我觉得他应该是不想违背自然规律。反重力飞船、人造地震、死光武器,我觉得这些都违背了自然,如果这些被研究出来,很容易会造成世界混乱的,容易引起世界大战。
车东西
文?| Bear
导语:借着电动汽车的行业大潮,动力电池产业迅速崛起,全球已形成中、日、韩三国企业争霸,松下、LG、宁德时代等巨头分庭抗礼的行业格局。
表面的平静背后,新一轮巨变正在酝酿之中——固态电池即将掀起新一轮技术变革浪潮、动力电池白名单去除后日韩企业重回中国市场、全球车企与零部件巨头们也纷纷涉足电池产业,一场大变局即将上演。
为此,车东西特推出《动力电池大变局》系列报道,详解全球动力电池产业的风云变幻,本文为系列报道之一。
特斯拉自产的动力电池终于来了,马斯克的野心从电动汽车产业涌向了动力电池产业,新的血雨腥风将拉开序幕。
今日,据外媒electrek报道,特斯拉的“Roadrunner”动力电池自产计划正式启动,位于美国弗里蒙特大沙漠内的工厂,一条属于特斯拉自己的动力电池生产线正在成型。
整件事件最值得关注的焦点在于,达成规模化生产之后的特斯拉动力电池每度电仅需100美元(约合人民币701元,指每kWh容量电池价格),而根据投资机构瑞银公布的数据,松下当前动力电池每度电的成本约为111美元(约合人民币772元),而宁德时代动力电池的成本则为每度电150美元(约合人民币1042元)。
特斯拉进入动力电池产业的第一件事,就是打掉动力电池产业的价格“底裤”。
▲外媒报道特斯拉正在弗里蒙特工厂建造电池生产线
但除此之外,马斯克的这场动力电池“闪电战”还将在汽车产业与动力电池产业同时掀起浪潮。更多拥有资本与技术的车企在特斯拉的号召下,将会涌入动力电池市场,冲击当前的动力电池产业格局。
在这样关键的节点上,我们有必要找到特斯拉如何突破动力电池产业技术壁垒,一步一步解决电池研发,并最终具备电芯生产能力的秘密。
车东西通过对特斯拉五年以来的投资布局、技术研发情况与产业链布局进行梳理,找到了其中的答案。
一、耗时五年?三元锂电之父助力特斯拉自产电
2020年2月12日,外媒electrek曝料称,特斯拉正在美国弗里蒙特工厂搭建一条动力电池生产线。一时间,特斯拉自产动力电池的消息公之于众,引发了业界震动。
但若非此次媒体曝光,恐怕没有人能想到特斯拉自产动力电池的速度如此之快。
原因在于,与其他大张旗鼓进军动力电池产业的车企不同,特斯拉在这一领域的布局简直可以用低调来形容。
自2015年以来,特斯拉与动力电池相关的投资仅有三笔,分别是对达尔豪斯大学杰夫·戴恩研究小组(Jeff Dahn Research Group)的5年赞助计划、收购电池技术公司Maxwell以及收购电池制造设备公司Hibar。
三笔投资中,特斯拉仅披露了收购Maxwell的金额——2.18亿美元(约合人民币15.27亿元),另外两笔投资的金额与具体细节均未公布。
但正是这三笔投资,凑齐了特斯拉自产电池所需的关键技术——动力电池的电极、电解液、隔膜、电池壳体以及电池的制造工艺。
特斯拉在动力电池领域的布局始于2015年。
以领先于业界的三电技术立身的特斯拉不甘于在动力电池领域受制于松下,更何况彼时松下动力电池的产能爬坡速度远不如特斯拉汽车生产线的产能爬坡速度。
马斯克有预见性地意识到,松下可能会成为特斯拉迈向年产百万辆电动汽车的最大阻碍(随后事实如其所料,2018年松下的动力电池产能限制了特斯拉Model 3的量产速度)。
