1、油温七成---八成,标准就是 油条下锅不沉底下锅后很快就能飘起来.飘起来后翻个,略炸就行了2、用180℃-200℃的油温将其炸制成表面金黄色,体积膨大,酥脆即成。 3、油炸时油温以六七成热(约180度)为宜,油温过低,油脂会很快浸透进面坯中,这样不仅使油条中间含油,还会使其膨胀度降低,而油温过高时,又很容易将油条炸焦炸煳。在油炸过程中,必须用筷子来回翻动,使其受热均匀,让油条变得膨胀松泡且色泽一致。4、炸油条的油温,要保持在200度左右,温度太高易炸糊,但太低炸出来的油条绝对不能达到泡松的要求,不管你的料调得多准,也不管你的面合得多好,都有发不起来的。 5、据不可靠消息称,有一项研究表明,健康烹饪,最好将油温控制在180℃左右。一旦油温达到210℃至250℃,将形成大量含有丙烯醛的青烟,还产生油脂的热聚合物、多环芳烃等多种毒物。若长期吸入或食用,容易诱发多种严重疾病,甚至癌症。6、具体表现是,当油温在50℃至90℃,会有少量气泡,油面平静;当在90℃至120℃,气泡消失,油面平静;120℃至170℃时,油温急剧上升,油7、炸油条能金黄松脆原料:高筋粉200克、盐1克、酵母3克、鸡蛋30克、水适量、油适量 做法:1、将高筋粉、酵母、盐、鸡蛋和适量水混合合成较软的面团; 2、面团合成团后加少量食用油将面团揉滋润,盖上屉布裹保鲜膜醒发】 3、面团醒发原来的2倍大时取出面团再次揉面团排出气体,然后盖上屉布第二次发酵; 4、面团再次发到原来的2倍时取出面团放到涂了油的案板上,用到切成均匀的长条; 5、每2个面团摞在一起,用筷子在面的中间压出一道印,然后用手捏住面的两端拧一下成 为油条生胚; 6、锅中倒油,油温达到7成,将油条生胚放入油中,见油条成金黄色时捞出即可。 体会:1、油条用高粉口感更好,高粉筋度大,炸出油条口感酥脆; 2、要醒发2次,炸出的油条发的大,外表酥脆内部松软; 3、炸油条油温一定要高,这样油条可以很快发的很大且不会吸很多油。
现在这时间是毕生生准备写论文和做毕业设计的时间,想要写好论文,首先要了解论文的格式,大家知道写了摘要还用写引言吗?来看下面:
写了摘要还用写引言吗【1】
一般情况都要写的,摘要和前言是不一样的,摘要要概括地写明你这篇论文主要写什么,用了什么方法,得出什么结论,一般五六句话。
前言一般是写你论文的主题是如何来的,前人有哪些结论,这些结论有什么缺陷,说明你的论文要弥补这些缺陷。
摘要和引言的写法【2】
1、摘要的写法
论文摘要是全文的精华,是对一项科学研究工作或技术实践的总结,对研究目的、方法和研究结果的概括。
摘要置于主体部分之前,目的是让读者首先了解一下论文的内容,以便决定是否阅读全文。
一般来说,这种摘要在全文完成之后写。
字数限制在100~150字之间。
内容包括研究目的、研究方法、研究结果和主要结论。
也就是说,摘要必须回答“研究什么”、“怎么研究”、“得到了什么结果”、“结果说明了什么”等问题。
简短精炼是学术期刊论文摘要的主要特点。
只需简明扼要地将研究目的、方法、结果和结论分别用1~2句话加以概括即可。
2、引言的写法
引言也叫绪言、绪论。
引言的主要任务是向读者勾勒出全文的基本内容和轮廓。
它可以包括以下五项内容中的全部或其中几项:
1)介绍某研究领域的背景、意义、发展状况、目前的水平等;
2)对相关领域的文献进行回顾和综述,包括前人的研究成果,已经解决的问题,并适当加以评价或比较;
3)指出前人尚未解决的问题,留下的技术空白,也可以提出新问题、解决这些新问题的新方法、新思路,从而引出自己研究课题的动机与意义;
4)说明自己研究课题的目的;
5)概括论文的主要内容,或勾勒其大体轮廓。
比较简短的论文,引言也可以相对比较简短。
为了缩短篇幅,可以用一两句话简单介绍一下某研究领域的重要性、意义或需要解决的问题等,接着对文献进行回顾,然后介绍自己的研究动机、目的和主要内容。
至于研究方法、研究结果及论文的组成部分则可以完全省略。
(1)如何写引言的开头
引言开头(即第一层)最主要目的是告诉读者论文所涉及的研究领域及其意义是什么,研究要解决什么问题,目前状况或水平如何。
(2)如何写文献综述
文献综述是学术论文的重要组成部分,是作者对他人在某研究领域所做的工作和研究成果的总结与评述,包括他人有代表性的观点或理论、发明发现、解决问题的方法等。
在援引他人的研究成果时,必须标注出处,即这一研究成果由何人在何时何地公开发表。
(3)如何写研究动机与目的
在介绍了他人在某领域的工作和成果之后,下一步便介绍作者自己的研究动机、目的与内容。
介绍研究动机可以从两个角度人手,一是指出前人尚未解决的问题或知识的空白,二是说明解决这一问题,或填补知识空白的重要意义。
指出或暗示了知识领域里的空白,或提出了问题或假设之后,下一步理所当然应该告诉读者本研究的目的'和内容,要解决哪些问题,以填补上述空白,或者证明所提出的假设。
(4)如何写引言的结尾
研究目的完全可以作为引言的结尾。
也可以简单介绍一下文章的结构及每一部分的主要内容,从而起到画龙点睛的作用,使读者了解文章的轮廓和脉络。
至于研究结果,在引言中完全可以不写。
研究结果是结论部分最主要的组成部分。
3、摘要举例(黑体为套用句型)
文章深入分析了不同文化背景对国际商务谈判方式的不同影响 ,指出文化是影响人们谈判价值观、思维方式、决策方式、语言习惯等的重要因素 ,对谈判者如何增强跨文化谈判意识 ,做好国际商务谈判提出合理化建议。
《影响国际商务谈判的文化因素》
作为语言学研究中最新建立的跨学科的一个领域,话语分析已逐渐从对语言的表面描述转为对语言运用的解释。
本论文在话语分析的理论研究基础上,把商务谈判作为话语分析的对象,旨在揭示商务谈判中语言运用的规律性,即谈判人为实现交际目的所运用的语言的特征和策略,同时讨论了语境因素在商务谈判中的重要性。
毕业论文中引言与摘要的区别【3】
引言的作用:
说明为什么要从事本项研究开发工作,引导读者阅读和理解全文。
引言的内容:
简短的篇幅介绍论文的写作背景和目的,缘起和提出研究要求的现实情况,以及相关领域内前人所做的工作和研究的概况,说明本研究与前工作的关系,目前的研究热点、存在的问题及作者的工作意义,引出本文的主题给作者以引导。
引言也可点明本文的理论依据、实验基础和研究方法,简单阐述其研究内容;三言两语预示本研究的结果、意义和前景,但不必展开讨论。
引言的写作要求:
1、开门见山,不绕圈子。
避免大篇幅地讲述历史渊源和立题研究过程。
2、言简意赅,突出重点。
不应过多叙述同行熟知的及教科书中的常识性内容,确有必要提及他人的研究成果和基本原理时,只需以参考引文的形式标出即可。
在引言中提示本文的工作和观点时,意思应明确,语言应简练。
3、尊重科学,实事求是。
在论述本文的研究意义时,应注意分寸,切忌使用“有很高的学术价值”、“填补了国内外空白”、“首次发现”等不适之词;同时也要注意不用客套话,如“才疏学浅”、“水平有限”、“恳求指教”、“抛砖引玉”之类的语言。
4、引言的内容不应与摘要雷同,也不应是摘要的注释。
引言一般应与结论相呼应,在引言中提出的问题,在结论中应有解答,也应避免引言与结论雷同。
5、引言不必交待开题过程和成果鉴定程序,也不必引用有关合同公文和鉴定的全部结论。
6、简短的引言,最好不要分段论述,不要插图列表和数学公式的推导证明。
题目:
1、英文题目开头第一字不得用The ,And,An和A;
2、题目中尽量少用缩略词;
3、特殊字符即数学符号和希腊字母在题目中尽量不用,或少用。
摘要
杂志上刊登的论文一般仅限于数千字,为何还要一段数百字的摘要呢?无非是便于读者用最短时间掌握信息,了解研究工作或文章的主要内容和结果,从而决定是否需要详读全文。
在知识和信息加速度增长的今天,摘要的重要性更为突出。
既为读者阅览起引导作用,更为文献汇编、计算机储存、检索做好准备,成为科技情报的重要来源。
摘要者,精华也。
作者应重视摘要的书写。
写好摘要,既需要严肃认真的科学精神,更是一种雕琢艺术,奉献给读者的是精品,起到的是相互交流、共同发展的目的。
中文杂志的英文目录和摘要更是进行国际交流的唯一途径,直接反映我国科学研究和杂志的质量水平,是让世界了解中国的一个窗口。
摘要不容赘言,故需逐字推敲。
内容必须完整、具体、使人一目了然。
英文摘要虽以中文摘要为基础,但要考虑到不能阅读中文的读者的需求,实质性的内容不能遗漏。
为此,我国的科技期刊近年来陆续采用结构式摘要,明确写出目的、方法、结果和结论四部分。
1.目的(Objective):简明指出此项工作的目的,研究的范围。
2.方法(Methods):简要说明研究课题的基本做法,包括对象(分组及每组例数、对照例数或动物只数等)、材料和方法(包括所用药品剂量,重复次数等)。
统计方法特殊者需注明。
3.结果(Results):简要列出主要结果(需注明单位)、数据、统计学意义(P值)等,并说明其价值和局限性。
4.结论(Conclusion):简要说明从该项研究结果取得的正确观点、理论意义或实用价值、推广前景。
中、英文摘要前需标明中、英文文题,作者姓名(至多3名)及作者单位(邮政编码)。
英文摘要应隔行打字,以便修改
摘要内容:
论文中的中、英文摘要不必强求一致。
英文摘要应比中文摘要更全面一些,这样可以使看不懂中文的读者获取更多信息。
摘要中应排除本学科领域已成为常识的内容;切忌把应在引言中出现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价)。
文章中摘要、引言和结论部分的内容应避免重复。
摘要长度一般不超过150个字,不少于100个字。
少数情况下允许例外,但主题概念不得遗漏。
使用第三人称:建议采用“对……进行了研究”、“报告了……现状”、“进行了……调查”等记述方法,标明一次文献的性质和文献主题,不必使用“本文”、“作者”等作为主语。
英文摘要的人称,原来摘要的首句多用第三人称如:This paper ……等开头,现在倾向于采用更简洁的被动语态或原形动词开头,例如:To describe…,To study…,To investigate…,行文最好不用第一人称做主语如:We…。
在摘要中应该表述清楚的问题:
1) 本文的目的或要解决的问题(What I want to do?)
