移瘤。这就是我们的希望。”

Kang和Esposito最近共同创立了KayoThera公司,以他们在Kang实验室的合作为基础,寻求开发治疗晚期或转移性癌症患者的药物。Kang说,“Mark所做的那类基础研究既呈现了突破性的科学发现,也能带来医学上的突破。”

这些研究人员发现,DACT1还发挥着许多他们才开始 探索 的其他作用。Cristea团队的质谱分析揭示了这种神秘细胞器中600多种不同的蛋白。质谱分析可以让科学家们找出在显微镜玻片上成像的几乎任何物质的确切成分。

Esposito说,“这是一个比控制Wnt和TGF-b更动态的信号转导节点。这只是生物学新领域的冰山一角。”

Brangwynne说,相分离和癌症研究之间的桥梁仍处于起步阶段,但它已经显示出巨大的潜力。

他说,“生物分子凝聚物在癌症---它的生物发生,特别是它通过转移进行扩散---中发挥的作用仍然不甚了解。这项研究为癌症信号转导通路和凝聚物生物物理学之间的相互作用提供了新的见解,它将开辟新的治疗途径。”(生物谷 Bioon.com)

参考资料: 1.Mark Esposito et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nature Cell Biology, 2021, doi:10.1038/s41556-021-00641-w. 2.Kiran D. Patel et al. Condensing and constraining WNT by TGF-β. Nature Cell Biology, 2021, doi:10.1038/s41556-021-00649-2.

科学崛起从细胞编辑器开始

楼主您好,RP其实就是人品的意思,玩家们通常都说人品问题、一般都会带上“RP”、希望采纳!

当然不可能,人工智能可以做一些重复性的没有技术性的工作,但是人文学科的是人工智能所做不到的。举个例子,外国语言文学以及笔译口译,就是人工智能所做不到的,虽然现在市面上有很多翻译软件,但是翻译出来也是很奇怪的,语句不通顺的。

畅销书《未来简史》的作者尤瓦尔·赫拉利曾在伦敦说,人工智能等技术有可能让人类面临进化为智人以来的最大的一次改变,大部分人将沦为“毫无价值的群体”。笔者曾问牛津大学校长路易丝·理查森:“什么时候牛津大学的讲台上会出现第一个机器人老师?”她笑着回答,可能在她有生之年都看不到机器人教师,但应该会看到能够帮助教师的机器人。牛津一所学院的研究预测,未来将有47%的工作被机器人取代,但校长认为教师这一职业不在其中。“牛津大学的辅导系统是基于一对一或二对一的导师交流制,这关系到学生如何塑造观点、接受批评或不同意见,以及为观点进行辩护。”她说,“没有电脑软件可以做到这一点,而且我们职责的一部分也在于传授一种同理心,而电脑尚且无法理解人性或借鉴思想。”

笔者也曾问英国外交部首席中文译员、曾为英国女王和多位英国首相翻译的林超伦:“机器翻译替代人类翻译,还需要多久?”正在从事机器翻译研发的林超伦回答,机器开始逐渐取代人工是近在咫尺,但机器翻译暂时还做不到的是感情交流和表达。人不是机器——这也许就是人工智能时代人类最大的价值。人工智能不管多么发达,归根结底,都是在人类给定的框架下解决问题。比如,某人每天上下班,公司和家之间的距离有15公里。他可以选择的交通工具包括打的、公交车、地铁、自驾车、共享单车,以及这些工具的组合。如果他去问导航软件,导航软件可以根据他的要求以及实时路况,给出一个最优的出行方案。这在现实中往往是很有用的。然而,虽然有不少人会选择在工作地点附近买房或租房来解决通勤问题,导航软件却绝不会给出搬家的方案。因为导航软件的运行程序,或者说运行框架没有这种手段可供选择,但人却不会受既有框架的约束。