于是,马斯克动起了自产动力电池的念头。
2015年,马斯克找上了专注于锂电技术产业化的杰夫·戴恩团队,希望为其提供“数额可观的5年的研究经费”(the substantial 5-year funding package),让其为特斯拉研发寿命更长、成本更低、能量密度更高的锂离子电池。
▲杰夫·戴恩研究小组
杰夫·戴恩团队是加拿大顶级大学达尔豪西大学内一支专注于锂离子电池技术研究的团队,自2008年开始研究锂电池产业化项目。其官方网站显示,该团队目前拥有30人左右的规模,共计发表论文600余篇,在重量级期刊JES与JPS上均有论文发布。
有外媒评价,该团队是目前锂电池领域研究实力最强的团队之一。
杰夫·戴恩本人更是通过精确限定镍钴锰材料中镍的含量,使三元复合正极材料成功实现规模商业化,成为了业界公认的三元材料技术真正的开创者和发明者。
▲杰夫·戴恩
一边是急于自研自产动力电池的特斯拉,一边是希望并且擅长将技术产业化的杰夫·戴恩团队,双方一拍即合。
同年6月16日,杰夫·戴恩团队所在的达尔豪西大学与特斯拉共同宣布,杰夫·戴恩研究小组的合作伙伴将在2016年6月,从3M Canada转移到特斯拉,并与特斯拉达成独家合作协议。
达成合作协议之后,杰夫·戴恩老爷子一屁股坐进了特斯拉的前备箱,比出两个大拇指,兴奋之情溢于言表。
▲杰夫·戴恩
在此之后,杰夫·戴恩团队持续在新型锂离子电极材料、锂离子电池故障机理诊断、电解质添加剂、钠离子与锂离子电池安全性基础研究以及电池研究理论/建模方面持续取得突破。
去年年底,来自杰夫·戴恩团队的论文显示,其新研发的动力电池循环周期可达到5000次左右,对应电动汽车行驶寿命超过100万英里(约为160万公里),这项专利目前已经为特斯拉所有。
而近期外媒electrek又曝出消息,称杰夫·戴恩团队的研究成果将使特斯拉的动力电池成本达到100美元/kWh(约合701元/kWh)。对比投资机构瑞银给出的数据,松下动力电池的成本约为111美元/kWh(约合771元/kWh)、宁德时代约为150美元/kWh(约合1042元/kWh),特斯拉目前的电池成本在业界属于最低水平。
据了解,杰夫·戴恩团队还在帮助特斯拉完成能量密度500Wh/kg的高镍三元锂电池的研发,目前已初具成果。
可以说,2016年以来,杰夫·戴恩团队为特斯拉自产电池项目贡献了众多底层的技术专利与经验积累,完善了特斯拉从电极、电解质到电池壳体环节的大部分技术链条。五年时间,杰夫·戴恩团队也确实完成了签约时对特斯拉许下的诺言——帮助特斯拉提升动力电池循环次数、降低动力电池成本、研发高能量密度动力电池。
这笔投资对于特斯拉而言,物超所值。
二、收购Maxwell?干电极技术提升动力电池能量密度
2016年之后,马斯克转身扎进了特斯拉Model 3的产能地狱,再无闲暇顾及动力电池产业的布局,以至于2017年、2018年2年时间里,特斯拉在动力电池产业并没有大的动作。
但时间来到2019年,一件事情为马斯克敲响了警钟。
2019年2月,特斯拉2018年财报发布的电话会议上,马斯克指出,超级工厂电芯产能的不足是限制特斯拉Mode 3产能的最大桎梏。
2019年4月,马斯克再度发推表示,“超级工厂的电芯产能只有24GWh,从7月份开始一直限制Model 3的产能,在产能到达35GWh之前,特斯拉不会再投钱进去。”