要点:
Eliminate or minimize background information
Avoid repeating the title or part of the title in the first sentence of the abstract
2) 解决问题的方法及过程(How I did it?)
3) 主要结果及结论(What results did I get and what conclusions can I draw?)
要点:
突出论文的主要贡献和创新、独到之处(What is new and original in this paper)。
英文摘要的句法
关于英文摘要的句法,《EI》提出了以下三个一般原则:
1) 尽量用短句(use short sentences)。
2) 描述作者的工作一般用过去时态(因为工作是在过去做的),但在陈述由这些工作所得出的结论时,应该用现在时态。
3) 一般都应使用动词的主动语态,如:写成A exceeds B比写成B is exceeded by A更好。
——————
从内容上引言应该和摘要区分开来。
摘要是论文的缩影,高度概括论文的各个部分如目的,方法,结果和结论等,重点是结果和结论。
读者不阅读全文也能获得论文的主要信息。
引言则是课题研究的必要说明,重点写选题的缘由,立题的依据,待解决的问题等。
从结构上,摘要是独立于文章之外的部分,是一篇完整的短文。
而引言则不同,没有引言,文章结构就残缺,该研究的展开就显得突然、生硬,就不可能是一篇构思严谨,缜密表达内容的文章。
论文摘要的定义 摘要一般应说明研究工作目的、实验方法、结果和最终结论等.而重点是结果和结论。中文摘要一般不宜超过300字,外文摘要不宜超过250个实词。
论文摘要是对论文的内容不加注释和评论的简短陈述,要求扼要地说明研究工作的目的、研究方法和最终结论等,重点是结论,是一篇具有独立性和完整性的短文,根据内容的不同,摘要可分为以下三大类:报道性摘要、指示性摘要和报道指示性摘要。
摘要应具有独立性和自明性,并且拥有与文献同等量的主要信息,即不阅读全文,就能获得必要的信息。摘要不容赘言,故需逐字推敲。内容必须完整、具体、使人一目了然。英文摘要虽以中文摘要为基础,但要考虑到不能阅读中文的读者的需求,实质性的内容不能遗漏。
扩展资料:
论文一般应有摘要,有些为了国际交流,还有外文(多用英文)摘要。它是论文内容不加注释和评论的简短陈述。其作用是不阅读论文全文即能获得必要的信息。 摘要应包含以下内容:
1、从事这一研究的目的和重要性。
2、研究的主要内容,指明完成了哪些工作。
3、获得的基本结论和研究成果,突出论文的新见解。
4、结论或结果的意义。
论文摘要虽然要反映以上内容,但文字必须十分简炼,内容亦需充分概括,篇幅大小一般限制其字数不超过论文字数的5%。例如,对于6000字的一篇论文,其摘要一般不超出300字。
按综合情况分:
1、专题型论文。这是分析前人研究成果的基础上,以直接论述的形式发表见解,从正面提出某学科中某一学术问题的一种论文。
2、论辩型论文。这是针对他人在某学科中某一学术问题的见解,凭借充分的论据,着重揭露其不足或错误之处,通过论辩形式来发表见解的一种论文。
3、综述型论文。这是在归纳、总结前人或今人对某学科中某一学术问题已有研究成果的基础上,加以介绍或评论,从而发表自己见解的一种论文。
4、综合型论文。这是一种将综述型和论辩型两种形式有机结合起来写成的一种论文。
参考资料来源:百度百科——论文摘要
主要介绍你的论文内容,性质,实际意义什么的,
论文主要内容:
一、论文的标题部分
标题就是题目或题名,标题需要以最恰当、最简明的词语反映论文中重要的特定内容逻辑组合,论文题目非常重要,必须用心斟酌选定。
二、论文的摘要
论文一般应有摘要,它是论文内容不加注释和评论的简短陈述。摘要应该包含以下内容:
1、从事这一研究的目的和重要性
2、研究的主要内容
3、完成了哪些工作
4、获得的基本结论和研究成果,突出论文的新见解
5、结构或结果的意义
三、论文关键词
关键词属于主题词中的一类,主题词除关键词外,还包含有单元词、标题词和叙词。关键词是标识文献的主题内容,单未经规范处理的主题词。
四、引言
又称为前言,属于正片论文的引论部分。写作内容包括:
1、研究的理由
2、研究目的
3、背景
4、前人的工作和知识空白
5、作用和意义
五、正文部分
论文的主题,占据论文大部分篇幅。论文所体现的创造性成果或新的研究结果,都将在这一部分得到充分的反映,要求这部分内容一定要充实,论据充分可靠,论证有利,主题明确。
六、参考文献
参考文献是文章在研究过程和论文撰写是所参考过的有关文献的目录,参考文献的完整标注是对原作者的尊重。不只在格式上有具体要求,在数量、种类、年份等方面又有相关要求。
1、论文的研究目的:准确描述该研究的目的,表明研究的范围和重要性。
2、论文的研究方法:简要说明研究课题的基本设计,结论是如何得到的。
3、论文要简要列出该研究的主要结果,有什么新发现,说明其价值和局限。叙述要具体、准确。总之就是五句话原则:第一句就是定位,第二句是待检验假设,第三、四句是结论,第五句是结论,第六和第七句是进一步展示结论细节。
论文摘要写作注意:
(1)摘要中应排除本学科领域已成为常识的内容;切忌把应在引言中出现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价)。
(2)不得简单重复题名中已有的信息。比如一篇文章的题名是《几种中国兰种子试管培养根状茎发生的研究》,摘要的开头就不要再写:“为了……,对几种中国兰种子试管培养根状茎的发生进行了研究”。
(3)结构严谨,表达简明,语义确切。摘要先写什么,后写什么,要按逻辑顺序来安排。句子之间要上下连贯,互相呼应。摘要慎用长句,句型应力求简单。每句话要表意明白,无空泛、笼统、含混之词,但摘要毕竟是一篇完整的短文,电报式的写法亦 不足取。摘要不分段。
(4)用第三人称。建议采用“对……进行了研究”、“报告了……现状”、“进行了……调查”等记述方法标明 一次文献的性质和 文献主题,不必使用“本文”、“作者”等作为主语。
(5)要使用规范化的名词术语,不用非公知公用的符号和术语。新术语或尚无合适汉文术语的,可用原文或译出后加括号注明原文。
(6)除了实在无法变通以外,一般不用数学公式和化学结构式,不出现插图、表格。
(7)不用 引文,除非该文献证实或否定了他人已出版的著作。
(8)缩略语、略称、代号,除了相邻专业的读者也能清楚理解的以外,在首次出现时必须加以说明。科技 论文写作时应注意的其他事项,如采用 法定计量单位、正确使用语言文字和标点符号等,也同样适用于摘要的编写。或缺目的,或缺方法;出现引文,无独立性与自明性;繁简失当。
数字温度传感器测温显示系统毕业设计开题报告
(报告内容包括课题的意义、国内外发展状况、本课题的研究内容、研究方法、研究手段、研究步骤以及参考文献资料等。)
1)课题的研究意义
随着现代信息技术的飞速发展和传统工业改造的逐步实现,能够独立工作的温度检测和显示系统应用于诸多领域,使得温度控制在生产生活领域有着广泛的应用。
温度是日常生活、工业、医学、环境保护、化工、石油等领域最常用到的一个物理量。测量温度的基本方法是使用温度计直接读取温度。最常见到的测量温度的工具是各种各样的温度计,例如:水银 玻 璃温度计,酒精温度计。它们常常以刻度的形式表示温度的高低,人们必须通过读取刻度值的多少来测量温度。利用单片机和温度传感器构成的电子式智能温度计就可以直接测量温度,得到温度的数字值,既简单方便,有直观准确。本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S51,测温传感器使用DS18B20,采用LCD1602液晶显示能准确达到以上要求。
2)国内外发展状况
目前温度计的发展很快,从原始的 玻 璃温度计管温度计发展到了现在的热电阻温度计、热电偶温度计、数字温度计、电子温度计等等。主要温度仪表,如热电偶、热电阻及辐射温度计等在技术上已经成熟,但是它们只能在传统的场合应用,尚不能满足简单、快速、准确测温的要求,尤其是高科技领域。因此,各国专家都在有针对性地竞相开发各种新型温度传感器及特殊与实用测温技术,如采用光纤、激光及遥感或存储等技术的新型温度计已经实用化。
2008年起中国数字温度计及恒温器市场发展迅速,产品产出持续扩张,国家产业政策鼓励电子温度计及恒温器产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对电子温度计及恒温器行业的关注越来越密切,这使得电子温度计及恒温器行业的发展需求增大。本文研究一种基于单片机温度控制系统,以克服传统方法的不足。
3)研究内容和方法
采用数字式温度传感器为检测器件,进行单点温度检测。用LCD1602液晶直接显示温度值,单片机系统作为电子温度计的控制、显示系统。
本系统从以下三个方面来考虑:
(1)检测的温度范围:0℃~100℃,检测分辨率 0.5℃。
(2)用LCD1602来显示温度值。
(3)超过警戒值(自己定义)要报警提示。
主要采用DS18B20温度传感功能,检测当前的温度值,通过液晶将当前温度值显示出来,当检测的温度值超过所设定的温度范围时,报警提醒,达到精确检测的目的。
本系统主要由四部分组成:
1)传感器数据采集部分即温度检测模块,如果采用热敏电阻,可满足40摄氏度至90摄氏度的测量范围,但是热敏电阻精度、重复性,可靠性差,对于检测1摄氏度的信号是不适用,可以采用智能集成数字温度传感器DS18B20。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以接在一根线上,CPU只需一根端口线就能与诸多 DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。
2)温度显示部分可选用LED数码管显示,也可选用LCD液晶显示。此模块选用LCD1602。
3)上下限报警调整模块通过按键设置报警温度,采用蜂鸣器报警。