总之,如果人类确定了问题,确定了可用的手段或者信息,人工智能可以给出答案,乃至近乎完美的答案。但是,人工智能不会设计这种目的—手段的框架,也不会主动突破这种框架。人是追求意义的智慧生物,因此有自己的价值观。人类赋予某些事物以意义或价值,才构成了目的—手段的逻辑关系。也就是说,人能知道自己要的是什么,怎样才算是达成了目的。而人工智能没有意义的概念,需要人类将具有意义的逻辑关系编码输入,人工智能才能按照这种关系工作,但它本身无从建立这种关系。可见,人与人工智能最大的不同,就是人通过意义和价值与外部世界建立联系。这是人作为主体而不是客体的基础,也是人类合作和创新的基础。人工智能没有意义的概念,没有价值观,终究只能是人的工具,而不可能超越人类。

在我看来,人工智能不能完全替代人类的工作!

人工智能说到底只是一个没有感情的机器人。就拿客服来说,人工智能只能给咨询者提供常规问题解决方案,无法解决特殊咨询者的需求。我们遇到问题还是喜欢给人类客服沟通,这样解决那些疑难杂症的问题效率才会更高。而和人工智能客服问半天也给不出一个有效的解决方案。从长远来说,人工智能客服是无法取代人类的。

会取代一部分,又不能全部取代!

人工智能不具备感性思维,无法跨越到意识领域!而且一些技术、经验积累型职业也很难取代。

比如专家、教授、讲师、医生、销售、月嫂、保姆、艺术设计、演员、情感陪护………

许多职业是无法取代的,所以未来学习、择业一个大方向就是不与人工智能竞争,投入于其无法替代的职业。

人工智能只是一个机器人,没有人会喜欢看它们参演的影视剧,所以演员更是无法取代的。

对于作家,人工智能因为没有感情,它们写出来的东西生硬无情,没有人会喜欢看它们写的小说,所以作家也是无法取代的。

对于没有感情的人工智能,是绝对不会有人愿意让它们教育自己的孩子,所以教师也是无法取代的。

从感情的角度来说,人工智能不适合做的事情还有很多。人类的工作它们只能代替一部分,而不是大部分。

打工人,打工魂,没有人类,他们怎么供电,谁来开发他,就算他真的能取代一部分机械化的操作,但是大脑、智慧、感情、浪漫、等等永远是无法取代的,甚至工作当中的关系;

当然我也很开心科技能进步,可以取代那些真的很劳累的工作,但是如果广义上,肯定不能取代。

因为我需要工作。

理论上来说,人类能完成的工作人工智能都可以完成,甚至更有效率,但人工智能终究只是工具,它的存在只是为了提高人类发展上限而不是取代人类工作!

书名:科学崛起:从细胞编辑器开始作者:向往学霸简介:开局就获得细胞编辑器,可以完美掌控自己的每一个细胞,对细胞进行任意编辑。改造大脑记忆细胞,获得过目不忘的能力。改造巨噬细胞,让巨噬细胞能够识别并消灭艾滋病毒。改造细胞内的蛋白质,制造生物计算机。改造细胞,让细胞可以无限分裂,获得永生的能力。改造细胞,在细胞内直接产生核反应,将物质转化为能量,每个细胞都相当于一个核反应堆。让细胞无限分裂,繁殖成星球那么大的细胞团,打造成行星堡垒。脑洞有多大,细胞编辑器就有多强!人类的生物科技时代,由我开启!(本故事及人物纯属虚构,如有雷同,纯属巧合,切勿模仿。)内容片段:大约过了二十分钟,一个穿着白色T恤和紧身牛仔裤,大约二十几岁的高挑女生朝着他走了过来。“你就是陆离?那个高考考了750分的陆离?”女生好奇的打量着陆离,开口询问道。“哦,我是。”陆离点点头,有些疑惑的说道,“你是秦薇老师?”“天呐,真的是你,你这脑子是怎么长的,竟然能考750分。”秦薇显得很兴奋,“还有,不要叫我老师,我是研一学生,只是兼职辅导员,你叫我学姐叫可以了。”秦薇一时激动之下,声音有点大,顿时引起了周围其他人的注意力。“哇塞,你就是那个高考750分的学生?”“还真是你诶,跟新闻上的照片长得一模一样。”“学习好就算了,还长得这么帅……我嫉妒了。”