来自松下的产能限制,使得马斯克再度意识到了动力电池的重要性,他开始加速特斯拉在动力电池领域的布局。
2019年5月,特斯拉以2.18亿美元(约合人民币15.27亿元)的价格收购电池技术公司Maxwell,溢价幅度达到55%。
之所以如此迫切地拿下这家公司,是因为特斯拉看中了Maxwell的干电极技术与超级电容技术。
▲Maxwell干电极技术介绍
传统的电极制备工艺属于湿电极工艺,制造过程中,需要将正负极材料加入溶剂中,对电极片材料进行涂覆。
这种制造工艺的优势在于生产工艺验证时间长,电极质量稳定,但溶剂的特性决定了这种电极涂覆的方式生产的电极较薄,能量密度受限。
同时,生产过程中,需要对溶剂进行蒸发,这一部分生产工艺会产生一定程度的环境污染。
而无溶剂的干电极生产工艺则是将活跃的正负极材料混入黏性物质中,使得正负极材料自身“原纤维化”,形成自支撑膜,牢牢地粘着在电极片上(原理类似于脚底牢牢粘上的口香糖)。
这种生产工艺可以制备更厚的电极,使得电池的能量密度得到大幅提升。目前,使用该工艺制成的三元锂电池电芯能量密度大于300Wh/kg,电芯单体能量密度最高可实现500Wh/kg,同时获得更大的放电倍率。
与此同时,干电极的另一大好处,就是可以在电池使用之后,持续为其补充锂金属,弥补电池的容量衰减;而采用湿电极法制备的电极,补充锂金属和混有锂金属的碳不能很好地彼此融合,通常会伴有烟雾、火苗和噪音等强烈反应。
此外,干电极的制作流程不需要进行溶剂干燥步骤,降低了生产成本与时间成本,也降低了环境污染。
另一项超级电容技术,则可以用作能量回收过程中的快速储能装置,其能耗远小于将回收的动能重新储备到电池中。
而在急加速过程中,超级电容器能够实现大功率放电,避免动力电池直接大功率放电产生锂晶枝,对电池结构造成不可逆的损伤。
超级电容技术的另一大优势,就是工作温度范围大,大部分电池的工作温度需要维持在20℃-40℃之间,对外界环境温度要求较为苛刻。而超级电容的工作温度在-40℃-80℃之间,可用于冬天车辆起步与动力电池的加热。
干电极技术为特斯拉自产电池提高了能量密度,而超级电容技术能够在特定场景下为电池提供辅助作用,二者结合或许是特斯拉将来会采用的“混动”方案。
三、收购电池生产设备商Hibar?为自产电池铺路
投资杰夫·戴恩团队,收购Maxwell都是为了掌握最新的电池技术,掌握技术之后的关键就是将其量产。
2019年10月,有媒体发现,加拿大精密设备公司Hibar突然出现在特斯拉旗下,成为了特斯拉的控股子公司。
特斯拉收购Hibar属于秘密进行的项目,其收购日期、金额、合作细节均未透露,但可以明确的是,收购Hibar意味着特斯拉的自产电池项目仅差临门一脚。
Hibar以生产高精度定量注液泵、注液生产系统、自动化电池制造和工艺设备闻名,产品线覆盖了完整的电芯生产流程。
▲Hibar产品一览
在过去的40年时间里,Hibar已经成为了电池行业里一次电池及二次电池生产线的首选供应商。
投资杰夫·戴恩团队让特斯拉拥有了自研动力电池的技术人才,收购Maxwell使得特斯拉掌握了动力电池领域最前沿的技术,而收购Hibar是特斯拉自产动力电池项目的最后一环,至此,特斯拉形成了从技术研发、样品验证到大规模量产的全面布局。
四、自产电池寿命将达100万英里?最大能量密度可达500Wh/kg
虽然特斯拉已经拥有了电池的研发、验证与量产的能力,但实际产品将能够达到什么样的效果呢?