4)单片机主板部分智能模块主要指单片机部分,它主要完成传感器信号的接收以及处理工作,本模块的设计首先要做好单片机的选型,考虑到性能以及成本选用AT89S52。
整个系统是以AT89S52控制下工作的。其工作过程是:首先温度按键设定上下极限温度范围,然后温度传感器DS18B20采集当前温度信号,单片机接收此信号,通过处理在液晶LCD1602显示当前温度值。若测得温度超过所设定的范围时,蜂鸣器发出报警信号。
鉴于此,本毕业设计所要完成的任务目标是:
(1)设计电子温度计的信号检测部分
(2)设计电子温度计的信号处理部分
(3)设计电子温度计的主控制器部分
(4)设计电子温度计的显示部分及报警部分
(5)编写调试相关软件设计
(6)实验平台的搭建
(7)整机调试
4)全球传感器未来发展趋势及4大重要领域(转)
近年来,传感器技术新原理、新材料和新技术的研究更加深入、广泛,新品种、新结构、新应用不断涌现。其中,“五化”成为其发展的.重要趋势。
一是智能化,两种发展轨迹齐头并进。一个方向是多种传感功能与数据处理、存储、双向通信等的集成,可全部或部分实现信号探测、变换处理、逻辑判断、功能计算、双向通讯,以及内部自检、自校、自补偿、自诊断等功能,具有低成本、高精度的信息采集、可数据存储和通信、编程自动化和功能多样化等特点。如美国凌力尔特(LinearTechnology)公司的智能传感器安装了ARM架构的32位处理器。另一个方向是软传感技术,即智能传感器与人工智能相结合,目前已出现各种基于模糊推理、人工神经网络、专家系统等人工智能技术的高度智能传感器,并已经在智能家居等方面得到利用。如NEC开发出了对大量的传感器监控实施简化的新方法“不变量分析技术”,并已于今年面向基础设施系统投入使用。
二是可移动化,无线传感网技术应用加快。无线传感网技术的关键是克服节点资源限制(能源供应、计算及通信能力、存储空间等),并满足传感器网络扩展性、容错性等要求。该技术被美国麻省理工学院(MIT)的《技术评论》杂志评为对人类未来生活产生深远影响的十大新兴技术之首。目前研发重点主要在路由协议的设计、定位技术、时间同步技术、数据融合技术、嵌入式操作系统技术、网络安全技术、能量采集技术等方面。迄今,一些发达国家及城市在智能家居、精准农业、林业监测、军事、智能建筑、智能交通等领域对技术进行了应用。如,从 MIT独立出来的VoltreePowerLLC公司受美国农业部的委托,在加利福尼亚州的山林等处设置温度传感器,构建了传感器网络,旨在检测森林火情,减少火灾损失。
三是微型化,MEMS传感器研发异军突起。随着集成微电子机械加工技术的日趋成熟,MEMS传感器将半导体加工工艺(如氧化、光刻、扩散、沉积和蚀刻等)引入传感器的生产制造,实现了规模化生产,并为传感器微型化发展提供了重要的技术支撑。近年来,日本、美国、欧盟等在半导体器件、微系统及微观结构、速度测量、微系统加工方法/设备、麦克风/扬声器、水平/测距/陀螺仪、光刻制版工艺和材料性质的测定/分析等技术领域取得了重要进展。目前,MEMS传感器技术研发主要在以下几个方向:(1)微型化的同时降低功耗;(2)提高精度;(3)实现 MEMS传感器的集成化及智慧化;(4)开发与光学、生物学等技术领域交叉融合的新型传感器,如MOMES传感器(与微光学结合)、生物化学传感器(与生物技术、电化学结合)以及纳米传感器(与纳米技术结合)。
四是集成化,多功能一体化传感器受到广泛关注。传感器集成化包括两类:一种是同类型多个传感器的集成,即同一功能的多个传感元件用集成工艺在同一平面上排列,组成线性传感器(如CCD图像传感器)。另一种是多功能一体化,如几种不同的敏感元器件制作在同一硅片上,制成集成化多功能传感器,集成度高、体积小,容易实现补偿和校正,是当前传感器集成化发展的主要方向。如意法半导体提出把组合了多个传感器的模块作为传感器中枢来提高产品功能;东芝公司已开发出晶圆级别的组合传感器,并于今年3月发布能够同时检测脉搏、心电、体温及身体活动等4种生命体征信息,并将数据无线发送至智能手机或平板电脑等的传感器模块“Silmee”。
五是多样化,新材料技术的突破加快了多种新型传感器的涌现。新型敏感材料是传感器的技术基础,材料技术研发是提升性能、降低成本和技术升级的重要手段。除了传统的半导体材料、光导纤维等,有机敏感材料、陶瓷材料、超导、纳米和生物材料等成为研发热点,生物传感器、光纤传感器、气敏传感器、数字传感器等新型传感器加快涌现。如光纤传感器是利用光纤本身的敏感功能或利用光纤传输光波的传感器,有灵敏度高、抗电磁干扰能力强、耐腐蚀、绝缘性好、体积小、耗电少等特点,目前已应用的光纤传感器可测量的物理量达70多种,发展前景广阔;气敏传感器能将被测气体浓度转换为与其成一定关系的电量输出,具有稳定性好、重复性好、动态特性好、响应迅速、使用维护方便等特点,应用领域非常广泛。另据BCCResearch公司指出,生物传感器和化学传感器有望成为增长最快的传感器细分领域,预计2014至2019年的年均复合增长率可达9.7%。
未来值得关注的四大领域
随着材料科学、纳米技术、微电子等领域前沿技术的突破以及经济社会发展的需求,四大领域可能成为传感器技术未来发展的重点。
一是可穿戴式应用。据美国ABI调查公司预测,2017年可穿戴式传感器的数量将会达到1.6亿。以谷歌眼镜为代表的可穿戴设备是最受关注的硬件创新。谷歌眼镜内置多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速传感器等,实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可完成拍照。当前,可穿戴设备的应用领域正从外置的手表、眼镜、鞋子等向更广阔的领域扩展,如电子肌肤等。日前,东京大学已开发出一种可以贴在肌肤上的柔性可穿戴式传感器。该传感器为薄膜状,单位面积重量只有3g/m2,是普通纸张的1/27左右,厚度也只有2微米。
二是无人驾驶。美国 IHS公司指出,推进无人驾驶发展的传感器技术应用正在加快突破。在该领域,谷歌公司的无人驾驶车辆项目开发取得了重要成果,通过车内安装的照相机、雷达传感器和激光测距仪,以每秒20次的间隔,生成汽车周边区域的实时路况信息,并利用人工智能软件进行分析,预测相关路况未来动向,同时结合谷歌地图来进行道路导航。谷歌无人驾驶汽车已经在内华达、佛罗里达和加利福尼亚州获得上路行使权。奥迪、奔驰、宝马和福特等全球汽车巨头均已展开无人驾驶技术研发,有的车型已接近量产。
三是医护和健康监测。国内外众多医疗研究机构,包括国际著名的医疗行业巨头在传感器技术应用于医疗领域方面已取得重要进展。如罗姆公司目前正在开发一种使用近红外光(NIR)的图像传感器,其原理是照射近红外光LED后,使用专用摄像元件拍摄反射光,通过改变近红外光的波长获取图像,然后通过图像处理使血管等更加鲜明地呈现出来。一些研究机构在能够嵌入或吞入体内的材料制造传感器方面已取得进展。如美国佐治亚理工学院正在开发具备压力传感器和无线通信电路等的体内嵌入式传感器,该器件由导电金属和绝缘薄膜构成,能够根据构成的共振电路的频率变化检测出压力的变化,发挥完作用之后就会溶解于体液中。
四是工业控制。2012年,GE公司在《工业互联网:突破智慧与机器的界限》报告中提出,通过智能传感器将人机连接,并结合软件和大数据分析,可以突破物理和材料科学的限制,并将改变世界的运行方式。报告同时指出,美国通过部署工业互联网,各行业可实现1%的效率提升,15年内能源行业将节省1%的燃料(约660亿美元)。2013年1月,GE在纽约一家电池生产企业共安装了1万多个传感器,用于监测生产时的温度、能源消耗和气压等数据,而工厂的管理人员可以通过iPad获取这些数据,从而对生产进行监督。
此外,荷兰壳牌、富士电机等跨国公司也都在该领域采取了行动。
传感器产业化发展的重要趋势
近年来,随着技术研发的持续深入,成本的下降,性能和可靠性的提升,在物联网、移动互联网和高端装备制造快速发展的推动下,传感器的典型应用市场发展迅速。据BCCResearch公司分析指出,2014年全球传感器市场规模预计达到795亿美元,2019年则有望达到1161亿美元,复合年增长率可达 7.9%。
亚太地区将成为最有潜力的市场。目前,美国、日本、欧洲各国的传感器技术先进、上下游产业配套成熟,是中高端传感器产品的主要生产者和最大的应用市场。同时,亚太地区成为最有潜力的未来市场。英泰诺咨询公司指出,未来几年亚太地区市场份额将持续增长,预计2016年将提高至38.1%,北美和西欧市场份额将略有下降。
交通、信息通信成为市场增长最快的领域。据英泰诺咨询公司预测,2016年全球汽车传感器规模可达419.7亿欧元,占全球市场的22.8%;信息通信行业至2016年也可达421.6亿欧元,占全球市场的22.9%,且有可能成为最大的单一应用市场。而医疗、环境监测、油气管道、智能电网等领域的创新应用将成为新热点,有望在未来创造更多的市场需求。
企业并购日趋活跃。美国、德国和日本等国的传感器大型企业技术研发基础雄厚,各企业均形成了各自的技术优势,整体市场的竞争格局已初步确立(附表)。需要指出的是,大公司通过兼并重组,掌控技术标准和专利,在 “高、精、尖”传感器和新型传感器市场上逐步形成垄断地位。在大企业的竞争压力下,中小企业则向“小(中)而精、小而专”的方向发展,开发专有技术,产品定位特定细分市场。据统计,2010年7月至2011年9月,传感器行业中大规模并购交易多达20多次。如美国私募股权公司 VeritasCapitalIII以5亿美元现金收购珀金埃尔默公司的照明和检测解决方案(IDS)业务;英国思百吉公司以4.75亿美元收购美国欧米茄工程公司的温度、测量设备制造业务。目前,越来越多的并购交易在新兴市场国家出现。
5)参考文献
[1]胡烨, 姚鹏翼. Protel 99 SE 电路设计与仿真教程.北京:机械工业出版社, 2005
[2]强锡富.传感器[M].北京:机械工业出版社,2004
[3]康华光.电子技术基础模拟部分.北京:高等教育出版社,1998
[4]康华光.电子技术基础数字部分.北京:高等教育出版社,1998
[5]刘守义.单片机应用技术[M].西安:西安电子科技大学出版社,2002.