中华细胞与干细胞是核心期刊

国家科技部支撑计划评审专家,国家科技部国际合作计划战略专家、项目评审专家,国家自然科学基金、国家教育部博士点专项基金、国家卫生部科研基金评审专家,省自然科学基金重点项目、省科技计划重点项目评审专家;美国癌症学会(AACR) 会员,美国外科杂志(SCI)、中华医学杂志英文版(SCI)审稿专家,亚太热带医学杂志(SCI)常务编委,中华细胞与干细胞移植杂志编委,中国组织工程与临床康复杂志审稿专家,世界医药杂志特邀编委,现代免疫学杂志特邀编委,中华现代外科学杂志常务编委,广西免疫学会理事长,广西心胸外科学会委员,福建省器官移植学会常委。主要从事肿瘤疫苗、移植抗排斥药物和组织工程的研究。先后负责完成与正在主持的国家科技部国际合作重点项目、国家“211工程”重点学科重大项目、国家“985工程”博士点学科重大专项、国家自然科学基金、国家教育部(跨)新世纪优秀人才支持计划、国家人事部留学回国人员科技择优项目等国家级课题11项,省级课题10项,副省级课题1项,参与美国NIH国际合作项目2项;已在国内外核心期刊上发表论文40余篇,其中SCI文章17篇,最高影响因子IF=7.3;先后获国际学术成果奖1项、部省级成果奖3项,国内学术优秀论文奖2项,成果鉴定两项,申请美国专利2项、中国专利2项。