目前其电池生产线还未投入实际使用,想从产品出发进行分析不太现实。我们可以换一个角度,从特斯拉目前拥有的技术实力,来推断其自产电池的技术指标。
1、电极
从电极角度来看,特斯拉自产的电池有很大可能性会采用已收购的Maxwell的干电极技术,该技术目前在三元锂电池领域能够实现的单体电芯能量密度为300Wh/kg,最大能够达到500Wh/kg。
现阶段,业界仅有松下的NCA 811三元锂电池以及宁德时代的NCM 811三元锂电池可在电芯能量密度达到300Wh/kg。
与此同时,上文提到,干电极技术能够实现将锂金属补充到负极内,以弥补充放电过程中,锂离子在负极、电解液中的消耗。
而此前,Maxwell有一项待审专利正是将锂离子补充至电池负极,这项专利技术将能够有效缓解电池在使用过程中的容量衰减问题。而随着特斯拉完成对Maxwell的收购,这项专利技术也自然转移到了特斯拉的名下。
▲Maxwell待审专利
在成本方面,由于省去了干燥步骤,整个电芯生产环节成本大约可下降10%-20%。
2、电解质
在电解质方面,受特斯拉资助的杰夫·戴恩团队近期在知名期刊JES上发表了两篇论文,讲述了他们在电解质方面取得的进展。
其中一篇名为《二恶唑酮与亚硫酸亚硝酸盐作为锂离子电池电解液添加剂》。
论文中提到,杰夫·戴恩团队对近期开发的新型电解质添加剂MDO以及另外两种添加剂PDO和BS进行了高温高电压与长期循环性能的测试,载体为NCM523三元锂电池。
为进行该项测试,团队将三种添加剂分别进行了单独与混合添加,不同的实验组合置于不同的温度、电压下进行测试,得出了不同的循环性能。
实验结果表明,添加了MDO、PDO电解质添加剂的电池均在石墨负极表面形成了SEI层(对负极起到保护作用),而添加了BS电解质添加剂的电池则没有形成SEI层。
通过长时间电池循环性能测试,2%PDO+1%硫酸乙烯、2%PDO+1%二氟磷酸锂的电解液添加剂组合在所有实验电解质添加剂的表现中最优,在经过800次放电循环后,电解质中留存的添加剂浓度依然大于90%。
▲实验结果,(b)(c)中最高的两条分布点分别为2%PDO+1%硫酸乙烯、2%PDO+1%二氟磷酸锂的电解液组合
在这一研究成果的基础上,杰夫·戴恩团队在去年6月又发布了一篇名为《出色的锂离子电池化学性能的广泛测试结果,可作为新电池技术的基准》的论文。
这项实验同样是对NCM523三元锂电池进行了不同的电解质添加剂测试。
实验结果显示,分别向电解质中添加2%碳酸亚乙烯酯+1%硫酸乙烯、2%氟代碳酸乙烯酯+1%二氟磷酸锂、1%二氟磷酸锂这三种电解质添加剂组合,能使电池循环寿命有效增长。
▲实验结果,紫色、绿色与红色线条为测试结果,另外两条为对照组
其中,添加了三种电解质添加剂组合的电池普遍在3000次充放电循环之后,还能保持85%以上的电池容量,有一组甚至在经历了5000次充放电循环之后,仍然保持了90%以上的电池容量。
而另外两组对照组的电池则在1000次左右的充放电循环之后,电池容量分别衰减到了50%左右的水准。
如果以5000次充放电循环次数作为电池的平均循环寿命,以特斯拉Model 3 EPA续航里程322英里作为单轮充放电的续航里程,那么在该电池组的有效生命期内,一辆特斯拉Model 3的行驶里程将会超过160万英里(约合257万公里)。
不过据特斯拉公布的专利显示,目前他们保守估计该电池的使用寿命在100万英里(约合160万公里),一般纯电动汽车所装配的三元锂电池理论使用寿命仅有40万公里-50万公里,特斯拉新电池的使用寿命大约是目前三元锂电池的3-4倍。
值得注意的是,杰夫·戴恩团队为特斯拉进行的研究是以NCM三元锂电池为基础的。因此从电解质添加剂与其适配电极的角度出发,特斯拉未来自产的电池极有可能是NCM三元锂电池而非NCA三元锂电池,该电池的最大循环次数可能逼近5000次,对应车辆的行驶里程可能会达到100万英里(约合160万公里)。
3、超级电容器
除了动力电池本身,收购Maxwell还为特斯拉带来了超级电容技术。
马斯克曾在媒体采访中透露,在大学期间,他就对超级电容技术充满兴趣,一度想进行研究。现在,这个超级电容的粉丝终于能够如愿以偿。
超级电容本质上是不同于动力电池的另一套储能方案,对比动力电池,其不足之处在于储能性能有限。
但其长处也非常明显,超级电容的充放电功率很大,并且能量损耗小,既能够高效率进行动能回收,在车辆急加速时也能够瞬间释放大功率电流,减轻动力电池工作压力。