[6]李广弟.单片机基础.北京航空航天大学出版社,1994年
[7]孙焕铭. 51单片机C语言程序应用实例详解.北京:北京航空航天大学出版社,2011
设计题目
摘要:(内容为宋体四号字)
随着现代信息技术的飞速发展和传统工业改造的逐步实现,温度自动检测和显示系统在很多领域得到广泛应用。人们在温度检测的准确度、便捷、快速等方面有着越来越高的要求。而传统的温度传感器已经不能满足人们的需求,其渐渐被新型的温度传感器所代替。
本文设计并制作了一个简易温度计。本设计采用了单片机AT89S52和温度传感器DS18B20组成了温度自动测控系统,可根据实际需要任意设定温度值,并进行自动控制。在此设计中利用了AT89S52单片机作为主控制器件,DS18B20作为测温传感器通过LCD数码管串口传送数据,实现温度显示。通过DS18B20直接读取被测温度值,进行数据转换,能够设置温度上下限来设置报警温度。并且在到达报警温度后,系统会自动报警。
本文设计是从测温电路、主控电路、报警电路等几个方面来分析说明的。该器件可直接向单片机传输数字信号,便于单片机处理及控制。另外,该温度计还能直接采用测温器件测量温度。从而简化数据传输与处理过程。此设计的优点主要体现在可操作性强,结构基础简单,拥有很大的扩展空间等。
关键词:单片机;温度传感器;温度计;报警
温度传感器原理及应用论文参考文献
温度传感器原理及应用论文参考文献,温度传感器是温度测量仪表的核心部分,是指能感受温度并转换成可用输出信号的传感器,品种繁多,也是用处比较广的工具。以下分享温度传感器原理及应用论文参考文献。
一、温度传感器工作原理–恒温器
恒温器是一种接触式温度传感器,由两种不同金属(如铝、铜、镍或钨)组成的双金属条组成。
两种金属的线性膨胀系数的差异导致它们在受热时产生机械弯曲运动。
一、温度传感器工作原理–双金属恒温器
恒温器由两种热度不同的金属背靠背粘在一起组成。当天气寒冷时,触点闭合,电流通过恒温器。当它变热时,一种金属比另一种金属膨胀得更多,粘合的双金属条向上(或向下)弯曲,打开触点,防止电流流动。
有两种主要类型的双金属条,主要基于它们在受到温度变化时的运动。有在设定温度点对电触点产生瞬时“开/关”或“关/开”类型动作的“速动”类型,以及逐渐改变其位置的较慢“蠕变”类型随着温度的变化。
速动型恒温器通常用于我们家中,用于控制烤箱、熨斗、浸入式热水箱的温度设定点,也可以在墙上找到它们来控制家庭供暖系统。
爬行器类型通常由双金属线圈或螺旋组成,随着温度的变化缓慢展开或盘绕。一般来说,爬行型双金属条对温度变化比标准的按扣开/关类型更敏感,因为条更长更薄,非常适合用于温度计和表盘等。
二、温度传感器工作原理–热敏电阻
热敏电阻通常由陶瓷材料制成,例如镀在玻璃中的镍、锰或钴的氧化物,这使得它们很容易损坏。与速动类型相比,它们的主要优势在于它们对温度、准确性和可重复性的任何变化的响应速度。
大多数热敏电阻具有负温度系数(NTC),这意味着它们的电阻随着温度的升高而降低。但是,有一些热敏电阻具有正温度系数 (PTC),并且它们的电阻随着温度的升高而增加。
热敏电阻的额定值取决于它们在室温下的电阻值(通常为 25 o C)、它们的时间常数(对温度变化作出反应的时间)以及它们相对于流过它们的电流的额定功率。与电阻一样,热敏电阻在室温下的电阻值从 10 兆欧到几欧姆不等,但出于传感目的,通常使用以千欧为单位的那些类型。
温度传感器类毕业论文文献有哪些?
1、[期刊论文]一种高稳定性双端出纤型光纤光栅温度传感器
期刊:《声学与电子工程》 | 2021 年第 002 期
摘要:针对双端出纤型光纤光栅温度传感器线性度较差、温度测量精度低的问题,文章首先对传感器内部结构进行了优化,使光纤光栅在整个温度测量区间内不受结构件热胀冷缩的应力影响,从而提升传感器的稳定性、实验验证,采用新工艺封装的.光纤光栅温度传感器在5~65°C的范围内温度精度达到0、1°C,且重复性良好,适用于自然环境下的温度传感、
关键词:光纤光栅;温度传感器;应力;测温精度
链接:、zhangqiaokeyan、com/academic-journal-cn_acoustics-electronics-engineering_thesis/0201290086379、html
2、[期刊论文]某型温度传感器防护套弯折疲劳试验的寿命研究
期刊:《环境技术》 | 2021 年第 001 期
摘要:由于动车组轴端温度传感器的大多数已达到三级修、四级修的修程,检修的数量和成本逐年增加,检修发现出现防护套破损的情况较多,需要大量更换,本文通过对温度传感器的防护套进行弯折疲劳试验,对数据结果进行统计分析,确认导致防护套弯折老化的主要原因、
关键词:防护套;破损;弯折疲劳
链接:、zhangqiaokeyan、com/academic-journal-cn_environmental-technology_thesis/0201288850019、html
3、[期刊论文]进气压力温度传感器锡晶须的分析
期刊:《机械制造》 | 2021 年第 004 期
摘要:对进气压力温度传感器的结构进行了介绍,对进气压力温度传感器产生锡晶须问题进行了分析,并在分析锡晶须生长机理的基础上提出了抑制方法、
关键词:传感器;锡晶须;分析
链接:、zhangqiaokeyan、com/academic-journal-cn_machinery_thesis/0201288850874、html
4、[期刊论文]一种具有±0、5℃精度的CMOS数字温度传感器
期刊:《电子设计工程》 | 2021 年第 001 期
摘要:该文设计了一种基于0、35μm CMOS工艺的采用双极型晶体管作为感温元件的数字温度传感器、该温度传感器主要由正温度系数电流产生电路、负温度系数电流产生电路、一阶连续时间Σ-Δ调制器、计数器和I2C总线接口等模块组成、为提高温度传感器的测量精度
该文深入分析了在不采用校准技术的情况下工艺漂移对温度传感器精度的影响,并在此基础上提出了简单的校准电路设计、根据电路仿真结果,在加入校准电路之后,温度传感器在-40~120℃温度范围内的精度可以达到±0、5℃、
关键词:数字温度传感器;CMOS工艺;双极型晶体管;校准
链接:、zhangqiaokeyan、com/academic-journal-cn_electronic-design-engineering_thesis/0201286451032、html
5、[期刊论文]柴油机冷却水温度传感器断裂故障分析
期刊:《内燃机与配件》 | 2021 年第 004 期
摘要:针对柴油机冷却水温度传感器断裂的问题,通过对该测点管路流腔进行CFD仿真计算,分析了流腔内部速度和压力场的变化情况,确定了传感器的断裂原因。计算结果表明:传感器位置处流速较大,导致传感器下部受振荡力,且发生了空蚀,使传感器失效。
本文针对此次传感器断裂故障提出了解决措施:对传感器的位置进行了优化布置;对传感器的结构形式进行了改进。通过改进,传感器随整机验证时间超过1500h,未再发生同类断裂故障,保证了柴油机的安全运行,为以后类似故障的分析和解决提供参考。
关键词:柴油机;温度传感器;流速;受力
链接:、zhangqiaokeyan、com/academic-journal-cn_internal-combustion-engine-parts_thesis/0201288594662、html
常见温度传感器
温度是与人类生活息息相关的物理量,在工业生产自动化流程中,温度测量点要占全部测量点的一半左右。它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用相当广泛。
温度传感器对温度敏感具有可重复性和规律性,是利用一些金属、半导体等材料与温度相关的特性制成的。现在来介绍一些温度传感器的工作原理。
铂容易提纯,其物理、化学性能在高温和氧化介质中非常稳定。铂电阻的输入-输出特性接近线性,且测量精度高,所以它能用作工业测温元件,还能作为温度计作基准器。
铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为13.5033℃~961.780℃标准温度计来使用。铂电阻广泛用于-200℃~850℃范围内的温度测量,工业中通常在600℃以下。
PN结温度传感器是利用PN结的结电压随温度成近似线性变化这一特性实现对温度的检测、控制和补偿等功能。实验表明,在一定的电流模式下,PN结的正向电压与温度之间具有很好的线性关系。
根据PN结理论,对于理想二极管,只要正向电压UF大于几个kbT/e(kb为波尔兹曼常数,e为电子电荷)。其正向电流IF与正向电压UF和温度T之间的关系可表示为
由半导体理论可知,对于实际二极管,只要它们工作的PN结空间电荷区中的复合电流和表面漏电流可以忽略,而又未发生大注入效应的电压和温度范围内,其特性与上述理想二极管是相符合的[6]。实验表明,对于砷化镓、
锗和硅二极管,在一个相当宽的温度范围内,其正向电压与温度之间的关系与式(1-3)是一致的,如图1-1所示。
实验发现晶体管发射结上的正向电压随温度的上升而近似线性下降,这种特性与二极管十分相似,但晶体管表现出比二极管更好的线性和互换性。
二极管的温度特性只对扩散电流成立,但实际二极管的正向电流除扩散电流成分外,还包括空间电荷区中的复合电流和表面漏电流成分。这两种电流与温度的关系不同于扩散电流与温度的关系,因此,实际二极管的电压—温度特性是偏离理想情况的。
由于三极管在发射结正向偏置条件下,虽然发射结也包括上述三种电流成分,但是只有其中的扩散电流成分能够到达集电极形成集电极电流,而另外两种电流成分则作为基极电流漏掉,并不到达集电极。因此,晶体管的
所以表现出更好的电压-温ICUBE关系比管的IFUF关系更符合理想情况,
度线性关系。根据晶体管的有关理论可以证明,NPN晶体管的基极—发射极电压UBE与温度T和集电极电流Ic的函数关系式与二极管的UF与T和IF函数关系式(1-3)相同。因此,在集电极电流Ic恒定条件下,晶体管的基极—发射极电压UBE与温度T呈线性关系。但严格地说,这种线性关系是不完全的,因为关系式中存在非线性项。
集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片的集成化温度传感器。这种传感器的优点是直接给出正比于绝对温度的理想的线性输出[7]。目前,集成温度传感器已广泛用于-50℃~+150℃温度范围内的温度检测、控制和补偿等。集成温度传感器按输出形式可分为电压型和电流型两种。
进气温度传感器工作原理是什么?