中华细胞与干细胞杂志是3核心期刊。所以是单核

好像连核心都不是,不要说是A类?B类还是C类?了

细胞类sci期刊

医学界的“四大灌水神刊”— 《Oncotarget》、《Medcine》、《Scientific Reports》、《Plos One》。在医学界一直流传着“四大神刊”的传说,为什么说是四大神刊呢,原因大抵有三,一是因为影响因子适中,科研单位认可;二是这些期刊每年发文量大,又对创新性没有过高的要求,发表相对容易。《Oncotarget》在2018年已经被SCI剔除,已经走下了神坛,在此不多做介绍。《Medcine》的影响因子为2.023,研究领域涉及到医药科学方向,包括神经系统和精神疾病 神经发育、遗传、代谢相关疾病等各类疾病药物,投稿周期3-5个月作用。《Scientific Reports》为Natrure 出版集团旗下的综合性科学期刊,对文章创新性没有过高要求,但要求一定要数据严谨,影响因子在4.12,投稿周期快则两周,慢则一年不等。《Plos One》,属于3区的综合性期刊,影响因子为2.77,审稿周期在2-3个月。03、肿瘤领域的王牌SCI生物学中以肿瘤研究最火,在肿瘤领域有几大王牌SCI,影响因子甚至比CNS都高个几倍,一旦能发上个一篇,科研道路必定平顺得多了。(1)经典期刊《Cancer Journal for Clinicians》,影响因子为244.59,审稿周期一个月左右,以约稿居多;《Nature reviews cancer》,影响因子为42.78,审稿周期在1-3个月之间,以约稿居多;《Cancer cell》,影响因子为22.84,审稿周期在1-2个月之间。(2)高性价比期刊《Medical Oncology》,影响因子为2.92,审稿周期在1-2个月之间;《Oncology reports》,影响因子为2.98,审稿周期在1个月-半年之间。《psycho-oncology》,影响因子为3.46,审稿周期在3-8周。04、神经科学领域的SCI大咖神经科学领域作为生物学中“高大上”的一支,自然也少不了一些专业领域的SCI大咖的存在。我们就介绍最为著名的几个期刊。(1)经典期刊《Nature neuroscience》,影响因子为19.91,审稿周期在2个月之间;《Neuron》,影响因子为14.32,审稿周期在3个月左右;《Brain》,影响因子为10.84,审稿周期在1-2个月左右。(2)高性价比期刊《Brain Research》,影响因子为3.12,审稿周期在1-8个月之间;《Brain Research Bulletin》,影响因子为3.44,审稿周期在1-4个月之间。05、免疫领域的几大SCI期刊免疫学领域是一个比较大的领域,很多医学研究往往都涉及到了免疫学的内容。我们来了解一下免疫学的几个常见的期刊。(1)经典期刊《Annual Review of Immunology》,影响因子为22.71,审稿周期在2个月左右或约稿;《Nature Immunity》,影响因子21.81,审稿周期在1-2个月之间;《Immunity》,影响因子为19.73,审稿周期平均6个月左右。(2)高性价比期刊《Autoimmunity》,影响因子为2.65,,审稿周期为1-3个月;《Journal of Microbiology, Immunology and Infection》,影响因子为2.09,审稿周期为1个月;《BMC immunology》,影响因子为2.62,审稿周期为1个月左右。06、心血管领域的SCI大佬和平民期刊心血管领域也是医学领域的一大分支,吸引着一大批学者的研究。心血管领域有哪些大佬级的SCI期刊呢(1)经典期刊《Journal of the American College of Cardiology》,影响因子16.83,审稿周期在2-4周;《European Heart Journal》,影响因子23.42,审稿周期平均一个月;《Circulation》,影响因子18.88,审稿周期在2个月左右。(2)高性价比期刊《Canadian Journal of Cardiology》,影响因子4.52,审稿周期在1-2个月之间; 《Cardiology》,影响因子1.74,审稿周期在1-2个月之间。《Cardiovascular Drugs and Therapy》,影响因子2.77,审稿周期在4.5个月左右。07、内分泌领域的不可不知的SCI期刊内分泌领域涉及到糖尿病、高血压、肥胖症等多种常见疾病,但到目前为止仍然没有有效的治疗方法,吸引了很多科学家来研究。我们介绍几本常见的内分泌领域的SCI期刊。(1)经典期刊《Lancet Diabetes & Endocrinology》,影响因子19.31,审稿周期不定。《Cell Metabolism》,影响因子20.57,审稿周期1-3个月。《Molecular Metabolism》,影响因子6.29,审稿周期1-3个月。(2)高性价比期刊《Frontiers in Endocrinology》,影响因子3.52,审稿周期不定。《NEUROPEPTIDES》,影响因子2.92,审稿周期1-2个月或约稿。《Nutrition & Diabetes》,影响因子2.74,审稿周期1-2个月或约稿。08、消化领域的热门SCI期刊消化领域是生命科学领域的一个重要板块,该领域不乏重量级以及价优质廉的SCI期刊。(1)经典期刊《Gastroenterology》,影响因子20.77,审稿周期平均1-5个月。《Gut》,影响因子17.02,审稿周期平均1-2个月。《HEPATOLOGY》,影响因子14.08,审稿周期平均1-3个月。(2)高性价比期刊《Hepatology International》,影响因子4.11,审稿周期1-3个月;《Gut Pathogens》,影响因子2.81,审稿周期3个月左右或约稿;《Journal of Neurogastroenterology and Motility》,影响因子3.44,审稿周期不定。09、骨科领域的必备SCI期刊骨科的研究,从分子生物学理论的研究,到各种支架材料,干细胞诱导分化,研究的方向越来越多元化。那么,骨科领域有哪些常见的期刊呢?(1)经典期刊《AMERICAN JOURNAL OF SPORTS MEDICINE》,影响因子6.06,审稿周期2-4周;《OSTEOARTHRITIS AND CARTILAGE》,影响因子5.45,审稿周期3-8周;《Journal of Physiotherapy》,影响因子4.54,审稿周期3个月或约稿。(2)高性价比期刊《PHYSICAL THERAPY》,影响因子2.60,审稿周期4-8周;《JOURNAL OF ARTHROPLASTY》,影响因子3.33,审稿周期2-4周;《JOURNAL OF ORTHOPAEDIC RESEARCH》,影响因子3.41,审稿周期3-6周。010、呼吸领域不能忽略的SCI期刊近年来,对于呼吸的生理和病理生理、缺氧和进行呼吸病学诊断治疗及发病机制的研究越来越深入,一些呼吸领域关于基础和临床的研究也越来越多。呼吸领域有哪些SCI值得我们关注呢?(1)经典期刊《Lancet Respiratory Medicine》,影响因子21.47,审稿周期不定;《EUROPEAN RESPIRATORY JOURNAL》,影响因子12.24,审稿周期2-4周;《AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE》,影响因子15.24,审稿周期3周-8个月。(2)高性价比期刊《RESPIRATION》,影响因子2.59,审稿周期4-8周;《BMC Pulmonary Medicine》,影响因子2.72,审稿周期6-12周;《COPD-Journal of Chronic Obstructive Pulmonary Disease》,影响因子2.60,审稿周期6-12周。最近得知有一些发表很快的SCI医学期刊,影响因子还不低,抓紧投稿还能趁一波东风