与此同时,超级电容的工作温度区间为-40℃-80℃,能够适应一般电池难以适应的极端环境。
可以说,超级电容具备与动力电池互补的潜质。在车辆正常行驶时,动力电池提供主要电力,当车辆需要急加速、进行动能回收、在寒冷地带起步时,超级电容为车辆提供电力。
当自产电池项目落地后,特斯拉有可能会为车辆同步配备超级电容器,形成全新的动力电池+超级电容“混动系统”。
综合上述三方面来看,特斯拉自产的动力电池极有可能是NCM三元锂电池,第一代电芯产品的能量密度可能会在300Wh/kg左右,后续会逐步攀升至500Wh/kg。
其电解质添加剂可能会选用2%碳酸亚乙烯酯+1%硫酸乙烯、2%氟代碳酸乙烯酯+1%二氟磷酸锂、1%二氟磷酸锂这三种电解质添加剂组合中的一种,得益于优异的电解质性能,其电池的循环寿命将能够达到100万英里(约合160万公里),超过目前所有的动力电池循环性能。
不仅如此,超级电容技术也可能会被特斯拉投入应用,作为动力电池的辅助能源。
五、从供应商变迁史?看特斯拉自产电池的六大意义
特斯拉首条动力电池生产线的搭建,意味着这家车企在动力电池的供应链上走出了新的一步。
自特斯拉推出首款车型Roadster以来,这条战船就与全球锂电巨头松下牢牢地捆绑在一起。据了解,特斯拉首批100辆Roadster全部采用了松下的18650圆柱形电池。
后续推出的第一款面向大众的量产车型Model S,更是让特斯拉与松下开启了长达7年的独家供应关系。
在此期间,双方在美国佛罗里达州的沙漠中,建起了一座产能达到35GWh的动力电池工厂,也是如今世界上产能最大的动力电池工厂。
▲特斯拉Gigafactory 1
在马斯克的设想中,这座工厂最终将能够实现50GWh的年产能,撑起特斯拉年产百万辆电动车的远大愿景。
但事与愿违,一边是产能疯狂爬坡,电池需求迅速上涨的特斯拉;另一边是即使出现亏损,也仍在扩大生产线,招收更多员工的松下。
双方没有达成供需同步攀升的微妙平衡,特斯拉的电池需求缺口越来越大,最终在2018年财报发布的电话会议上,双方矛盾爆发。
马斯克指责松下的动力电池产能迟迟跟不上,限制了特斯拉Model 3的产能爬坡,如果松下不能按照约定将合资工厂的电池产能提升至35GWh,特斯拉就将停止对合资工厂的投资。
2019年第三季度,双方的合资工厂动力电池产能虽然达到了35GWh,但松下也冻结了进一步提升合资工厂产能至50GWh的计划。
自2013年展开合作以来,特斯拉与松下之间的关系第一次接近“冰点”。
此次事件之后,虽然特斯拉与松下仍然维持着动力电池的供应关系,但特斯拉也开始寻找新的动力电池供应商。借着特斯拉上海工厂投产这一机会,LG与宁德时代被特斯拉纳入其供应商名单。
2020年1月30日,特斯拉正式宣布与LG化学、宁德时代达成动力电池供货协议。
此外,路透社还报道,特斯拉正在与宁德时代就“无钴”电池进行进一步商谈,特斯拉未来很可能会使用宁德时代生产的“无钴”电池。
▲路透社报道,特斯拉正在与宁德时代商议无钴电池合作
到目前为止,特斯拉的动力电池供应链条已经从松下独家供应,转变为LG化学、宁德时代、松下三家同步供应。在特斯拉自产的动力电池完成供应后,这条供应链也将被纳入特斯拉的动力电池名单。
特斯拉已经正式从松下独家供应动力电池的“单极时代”,走向多供应商供应动力电池的“多元时代”。最终可能形成以自产电池为主,采购电池为辅的动力电池供应链条。
对于特斯拉而言,这一时代的到来有着三大意义:
1、动力电池降本增效,坐拥多家动力电池供应商的特斯拉,对供应商将拥有更强的话语权,势必会在动力电池采购价格上加大压价力度。
同时,自产的动力电池生产线投产后,特斯拉的动力电池成本将会低至100美元(约合人民币701元),比松下的动力电池成本还要低10%,特斯拉的成本优势更加明显,旗下车型或将进一步降价,更大规模的扩张销量。如果使用干电极技术进行动力电池生产,特斯拉动力电池的生产效率也会有小幅提升。
2、助推产能增长,到目前为止,特斯拉共拥有两座整车生产工厂,一座位于美国加州弗里蒙特,目前处于满负荷运转;另一座位于上海临港,目前产能15万辆/年,目标产能为50万辆/年,还有较大幅度的产能爬坡空间;还有一座规划中的工厂位于德国柏林,目前正在建设当中。
就目前情况来看,特斯拉与松下的合资电池厂供给美国本土工厂已然供不应求,中国工厂与未来的德国工厂势必需要新的动力电池供应商来提供动力电池。供应商足量的动力电池供应才能够推动特斯拉产能增长,最终在2022年实现年产100万辆特斯拉的目标。