进气温度传感器的工作原理是:进气温度传感器在工作状态下,内部安装了一个具有负温度电阻系数的热敏电阻,通过这个负温度热敏电阻感知温度变化,进而调节电阻的大小改变电路电压。
以下是关于进气温度传感器的详细介绍:
1、原理:进气温度传感器就是一个负温度系数的热敏电阻,当温度升高的时候电阻阻值会变小,当温度降低的时候电阻值会增大,汽车的电压会随着汽车电路中电阻的变化而变化,从而产生不一样的电压信号,可以完成汽车控制系统的自动操作。
2、作用:汽车的进气温度传感器就是检测汽车发动机的进气温度,将进气温度转变为电压信号输入为ecu作为喷油修正的信号使用。
已把我毕业论文的一部分发给你了,应该是你想要的。还需要其它的说一声
基于MCS-51单片机温控系统设计的电阻炉论文字数:17255.页数:42 论文编号:JD471 摘 要近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用。 单片机是随着超大规模集成电路技术的发展而诞生的。由于它具有体积小、功能强、性价比高等特点。把单片机应用于温度控制中,采用单片机做主控单元,无触点控制,可完成对温度的采集和控制的要求。所以广泛应用于电子仪表、家用电器、节能装置、机器人、工业控制等诸多领域,使产品小型化、智能化,既提高了产品的功能和质量,又降低了成本,简化了设计。周期作业式的电阻炉,可供实验室、工矿企业、科研单位作元素分析测定和一般小型钢件淬火、退火、回火等热处理时加热用。原电阻炉需与温度控制器配套使用,由检测端的热电偶信号输送给温度指示调节仪,继而控制接触器对电阻炉供电,实现电阻炉温的测量、指示及自动控制。电阻炉温波动较大,控制精度低。本文主要介绍单片机在电阻炉温控中的应用,对温度控制模块的组成及主要所选器件进行了详细的介绍。并根据具体的要求本文编写了适合本设计的软件程序。关键词:单片机;电阻炉;炉温;控制系统 目 录摘要………………………………………………………………………………… ⅠAbstract…………………………………………………………………………Ⅱ第1章 绪论…………………………………………………………………………11.1 课题背景……………………………………………………………………11.2 MCS-51系列单片机………………………………………………………2第2章 总体设计电路图及工作原理…………………………………………… 52.1 总体方案设计………………………………………………………………52.2 电阻炉的单片机温控原理…………………………………………………7第3章 系统硬件设计…………………………………………………………… 113.1 系统硬件电路设计……………………………………………………… 113.2 硬件设计电路原理图…………………………………………………… 133.3 各元件说明……………………………………………………………… 19第4章 系统软件设计…………………………………………………………… 224.1 编程思路………………………………………………………………… 224.2 编程流程图……………………………………………………………… 23第5章 MCS-51单片机温控电阻炉技术特性…………………………………… 25总结………………………………………………………………………………… 26致谢………………………………………………………………………………… 27参考文献…………………………………………………………………………… 28附录…………………………………………………………………………………29附录1 硬件设计的电路…………………………………………………… 29附录2 程序………………………………………………………………… 30附录3 外文翻译…………………………………………………………… 38以上回答来自:
锅炉温度控制策略的应用研究 摘要:针对锅炉汽温控制的特点,设计了过热汽温串级模糊控制系统,介绍了系统的构成、原理 及该系统的优越性,并利用MATLAB仿真软件进行了仿真分析。 关键词:汽温;串级模糊控制;系统仿真 0 引言 过热蒸汽温度是衡量锅炉能否正常运行的重要 指标。假如过热蒸汽温度过高,若超过了设备部件 (如过热器管、蒸气管道、阀门、汽轮机的喷嘴、叶片 等)的允许工作温度,将使钢材加速蠕变,从而降低 使用寿命。严重的超温甚至会使管子过热而爆破。 可能造成过热器、蒸汽管道和汽轮机的高压部分损 坏。过热蒸汽温度过低,会引起热耗上升,引起汽轮 机末级蒸汽湿度增加,从而降低汽轮机的内效率,加 剧对叶片的侵蚀。因此在锅炉运行中,必须保持过 热汽温稳定在规定值附近。通常允许变化范围为额 定值±5℃。目前对锅炉过热汽温调节大都采用导 前汽温的微分作为补充信号的系统。其系统原理如 图1所示。 系统针对过热汽温调节对象调节通道惯性延迟 大、被调量反馈慢的特点,从对象调节通道找出一个 比被调量反应快的中间信号θ1作为调节器的补充 信号,以改善对象调节通道的动态特性。动态时调 节器根据θ1的微分和θ2这两个信号而动作。但在 静态时(调节过程结束后)θ1不再变化,则dθ1/dt= 0,这时过热器汽温必然恢复到给定值。实际使用 中,中间信号θ1的引入在一定程度上确实改善了控 制系统的动态特性,但是,影响蒸汽温度的因素很 多,除减温水流量的扰动外,负荷的变化,工况的不 稳定,过剩空气系数等都会导致蒸汽θ2温度发生波 动。这些波动是无法预知的,无法用精确的数学模 型来描述。由于模糊控制不依赖被控对象的精确数 学模型,它主要是根据人的思维方式,总结人的操作 经验,完成控制作用,特别适合于大滞后、时变、非线 性场合,因此该文提出一种锅炉过热气温的串级模 糊控制系统。 1 控制方案的研究设计 串级调节系统是改善大惯性、纯滞后系统调节 质量的最有效方法之一,所以设计的控制方案采用 串级模糊控制,其控制系统如图2所示。 图2中F为减温水流量调节阀。P为副调节 器,采用比例调节;FC为主调节器,采用混合模糊控 制器,即一个二维模糊控制器和常规PI调节器并联 而成,除能够尽快消除副环外的扰动之外还可以校 正汽温偏差,保证汽温控制的精度。 汽温调节对象由减温器和过热器组成,减温水 流量Wj为对象调节通道的输入信号,过热器出口汽 温θ2为输出信号。为了改善调节品质,系统中采用 减温器出口处汽温θ1作为辅助调节信号(称为导前 汽温信号)。当调节机构动作(喷水量变化)后,导 前汽温信号θ1的反应显然要比被调量信号θ2早很 多。由于从调节对象中引出了θ1信号,对象调节通 道的动态特性可以看成由两部分构成:①以减温水 流量Wj作为输入信号,减温器出口处温度θ1作为 输出信号的通道,这部分调节通道称为导前区,传递 函数为G01(s);②以减温器出口处汽温θ1作为输入 信号,过热器出口汽温θ2为输出信号的通道,这部 分调节通道称为惰性区,传递函数为G02(s),显然 导前区G01(s)的延迟和惯性要比惰性区G02(s)小 很多。系统结构如图3所示。 图3中有两个闭合的调节回路:①由对象调节 通道的惰性区G02(s)、副控制器Gc2(s)、副检测变送 器Gm2(s)组成的副调节回路;②由对象调节的导前 区G01(s)、主控制器(PI+混合模糊控制器)、主检 测变送器Gm1(s)以及副调节回路组成的主回路。 引入θ1负反馈而构成的副回路起到了稳定θ1的作 用,从而使过热汽温保持基本不变,因此可以认为副 回路起着粗调过热汽温θ2的作用。而过热汽温的 给定值,主要由主控制器(PI+混合模糊控制器)来 严格保持。只要θ2不等于给定值,主控制器就会不 断改变其输出信号σ2,并通过副调节器去不断改变 减温水流量,直到θ2恢复到等于给定值为止。可 见,主调节器的输出信号σ2相当于副调节器的可变 给定值。稳态时,过热汽温等于给定值,而导前汽温 θ1则不一定等于主调节器输出值σ2。 当扰动发生在副回路内,例如当减温水流量发 生自发性波动(可能是减温水压力或蒸汽压力改 变),由于有副回路的存在,而且导前区的惯性又很 小,副调节器将能及时动作,快速消除其自发性波 动,从而使过热汽温基本不变。当扰动发生在副回 路以外,引起过热汽温偏离给定值时,串级系统首先 由主调节器(PI+混合模糊控制器)迅速改变其输 出校正信号σ2,通过副调节回路去改变减温水流 量,使过热汽温恢复到给定值。由于主调节器(PI+ 混合模糊控制器)的惯性迟延小,故反应迅速。 因此在串级模糊蒸汽温度控制系统中,副回路 的任务是尽快消除减温水流量的自发性扰动和其他 进入副回路的各种扰动,对过热汽温的稳定起粗调 作用。主调节器的任务是保持过热汽温等于给定 值。系统在主控制器的设计上将模糊控制与常规的 PI调节器相结合,使控制系统既具有模糊控制响应 快、适应性强的优点,又具有PI控制精度高的特点。 2 模糊控制器的设计 模糊控制是一种基于规则的控制,在设计中不 需要建立被控对象的精确的数学模型。 2.1 模糊控制器的结构设计 该系统以过热蒸汽的实际温度T与设定值Td 之间的误差E=Td-T和误差变化DE作为输入语 言变量,系统控制值U为输出语言变量,构成一个 二维模糊控制器。其结构如图4所示。 Ku为模糊控制器比例因子,Ke,Kec为量化因子。 Ke:在输入量化等级确定之后,算法中改变误差 输入论域大小即改变了Ke的值,Ke增大,相当于缩 小误差的基本论域,起增大误差变量的控制作用。 若Ke选择较大,则上升时间变短,但会使系统产生 较大超调,从而过渡过程变长;Ke很小,则系统上升 较慢,快速性差。同时它还直接影响模糊控制系统 的稳态品质。 Kec:Kec选择较大时,超调量减小,但系统的响应 速度变慢,Kec对超调的抑制作用十分明显。但在 Ke,Kec和Ku中,系统对Kec的变化最不敏感,一般Kec 可调整范围较宽,其鲁棒性较好,给实际调试带来很 大方便。 Ku:比例因子Ku实质上是模糊控制器总的增益, 它的大小对系统输出的影响较大。Ku增大,系统超 调量随之增大,动态过程加快;反之,Ku减小,系统超 调量减小,动态过程变慢;Ku选择过大将会导致系统 震荡。由于Ku的敏感性,故可调范围较小。 模糊控制器可调参数Ke,Kec和Ku对系统性能 的影响各不相同,改变这3个参数可使控制器适用 于不同系统的性能要求。 2.2 模糊概念的确定及模糊化过程 对输入变量E进行模糊化,选择语言集为{负 大(NB),负中(NM),负小(NS),零(ZE),正小 (PS),正中(PM),正大(PB)},模糊论域选择如下 [-n,-n-1,…,-1,0,1,…, n-1, n],E的实际 变化范围为[-x,x],则量化因子为Ke=n /x。对偏 差变化率DE进行模糊化,选择合适的模糊论域和 偏差变化率范围,同理可以计算出相应的模糊量化 因子Kec,在这里为了方便起见,选择偏差e、偏差变 化率DE具有相同模糊论域。 