Physiological Genomics网络释义Physiological Genomics: 生理基因组学physiological genomics and pathological genomics: 生理与病理基因组学期刊名 physiological genomics 出版周期: 半月刊偏重的研究方向:GWAS(1) 外显子组(1) 基因组(1) genomics(1) 审稿速度:平均2个月的审稿周期 投稿命中率:25%SCI期刊分区 大类:生物3区;小类:生理学 3区 中科院JCR分区 大类:生物 3区; 小类: 细胞生物学 4区、生理学 3区、遗传学 3区NLM 缩写: Physiol GenomicsNLM ID: 9815683出版国家: United States出版地: Bethesda, MD出版商: American Physiological Society出版周期: Once or twice a year创刊年份: 1999语言: 英语SCI收录: YES

SCI期刊CYTOKINES CELL MOL T (ISSN=1368-4736) 历年论文总引频次 期刊全称 CYTOKINES ... APPLIED MICROBIOLOGY) SCI-细胞生物学(CELL BIOLOGY

临床医学进展,不过是核心不是SCI

细胞学的期刊

影响力很高。美国植物生物学家学会主办的植物学领域顶级期刊《植物细胞》(The Plant Cell)。

您好,The Plant Cell是一本权威性的期刊,它发表有关植物细胞生物学的研究论文。它每月出版一次,每月发表大约20篇论文,涵盖了植物细胞生物学的各个方面,包括植物细胞增殖、发育、分化、细胞器、细胞壁、植物激素、植物病毒、植物细菌、植物病原体和植物-微生物关系等。The Plant Cell的文章质量很高,其编辑和审稿流程也很规范,从而保证了发表的文章质量。The Plant Cell的文章也受到国际学术界的广泛认可,被许多国际知名期刊引用,因此The Plant Cell是一本非常有价值的期刊。

The Plant Cell是一本专注于植物细胞生物学的期刊,它的主要关注点是植物细胞的结构、功能和发育。它更加关注植物细胞的分子机制,以及植物细胞如何受到环境因素的影响。此外,它还涉及植物细胞的基因组学、蛋白质组学、细胞生物学和发育生物学等领域。相比之下,其他期刊更加关注植物的生态学、分子生物学、生物化学和生物物理学等领域,以及植物如何受到环境因素的影响。

相关百科

热门百科

首页
发表服务