3、满足百万辆Robotaxi的需求,马斯克曾经夸下海口,表示2020年将会有100万辆特斯拉汽车上路成为Robotaxi,暂且不论自动驾驶技术是否可行,以目前的电池技术来看,这一目标很难实现。
目前动力电池的循环次数大多在1000次左右,对应使用寿命大约为20万英里(约合32万公里),这一续航寿命对于普通家用完全足够,但对于需要24小时不间断运行的Robotaxi而言,却显得捉襟见肘。
特斯拉自产动力电池,正是为了解决这一难题,上文我们已经提到,特斯拉最新的专利显示,他们完成了100万英里(约合160万公里)续航寿命的电池研发,拥有超长续航寿命的动力电池将能够满足特斯拉Robotaxi运行的要求。
对于整个动力电池行业而言,特斯拉自产动力电池也有着深远的意义:
1、特斯拉作为电动汽车领军企业,进军动力电池产业这一行为,将会带来模仿效应,未来更多大型车企在转型电动化的过程中,可能会考虑自产动力电池以满足自身需求。对于车企而言,电动时代的核心——三电技术,必须要握在手心。
2、车企进军动力电池,意味着动力电池供应商们原本的客户流失,动力电池供应商的利润空间受到压缩。在与车企的博弈中,动力电池供应商将想方设法降低动力电池成本,提高动力电池性能。
3、新能源供应链结构可能发生改变,在车企自产动力电池的过程中,原本隔着动力电池供应商的材料供应商们,将能够直接与车企产生联系。产业链条减少,意味着产业结构进一步优化。
结语:掌握电池后的特斯拉将更加强大
特斯拉弗里蒙特工厂的第一条动力电池生产线正在搭建,投产指日可待,马斯克酝酿了5年的自产动力电池计划终于进入了产出结果的阶段。
掌握动力电池后的特斯拉,从各个角度来看,都将变得更加强大。
在供应链端,追求降本的特斯拉,一旦实现了自产动力电池的目标,对其他供应商的动力电池采购需求势必会相应减少。特斯拉的动力电池供应商们将会展开价格战,而在这场价格战中,特斯拉将享有绝对的主导权。
在电动汽车产品端,特斯拉自产的动力电池很有可能比目前市面上的大多数动力电池性能优异,将会拥有更长的使用寿命,更少的容量衰减,从而大幅提升特斯拉车型的保值率。
不过对于特斯拉而言,实现量产仅仅只是自产动力电池这一伟大愿景的第一步,后续动力电池的产能建设,对其而言才是真正的挑战。
在中国,动力电池产能的建设成本约为4-6亿元1GWh,而在美国,这一成本只会更高。特斯拉如果想要真正建成成规模的动力电池生产线,后续至少需要在动力电池项目上投资数百亿元。对于特斯拉这样刚刚盈利,现金流无比宝贵的公司而言,这笔投资将会造成庞大的压力。自产动力电池,对于特斯拉而言,仍然任重而道远。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
《A New System of Alternate Current Motors and Transformers》1888年《Phenomena of Alternating Currents of Very High Frequency》1891年《The Tesla Effects With High Frequency and High Potential Currents》《Experiments with Alternate Currents of Very High Frequency and Their Application to Methods of Artificial Illumination》1891年《Experiments with Alternate Currents of High Potential and High Frequency》1892年《On Light and Other High Frequency Phenomena》1893年《On the Dissipation of the Electrical Energy of the Hertz Resonator》1892年《Tesla's Oscillator and Other Inventions》1895年《Earth Electricity to Kill Monopoly》1896年《On Electricity》1897年《High Frequency Oscillators for Electro-therapeutic and Other Purposes》1898年《Plans to