对于输出量U,调节范围为[-R,R],语言集为 {负大(NB),负中(NM),负小(NS),零(ZE),正小 (PS),正中(PM),正大(PB)},模糊论域选择为[- m,-m-1,…,-1,0,1,…,m-1,m ],输出比例 因子为Ku=R /m。 在设计过程中,选取各变量的模糊论域,E= {-3,-2,-1,0,1,2,3};DE={-3,-2,-1,0,1, 2,3};U={-3,-2,-1,0,1,2,3},输入量E,DE 及输出量U模糊集的隶属函数选择为三角形,如图 5所示。 2.3 模糊规则的确定 模糊决策一般都采用“选择从属度大”的规则, 在过热蒸汽温度调节过程中,当系统的偏差较大时, 系统的快速性为主要矛盾,系统的稳定性控制精度 却是次要的,这时应使系统快速减小偏差;而当系统 偏差较小时,则要求以保证系统的稳定性及控制精 度为主。因而模糊控制规律应遵循:过热汽温上升 速度快,汽温偏高,则汽温的控制量应向下浮动;过 热汽温下降速度快,汽温偏低,则汽温的控制量应向 上浮动。因此采用的模糊控制器的模糊控制规则具 有以下的形式: if {E=AiandDE=Bi}thenU=Ci, i=1, 2,...,n 其中Ai, Bi以及Ci分别为E, EC、和U的模糊子 集。控制规则的多少可视输入输出物理量数目及所 需的控制精度而定。由于模糊控制器采用两个输入 E, EC,每个输入分为7级共有49条规则。 按模糊数学推理法则选则表1所示控制规则。 2.4 逆模糊化过程 文中采用的模糊推理方式是常用的Mamdani 的Min-Max-COA法,即前项取小,多规则取大合 成结论,然后取重心得出非模糊化结论的算法。在 上述规则中,Ai,Bi, Ci分别为论域E,DE,U的模糊 子集,根据上述规则可推出模糊关系Ri=ExDE,这 里采用的最小运算规则,在按最大—最小合成(max -min composition)推理算法求得控制器输出的模糊 子集为U=(ExDE)·Ri,其中“·”为合成运算,非 模糊化后的结论即为输出U的修正值。逆模糊化 方法采用重心平均法(centroid of area)。 3 系统仿真 为了说明串级模糊控制系统在锅炉过热蒸汽温 度的控制上有更好的调节效果,分别搭建具有导前 微分信号控制系统和串级模糊控制系统的仿真框 图。在保持相同输入信号条件下设置两系统被控对 象为相同的参数,以利于比较。 考虑到在实际应用中,各种随机扰动的影响及 过程的复杂性,被控对象有着大惯性、纯滞后的特 性,设系统的主副被控对象的数学模型分别为: 两系统仿真方框图搭建分别如图6、图7所示; 过热汽温响应曲线分别如图8、图9所示。 从仿真曲线可以很清楚的看到:串级模糊控制 系统应用在锅炉过热蒸汽温度控制上能够获得比具 有导前微分信号控制系统更好的调节效果。具有导 前微分信号的控制系统仿真曲线有振荡,有超调,动 态过渡时间长,误差大。而串级模糊控制系统仿真 曲线基本无振荡,无超调,动态过渡时间短,误差小, 有较好的控制品质。 根据现场锅炉运行情况,为了能 更好地说明问题,在保持两个系统中 各调节器、控制器参数不变的情况下, 同时改变两个系统的被控对象的参 数。 W02=e-5s12s+1 观察仿真曲线,如图10、图11所 示。 由于被控对象在电厂中各种设备复杂的运行环 境下,一直处于波动状态,改变主被控对象参数后而 其他参数保持不变时,具有导前微分信号的控制系
就和正式的实验报告差不多了,先是背景,研究现状,原理,然后是实验过程步骤,数据分析,总结,参考文献,基本就是这些了
改革开放以来,我国化工行业发展迅速,为国民经济发展做出了重要贡献。同时,我国化工行业经营环境也日趋复杂,面临的风险和安全隐患也越来越大。下面是我为大家推荐的化工类 毕业 论文,供大家参考。
化工类毕业论文 范文 一:化学工程学科集群分析
一、我国化学工程与技术专业学科集群现象
经过调查统计,我国共有100多所高校招有化学工程与技术专业硕士研究生,该专业研究方向过多,一个专业出现87个研究方向。研究方向的划分有的甚至是跨学科的。如化学工程与技术专业是属于工学的,应用化学专业是属于理学,可应用化学居然是化学工程与技术专业的一个研究方向。同属于一个研究方向,研究方向的名称也是多样化的,缺乏统一标准,如安徽大学、南昌大学的绿色化学工程,上海大学就称为绿色化学与工艺。为了解决上述问题,我们请教了化工领域的专家,给这87个研究方向做一个归类,分为9个大的方向(表1)。由表1可以发现我国化学工程与技术专业是存在学科集群现象的,表现在:专业的学科建设,已经不单是化学工程的问题,而涉及到了化学化工研究的所有领域,包括应用化学、环境化工、工业催化、资源与材料工程、新能源技术、生物工程与技术、过程系统工程、油气加工及石油化工等。我国化学工程与技术专业学科集群的力度较大,表现在:各个高校的研究方向基本上都比较多,如清华大学、中国矿业大学、北京工业大学、北京理工大学、华南理工大学、华东理工大学、上海大学等高校,其研究方向都是传统与现代并存,传统化学化工的研究方向所占比例较大,如化学工程,包含的研究方向较多。部分代表21世纪化学化工发展方向的研究方向,在很多学校都受到重视,如资源与材料工程,研究方向也比较多。
二、化学工程与技术专业学科集群的创新及竞争优势
本文选择山西省高校做研究,分析其师资力量情况,以分析化学工程与技术专业集群的创新及竞争优势。山西省作为我国化工3大生产基地,化学化工产业是山西省的支柱产业,化学化工专业是山西省高校、特别是工科院校的学科优势之一。选择山西大学、中北大学、太原理工大学的化学化工学院为样本(见表2),按照前文对学科集群的认识,这些学院都有9个以上相关专业和研究方向,已经形成了一定的学科集群规模。其中论文指该学院教师被SCI、EI、ISTP3大检索刊物收录的论文数。中北大学的数据包含了CA论文。山西大学的数据不包括ISTP论文。专著指该学院教师出版的学术专著数,不包括教材。项目及奖项指该学院教师申请的省部级以上项目、经费及省部级以上奖项。发明专利指:该学院教师申请并且授权的发明专利。3所高校的化学化工学院拥有一定数量的教授和博士生导师,博士学位的教师也占到了较大比例。3所学院教师的科研成果也较为可观,被3大检索刊物收录的论文数量较多,出版了一定数量的专著,申请了一定数量的国家自然科学基金项目。山西大学化学化工学院承担了国家自然科学基金的重大攻关项目,以及“863”项目,甚至获得了国家科技进步奖和国家技术发明奖二等奖各1项。中北大学化学与环境学院承担过“973”项目,获得过国家技术发明二等奖1项,三等奖2项,国防科学技术一等奖2项。中北大学和山西大学还拥有发明专利十几项。从师资力量来看,应该说学科集群让山西省高校化学化工领域的创新取得了一定的成就,使得山西省高校化学化工专业在全国具有了一定的竞争优势和影响力。
三、化学工程与技术专业学科集群的协同创新模式
山西大学至今已与国内20余所高校、科研院所建立了学术交流与合作关系;与日本岩手大学、香港浸会大学等国家和地区的高校及科研单位签订协议,开展交流。在校企合作方面,与山西三维集团股份有限公司、太原钢铁(集团)公司、天脊集团等大型企业,在产品研发、岗位培训等多方面进行了良好的合作。太原理工大学与山西化工研究所建立了山西省化学工程技术中心,还与山西焦化集团公司等6个企业建立了长期稳定的产学研合作关系。中北大学安全工程系与航天一院、航天三院、北京理工大学、南京理工大学、第二炮兵工程学院、西安近代化学研究所等科研机构和相关生产企业进行了卓有成效的科研项目合作。从产学研合作角度来看,三所高校都与国内外相关院校、科研院所和企业建立了良好的产学研合作关系。从企业合作的视角来看,在研发方面,与山西省的产业集群密切相关,合作领域主要为新能源技术、环境化工、生物工程与技术。3所高校的化学工程与技术学科集群与山西省的产业集群具有一定的协同关系,构建了学科集群与产业集群协同创新的模式,围绕着山西省的产业特色,为山西省地方经济服务。
四、我国化学工程与技术专业集群的路径
从以上3所高校的情况来看,基本上已经完成了单个高校某个学科的集群,在3所高校内部相关专业之间建立了学科集群,集群的方式是建立化学化工学院,统筹化学化工各个专业,从多学科、多专业、多研究方向的角度,进行学科集群。关于区域性学科集群,即单个高校与该高校所在地高校、研究所和企业之间的集群,3所高校都作出了一定的努力,也取得了一定的实效。集群的方式是产学研合作,与山西省高校、科研院所和企业建立合作关系,从而服务地方经济。关于跨区域性学科集群,即单个高校与该高校所在地之外高校、研究所和企业之间的集群,中北大学有一定的建树,却没有进一步深入。中北大学之所以能够有一定建树的原因是该校原来是部属院校,与其他部属院校具有一定的合作关系。因此,中北大学的跨区域学科集群,仅仅局限于与兄弟院校的合作,还没有进一步深入到与其他省份企业的合作上。
五、结论
第一,我国高校化学工程与技术专业有87个研究方向,扩散性较强,涉及到了化学化工的各个领域,表明该专业的建设具有学科集群现象,并且已经以建院的形式,完成了单个高校某个学科的集群。第二,学科集群有利于团队建设,从而能够产生一定的创新成果,与产业集群一样,使得高校学科建设具有一定的竞争优势和影响力。第三,学科集群与高校所在地产业集群存在一定的协同关系,也就是说,学科集群首先必须与高校所在地经济发展特色密切相关。只有这样,才能实现产学研结合,服务地方经济。第四,从学科集群的路径来看,单个高校某个学科的集群已经完成,区域性学科集群也具有了一定的规模,跨区域性学科集群还有待于进一步发展。当然,我们相信,在区域性学科集群发展到一定程度后,必然会走向跨区域性学科集群。
化工类毕业论文范文二:生物质化学人才培训思考
一、生物质化学工程人才的需求分析
能源是人类社会赖以生存和发展的基础。随着经济的飞速发展,我国能源消耗快速增长,已跃居世界第二大能源消费国。我国能源总量和人均占有量却严重不足,石油供需约缺口1亿吨,天然气供需约缺口400亿标准立方米。而且,由于清洁利用的技术难度较大,化石能源在使用过程中引发了诸多的环境问题。生物质能是第四大一次能源,又是唯一可存储和运输的可再生能源。发展生物质能将缓解能源紧缺的现状和减少化石能源造成的环境污染。我国幅员辽阔,又是农业大国,生物质资源十分丰富。据测算,我国目前可供开发利用的生物质能源约折合7.5亿吨标准煤。国家“十一五”发展规划明确提出“加快发展生物质能”。同时,随着化石资源日益枯竭,化学工业的原料也将逐步由石油等碳氢化合物向以生物质为代表的碳水化合物过渡。目前,世界各国纷纷把发展生物质经济作为可持续发展的重要战略之一。以生物质资源替代化石资源,转化为能源和化工原料的研究受到普遍重视。政府、科研机构和道化学、杜邦、中石油、中石化、中粮等大型企业争相研发和储备相关技术,并取得了一系列重大进展。海南正和生物能源公司、四川古杉油脂化工公司和龙岩卓越新能源发展有限公司,依托我国自主知识产权的生物柴油生产技术,相继建成规模超过万吨的生产线,产品达到了国外同类产品的质量标准,各项性能与0#轻质柴油相当,经济效益和社会效益俱佳。我国对以生物质为原料生产化学品(即生物基化学品)极为重视,已列入科技攻关的重点。例如,生物柴油生产过程中大量副产的甘油是一种极具吸引力的非化石来源的绿色化工基础原料。从甘油出发生产1,2-丙二醇、1,3-丙二醇和环氧氯丙烷等大宗化工产品,已经实现或接近产业化。新兴产业的发展,最根本的是靠科技的力量,最关键的是要大幅度提高自主创新能力,其核心是人才的竞争。浙江是经济大省和能源小省,能源资源低于全国平均水平,一次能源消费自给率仅为5%;而气候条件优越,是我国高产综合农业区,森林覆盖率达60%,生物质资源居全国前列。浙江省乃至全国的生物质能源产业和生物质化学工业的蓬勃发展,对生物质化学工程人才的需求十分迫切。
二、生物质化学工程人才的知识结构
生物质化学工程(专业)模块是一个新生事物,并未包含在《全国普通高等学校本科专业目录》之中。在《专业目录》中与之接近的是生物工程专业。生物工程专业培养掌握现代工业生物技术基础理论及其产业化的原理、技术 方法 、生物过程工程、工程设计和生物产品开发等知识与能力的高级专业人才。生物工程专业重点关注围绕生物技术进行的工程应用,而生物质化学工程重点关注通过化学工程技术(包括生物化工技术)对生物质资源进行加工利用的工业过程。可见,生物质化学工程(专业)模块与生物工程专业的人才培养目标和知识体系存在着明显差异,其人才培养模式仍处于探索之中。生物质的组织结构与常规化石资源相似,加工利用化石资源的化学工程技术无需做大的改动,即可应用于生物质资源。但是,生物质的种类繁多,分别具有不同的特点和属性,利用技术远比化石资源复杂与多样。可见,生物质化学工程人才必须具有扎实的化学工程基础,并熟悉各类生物质资源的特点、用途和转化利用方式。因此,浙江工业大学将生物质化学工程人才的培养目标定位为:既能把握和解决各种化工过程的共性问题,胜任化工、医药、环保和能源等多个领域的科学研究、工艺开发、装置设计和生产管理等工作;又能将化学工程的基础知识灵活运用于生物质资源的转化利用和生物质化工产品的生产开发等领域,胜任生物质能源和生物质化工等新兴行业的工作。
三、生物质化学工程人才培养的探索与实践
(一)组织高水平学术会议,营造人才培养氛围
2007年4月,浙江工业大学与中国工程院化工、冶金与材料工程学部和浙江省科技厅共同主办了“浙江省生物质能源与化工论坛”。中国工程院学部工作局李仁涵副局长分析了我国能源技术的发展状况,强调了发展生物质能需注意工艺过程的绿色化。浙江省科技厅寿剑刚副厅长介绍了浙江省能源消费状况和新能源技术研发动态,鼓励省内外的科技工作者为改善浙江省能源紧缺现状而努力工作。浙江工业大学党委书记汪晓村回顾了浙江工业大学的发展历程,介绍了浙江工业大学化学工程学科在生物质能源领域的科学研究特色和人才培养思路。浙江工业大学的计建炳教授和石油化工科学研究院的蒋福康教授主持了学术交流与讨论。闵恩泽、李大东、舒兴田、岑可法、沈寅初、汪燮卿等六位院士分别从我国发展生物能源的机遇与挑战、我国生物质能源产业发展状况、生物质燃料(清洁汽柴油、生物柴油)利用技术、生物柴油联生产物利用技术和以生物质为原料进行化工生产等几个方面进行了精辟论述。2009年4月,浙江工业大学承办了“中国工程院工程科技论坛第84场———生产生物质燃料的原料与技术”。浙江工业大学副校长马淳安教授在开幕式上致辞,介绍了浙江工业大学化学工程学科在生物质能源领域开展的科学研究和人才培养工作。浙江省可再生能源利用技术重大科技专项咨询专家组组长、浙江工业大学化工与材料学院生物质能源工程研究中心主任计建炳教授主持了学术交流与讨论。国家最高科学技术奖获得者、两院院士闵恩泽做了题为“21世纪崛起的生物柴油产业”的 报告 ,重点阐释了我国发展生物能源和生物质化工的机遇与挑战。在两次会议上,来自石油化工研究院、清华大学、浙江大学、浙江工业大学、浙江省农业科学院、中国林业科学研究院和中粮集团等单位的专家学者分别介绍了生物质原料植物的选育、生物质原料的收储运物流供应体系、生物质原料的梯级利用、生物质液体燃料的制取技术、生物柴油的生产实践及其副产物综合利用和生产生物柴油的反应器技术等方面的研究进展。会议期间,闵恩泽院士等人应邀参加了浙江工业大学化学工程与工艺专业建设暨生物质化学工程专业方向建设研讨会。闵恩泽院士指出,迈入21世纪以来,针对日趋严峻的能源危机和环境危机,国家高度重视能源替代战略的发展和部署,新能源代替传统能源、优势能源代替稀缺能源、可再生资源代替非可再生资源是大势所趋;因此,化学工程与工艺专业根据国家发展需求调整学科设置、进一步促进交叉学科的发展也势在必行。闵恩泽院士认为,在降低能耗和保护环境的时代背景下,生物质能源和生物质化工的产业发展为生物质化学工程人才提供了广阔的发展空间,生物质化学工程(专业)方向的建设思路符合当今化工产业的发展趋势。近距离接触学术泰斗,聆听专业领域的前沿进展,极大地激发了学生们的学习兴趣。通过组织高水平学术会议,浙江工业大学营造了培养生物质化学工程人才的良好氛围。
(二)理论与实验课程体系
根据人才培养目标定位,浙江工业大学将生物质化学工程(专业)模块的主干学科确定为化学工程与技术,针对生物质资源加工利用过程的特点,对化工原理、化学反应工程、化工热力学、化学工艺学、化工设计、分离工程和化工过程分析与合成等主干课程的教学内容进行了梳理。此外,增设了生物质化学与工艺学和生物质工程两门专业课程。生物质化学与工艺学重点讲授糖类、淀粉、油脂、纤维素、木质素、甲壳素、蛋白质、氨基酸等生物质的结构、性质、用途,以及加工转化为化工产品的生产工艺。生物质工程从原料工程学、转化过程工程学和产品工程学等角度出发,为学生讲授生物质资源转化利用过程中的工程原理、工程技术和生产实例。化学工程与工艺国家特色专业综合实验室在中央与地方共建高等学校共建专项资金的资助下,为生物质化学工程(专业)方向增设了酯交换法制备生物柴油和生物质热解制备生物原油两个实验,并在积极筹备开设生物柴油品质测定、淀粉基两性天然高分子改性絮凝剂的制备和易降解型纤维素-聚乙烯复合材料的制备等实验。
(三)实习、实践和毕业环节
生物质化学工程模块依托化学工程省级重点学科和生物质能源工程研究中心建设,师资力量雄厚,拥有专职教师14人。其中,正高职称5人,副高职称7人,11人具有博士学位,7人具有海外 留学 经历。生物质化学工程模块教师的科研成果成功实现产业转化,与企业建立了良好的合作关系。生物质化学工程模块不断加强产学研合作,与宁波杰森绿色能源科技有限公司、温州中科新能源科技有限公司等企业签订了共建大学生创新实践基地的合作协议,设立了企业专项奖助学金,拓展了实习实践 渠道 ;还依托化工过程模拟基地,引入计算机模拟实习、沙盘模拟等方式,丰富了生产实习环节的教学手段。同时,生物质化学工程模块修订完善生产实习教学大纲和教学计划,根据实习厂和仿真软件编写实习手册,强化对实习的质量监控与反馈,建立科学合理的考评体系;增加“内培外引”师资的力量,加快实习指导师资队伍建设;从实习方式、实习内容、考核办法和师资队伍等多个角度出发,确保生产实习教学质量的全面提高,强化学生的工程意识和实践能力,培养学生的创新意识和创新能力。生物质化学工程模块教师承担了国家自然科学基金、浙江省自然科学基金、浙江省科技厅重大招标项目、浙江省科技计划项目和企业委托开发项目数十项。从这些科研和工程开发项目中选取的毕业环节课题,更加贴近科学研究、工程设计或工业生产的实际情况,能够全面检验学生所学的理论知识及其综合运用能力,全方位增强学生结合工程实际,发现问题、分析问题和解决问题的能力,为学生步入工作岗位打下良好基础。依托实践教学平台,从“产品工程”的理念出发,选取若干个恰当的产品,串联实验、课程设计、实习、毕业环节和课外科技活动等教学内容,帮助学生理顺知识体系,建立起绿色化学和节能环保的基本理念。以生物柴油为例,核心反应是酯交换反应,可以采用水力空化等技术强化反应过程;产物需要采用精馏方法分离,生产废水需要采用电渗析等方法加以分离;生产过程中还涉及流体流动和传热等问题;生物柴油这一产品可以将多个实验内容组合成一个有机整体,有效降低实验原料的消耗。教学可以选取其中部分内容作为单元设备设计进行,可以将生物柴油生产车间作为化工设计的教学内容,可以选取部分内容作为学科课外科技项目或毕业环节的研究内容,还可以将生物柴油生产作为创业大赛的竞赛内容。学生可以到生物柴油生产企业进行实习,将工艺革新、过程强化和产品工程融为一体,并通过实验室规模与工业化规模的对比,强化工程意识。
石油化工的范畴 以石油及天然气生产的化学品品种极多、范围极广。石油化工原料主要为来自石油炼制过程产生的各种石油馏分和炼厂气,以及油田气、天然气等。石油馏分(主要是轻质油)通过烃类裂解、裂解气分离可制取乙烯、丙烯、丁二烯等烯烃和苯、甲苯、二甲苯等芳烃,芳烃亦可来自石油轻馏分的催化重整。石油轻馏分和天然气经蒸汽转化、重油经部分氧化可制取合成气,进而生产合成氨、合成甲醇等。从烯烃出发,可生产各种醇、酮、醛、酸类及环氧化合物等。随着科学技术的发展,上述烯烃、芳烃经加工可生产包括合成树脂、合成橡胶、合成纤维等高分子产品及一系列制品,如表面活性剂等精细化学品,因此石油化工的范畴已扩大到高分子化工和精细化工的大部分领域。石油化工生产,一般与石油炼制或天然气加工结合,相互提供原料、副产品或半成品,以提高经济效益(见石油化工联合企业)。编辑本段石油化工的作用1.石油化工是能源的主要供应者 石油化工,主要指石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应 石油者。我国1995年生产了燃料油为8千万吨。目前,全世界石油和天然气消费量约占总能耗量60%;我国因煤炭使用量大,石油的消费量不到20%。石油化工提供的能源主要作汽车、拖拉机、飞机、轮船、锅炉的燃料,少量用作民用燃料。能源是制约我国国民经济发展的一个因素,石油化工约消耗总能源的8.5%,应不断降低能源消费量。2.石油化工是材料工业的支柱之一 金属、无机非金属材料和高分子合成材料,被称为三大材料。全世界石油化工提供的高分子合成材料目前产量约1.45亿吨,1996年,我国已超过800万吨。除合成材料外,石油化工还提供了绝大多数的有机化工原料,在属于化工领域的范畴内,除化学矿物提供的化工产品外,石油化工生产的原料,在各个部门大显身手。3.石油化工促进了农业的发展 农业是我国国民经济的基础产业。石化工业提供的氮肥占化肥总量的80%,农用塑料薄膜的推广使用,加上农药的合理使用以及大量农业机械所需各类燃料,形成了石化工业支援农业的主力军。4.