Dispense With Artillery of the Present Type》1898年《Tesla Describes His Efforts in Various Fields of Work》1898年《On Current Interrupters》1899年《The Problem of Increasing Human Energy》1900年《Tesla's New Discovery》1901年《Talking With Planets》1901年《Inventor Tesla's Plant Nearing Completion》1902年《The Transmission of Electrical Energy Without Wires》1904年《Electric Autos》1904年《The Transmission of Electrical Energy Without Wires as a Means for Furthering Peace》1905年《Tuned Lightning》1907年《Tesla's Wireless Torpedo》1907年《Possibilities ofWireless》1907年《The Future of the Wireless Art》1908年《Mr. Tesla's Vision》1908年《Nikola Tesla's New Wireless》1909年《Dr. Tesla Talks of Gas Turbines》1911年《Tesla's New Monarch of Machines》1911年《The Disturbing Influence of Solar Radiation On the Wireless Transmission of Energy》1912年《How Cosmic Forces Shape Our Destinies》1915年《Some Personal Recollections》1915年《The Wonder World To Be Created By Electricity》1915年《Nikola Tesla Sees a Wireless Vision》1915年《Tesla's New Device Like Bolts of Thor》1915年《Wonders of the Future》1916年《Electric Drive for Battle Ships》1917年《Presentation of the Edison Medal to Nikola Tesla》1917年《Tesla's Views on Electricity and the War》1917年《Famous Scientific Illusions》1919年《The True Wireless》1919年《Electrical Oscillators》1919年《Rain Can Be Controlled and Hydraulic Force Provided》1920年《When Woman is Boss》1926年《World System of Wireless Transmission of Energy》1927年《Nikola Tesla Tells of New Radio Theories》1929年《Our Future Motive Power》1931年《Tesla Cosmic Ray Motor May Transmit Power 'Round Earth》1932年《Pioneer Radio Engineer Gives Views On Power》1932年《The Eternal Source of Energy of the Universe, Origin and Intensity of Cosmic Rays》1932年《Tesla 'Harnesses' Cosmic Energy》1933年《Tesla Invents Peace Ray》1934年《Tesla on Power Development and Future Marvels》1934年《Dr. Tesla Visions the End of Aircraft In War》1934年《The New Art of Projecting