各工业部门离不开石化产品 现代交通工业的发展与燃料供应息息相关,可以毫不夸张地说,没有燃料, 就没有现代交通工业。金属加工、各类机械毫无例外需要各类润滑材料及其它配套材料,消耗了大量石化产品。全世界润滑油脂产量约2千万吨,我国约180万吨。建材工业是石化产品的新领域,如塑料关材、门窗、铺地材料、涂料被称为化学建材。轻工、纺织工业是石化产品的传统用户,新材料、新工艺、新产品的开发与推广,无不有石化产品的身影。当前,高速发展的电子工业以及诸多的高新技术产业,对石化产品, 尤其是以石化产品为原料生产的精细化工产品提出了新要求,这对发展石化工业是个巨大的促进。5.石化工业的建设和发展离不开各行的支持 石油化工国内外的石化企业都是集中建设一批生产装置,形成大型石化工业区。在区内,炼油装置为“龙头”,为石化装置提供裂解原料,如轻油、柴油,并生产石化产品;裂解装置生产乙烯、丙烯、苯、二甲苯等石化基本原料;根据需求建设以上述原料为主生产合成材料和有机原料的系列生产装置,其产品、原料有一定比例关系。如要求年产30万吨乙烯,粗略计算,约需裂解原料120万吨, 对应炼油厂加工能力约250万吨,可配套生产合成材料和基本有机原料80 ~ 90万吨。由此可见, 建设石化工业区要投入大量资金,厂区选址适当,不但要保证原料和产品的运输,而且要有充分的电力、水供应及其他配套的基础工程设施。各生产装置需要大量标准、定性的机械、设备、仪表、管道和非定型专用设备。 制造机械设备涉及材料品种多,要求各异,有些重点设备高速超过50米,单件重几百吨;有的要求耐热1000°C,有的要求耐冷 - 150°C。有些关键设备需在国际市场采购。所有这些都需要冶金、电力、机械、仪表、建筑、环保各行业支持。 石化行业是个技术密集型产业。生产方法和生产工艺的确定,关键设备的选型、选用、制造等一系列技术,都要求由专有或独特的技术标准所规定, 如从国外引进,要支付专利或技术诀窍使用费。因此,只有加强基础学科,尤其是有机化学、高分子化学、催化、化学工程、电子计算机、自动化等方面的研究工作,加强相关专业技术人员的培养,使之掌握和采用先进科研成果,再配合相关的工程技术,石化工业才有可能不断发展,登上新台阶。编辑本段石油化工的发展 石油化工的发展与石油炼制工业、以煤为基本原料生产化工产品和三大合成材料的发展有关。石油炼制起 石油炼制源于19 世纪20年代。20世纪20年代汽车工业飞速发展,带动了汽油生产。为扩大汽油产量,以生产汽油为目的热裂化工艺开发成功,随后,40年代催化裂化工艺开发成功,加上其他加工工艺的开发,形成了现代石油炼制工艺。为了利用石油炼制副产品的气体,1920年开始以丙烯生产异丙醇,这被认为是第一个石油化工产品。20世纪50年代,在裂化技术基础上开发了以制取乙烯为主要目的的烃类水蒸汽高温裂解 简称裂解)技术,裂解工艺的发展为发展石油化工提供了大量原料。同时,一些原来以煤为基本原料(通过电石、煤焦油)生产的产品陆续改由石油为基本原料,如氯乙烯等。在20世纪30年代,高分子合成材料大量问世。按工业生产时间排序为:1931年为氯丁橡胶和聚氯乙烯,1933年为高压法聚乙烯,1935年为丁腈橡胶和聚苯乙烯,1937年为丁苯橡胶,1939年为尼龙66。第二次世界大战后石油化工技术继续快速发展,1950年开发了腈纶, 1953年开发了涤纶,1957年开发了聚丙烯。编辑本段石油化工高速发展的原因是 有大量廉价的原料供应(50 ~ 60年代,原油每吨约15美元);有可靠的、有发展潜力的生产技术;产品应用广泛,开拓了新的应用领域。原料、技术、应用三个因素的综合,实现了由煤化工向石油化工的转换,完成了化学工业发展史上的一次飞跃。 20世纪70年代以后,原油价格上涨(1996年每吨约170美元),石油化工发展速度下降,新工艺开发趋缓, 并向着采用新技术,节能,优化生产操作,综合利用原料,向下游产品延伸等方向发展。一些发展中国家大力建立石化工业,使发达国家所占比重下降。1996年,全世界原油加工能力为38亿吨,生产化工产品用油约占总量的10%。编辑本段石油化工在国民经济中的地位石油化工是近代发达国家的重要基干工业 由石油和天然气出发,生产出一系列中间体、塑料、合成纤维、合成橡胶、合成洗涤剂、溶剂、涂料、农药、染料、医药等与国计民生密切相关的重要产品。80年代,在工业发达国家中,化学工业的产值,一般占国民生产总值 6%~7%,占工业总产值7%~10%;而石油化工产品销售额约占全部化工产品的45%,其比例是很大的。 石油化工2石油化工是能源的主要供应者 石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应者。我国1995年生产了燃料油为8千万吨。目前,全世界石油和天然气消费量约占总能耗量60%;我国因煤炭使用量大,石油的消费量不到20%。石油化工提供的能源主要作汽车、拖拉机、飞机、轮船、锅炉的燃料,少量用作民用燃料。能源是制约我国国民经济发展的一个因素,石油化工约消耗总能源的8.5%,应不断降低能源消费量。石油化工是材料工业的支柱之一 金属、无机非金属材料和高分子合成材料,被称为三大材料。全世界石油化工提供的高分子合成材料目前产量约1.45亿吨,1996年,我国已超过800万吨。除合成材料外,石油化工还提供了绝大多数的有机化工原料,在属于化工领域的范畴内,除化学矿物提供的化工产品外,石油化工生产的原料,在各个部门大显身手。石油化工促进了农业的发展 农业是我国国民经济的基础产业。石化工业提供的氮肥占化肥总量的80%,农用塑料薄膜的推广使用,加上农药的合理使用以及大量农业机械所需各类燃料,形成了石化工业支援农业的主力军。 石油化工可创造较高经济效益。以美国为例,以50亿美元的石油、天然气原料,可生产100亿美元的烯烃、苯等基础石油化学品,进一步加工得240亿美元的有机中间产品(包括聚合物),最后转化为400亿美元的最终产品。当然,原料加工深度越深,产品越精细,一般来说成本也相应增加。编辑本段世界石油化工 1970年,美国石油化学工业产品,已有约3000种。资本主义国家所建生产厂已约1000个。国际上常用乙烯和几种重要产品的产量来衡量石油化工发展水平。乙烯的生产,大多采用烃类高温裂解方法。一套典型乙烯装置,年产乙烯一般为300~450kt,并联产丙烯、丁二烯、苯、甲苯、二甲苯等。乙烯及联产品收率因裂解原料而异。目前,这类装置已是石油化工联合企业的核心。 70年代以前,世界石油化工的生产基地主要分布在美国、日本及欧洲等国。1973年后世界原油价格不断上涨,1983年以来又趋下跌,价格大起大落,使石油化工企业者对原料稳定、持久供应产生忧虑。发达国家改革生产结构,调整设备开工率,以适应新的经济形势。发展中国家尤其是产油国近年则在大力发展石油化工。80年代,世界乙烯生产能力的分布已发生变化,亚非拉等发展中国家所占比例有所提高。如将东欧国家的乙烯生产能力计算在内,则这些新兴石油化工生产地区的乙烯生产能力,约占世界乙烯总生产能力的四分之一。 1958年,世界乙烯生产能力达到49Mt(不包括社会主义国家),其中新增乙烯生产能力约3.3Mt,约1/3建在非洲和中东地区,1/3建在拉美和东欧;传统石油化工生产地区,只新增生产能力800kt,且今后五年内,计划也很少新建乙烯装置,主要是进行现有装置的技术改造。编辑本段中国石油化工 起始于50年代,70年代以后发展较快,建立了一系列大型石油化工厂及一批大型氮肥厂等,乙烯及三大合成材料有了较大增长。 中国石油化工行业占工业经济总量的20%,因而对国民经济非常重要。石油化工行业包括石油石化和化工两个大部分,这两大部分在2006年都保持了较快地增长。如果把这两个部分作为一个整体来看,2006年石油化工累计实现的利润达到了4345亿,增长达到了17.9%,增量达到了658亿元,在整个规模以上工业新增利润中占到17%左右。 石油化工32007年前三季度全行业实现现价工业总产值38211亿元,同比增长20.2%。重点跟踪的65种大宗石油和化工产品中,产量较2006年同期增长的有62种,占95.4%,其中增幅在10%以上的有47种,占72.3%,天然气、电石、纯苯、甲醇、轮胎外胎等产品产量呈较快增长态势。 原油及加工制品平稳增长。2007年前三季度,全国原油生产较为平缓,天然气产量则增长较快。2007年1~9月累计生产原油13992.6万吨,同比增长1.4%;天然气累计产量为501.4亿立方米,同比增长19.8%。原油加工量24289.1万吨,同比增长7.0%。汽、煤、柴油产量继续保持稳定增长,累计生产汽油4475.9万吨,同比增长8.5%;生产煤油867万吨,同比增长17.4%;生产柴油9175.1万吨,同比增长6.1%。 农化产品生产供应正常。由于农业生产的季节性特征,农用化学品生产也呈现比较强的季节性。化肥(折纯)2007年1~9月累计产量为4310.5万吨,同比增长13.8%,其中氮肥3144.7万吨,同比增长12.2%。2007年前三季度,农药原药累计产量为127.4万吨,同比增长20.6%,杀虫剂、除草剂产量增幅分别为10.7%和33.3%,农药产品结构进一步改善,杀虫剂占农药的比例已下降到37.1%。 展望 以石油和天然气原料为基础的石油化学工业,虽然在70年代经历两次价格上涨的冲击,但由于石油化工已建立起整套技术体系,产品应用已深入国防、国民经济和人民生活各领域,市场需要尤其在发展中国家,正在迅速扩大,所以今后石油化工仍将得到继续发展。80年代,世界石油化工所耗石油量仅为世界原油总产量的8.4%,所耗天然气为天然气总产量10%,更由于从石油和天然气生产化工品可取得很大的经济效益,故石油化工的发展有着良好的前景。为了适应近年原料价格波动,石油化工企业正在采取多种措施。例如,生产乙烯的原料多样化,使烃类裂解装置具有适应多种原料的灵活性;石油化工和炼油的整体化结合更为密切,以便于利用各种原料;工艺技术的改进和新催化剂的采用,提高产品收率,降低生产过程的能耗及原料消耗;调整产品结构,发展精细化工,开发具有特殊性能、技术密集型新产品、新材料,以提高经济效益,并对石油化工生产环境污染进行防治等。编辑本段石油化工专业 石油化工专业是伴随着中国的石油化工的发展同时产生的化工学习专业课程,目的是培养石油化工人才,石油化工专业技术专业人才,一般各大理工科院校都设有此专业,该专业主要课程涉及:计算机应用、英语、有机化学、物理化学、化工分析、 化工原理、石油加工工程系、化工节能、化工设备、化工安全与环保、精细化工,质量管理。 就业方向:石油、化工、医药、食品等企业生产操作与管理。 ☆工业分析与检验专业: 主要课程:计算机应用、英语、有机化学、无机化学、化工分析、电化学分析、光学分析 、常规仪器分析、化工安全与环保。 就业方向:石油加工、石油化工、精细化工、医药、食品企业和环保部门从事化验分析操作与管理。编辑本段现代以石油化工为基础的三大合成材料 塑料、合成橡胶、合成纤维