Concentrated Non-dispersive Energy Through Natural Media》1935年《A Machine to End War》1935年《Tesla Predicts Ships Powered by Shore Beam》1935年《Tesla Tries to Prevent World War II》1944年《Mechanical Therapy》 《My Inventions》是特斯拉在63岁时完成的自传,1917年8月~1919年7月,在《Electrical Experimenter》发表,共分为6篇文章,里面回忆了他60余年来的部分生活和经历。1、My Early Life(我的少年生活)2、My First Efforts At Invention(我早期的发明努力)3、My Later Endeavors(我是如何构想旋转磁场的)4、The Discovery of the Tesla Coil and Transformer(发明特斯拉线圈和变压器)5、The Magnifying Transmitter(放大发射机)6、The Art of Telautomatics(自动遥控的艺术) 早在1894年,特斯拉就在《纽约时报》上首次论述他的关于光、物质、以太和宇宙的理论。1931年,特斯拉在75岁生日之际接受记者采访时说,他正试图驳斥爱因斯坦的广义相对论,证明那是错误的。特斯拉说,他的解释没有爱因斯坦的那么复杂,一旦准备完毕可以完全公诸于世时,大家将会看到他的结论是有根有据的。1936年,80岁寿辰之际,特斯拉发表了一份共计10页的论文。这份论文从未全文出版过,它是特斯拉的大统一场理论。他说,这一理论“对天体在其影响下的运行,给予了如此令人满意的说明,以致那些毫无根据的推测和错误的概念,诸如弯曲空间,可以就此终结”。然而,在他的关于天体物理学和天体力学的众多论著中,这一引力理论从未被阐明过。在论文中特斯拉阐述道,弯曲空间是完全不会发生的,因为作用和反作用是共存的,一个弯曲会被拉直所抵消。不承认以太的存在以及它必不可少的作用,想解释任何关于宇宙的现象都将是不可能的。尽管爱因斯坦带来了一场革命,但特斯拉仍然确信,“物质当中没有能量,能量是从周围环境中获得的”。他认为,这既适用于最庞大的天体,也严格适用于分子和原子。然而,这一次,他错的离谱。这份论文题为《The Dynamic Theory of Gravity》,就是所谓的《引力的动态理论》,其实正确译法应为《引力的动力学理论》,这个理论被誉为是大统一场理论的先驱。另外,特斯拉在81岁时发表了一份声明《Prepared Statement by Nikola Tesla》来宣传《引力的动态理论》。 与爱因斯坦的理论不同的是:特斯拉的理论是一个基于牛顿的万有引力延伸出来的理论。这个理论从没被正式出版过,而在特斯拉逝世后美国政府将他的研究报告列入绝密档案。虽然我们仍然能够找到少量曾引用过这篇论文的内容,但其整体内容还是未知。特斯拉这个理论的中心思想,认为以太是存在的,而且是引力的存导介质,而不是引力场;而透过电磁场的高速转动,可以带动以太旋转,从而改变引力的大小与方向。
卓越的远见性,是很多伟大科学家都具有的一个独到技能。当然,科学家之所以有着卓越的远见性,这是因为他所具备的深厚学识在辅助他的眼光。一般的科学家只能预见几十年之内的社会发展,而一些极其伟大的科学家能预见一两百年的社会发展趋势。其中,有一些科学家因为研究领域的不同,所以导致了普通人无法理解他们所提出的一些言论。
19世纪末20世纪初,就这么有一位奇特的科学家。喜欢这位科学家的人们会说:倘若没有他,社会的发展可能会延迟几十年;而不喜欢这位科学家的人会说:他就是一个普通的电气工程师。而这个他,就是我们所熟悉的尼古拉·特斯拉。
一开始,人们把目光瞄准了美国CIA。因为在特斯拉死亡的时候,美国CIA把特斯拉所在房间给封锁了,他们不止把特斯拉的尸体给搬走了,还把几个装着许多资料的皮箱给带走了。可是在后面的声明中,CIA却说尼古拉·特斯拉没有留下什么有价值的资料或是手稿。这是怎么回事呢?难道说特斯拉在死之前就把自己的资料销毁了吗?特斯拉自身的手稿去了哪里呢?真的是毁掉了吗?那他为什么要毁掉自己亲手写出来的一些资料呢?人们对此各有各的说法。
1911年,特斯拉公开发表了好几篇论文,这几篇论文都是关于反重力飞行器的描述。特斯拉说,他已经研究出了一种不需要化学能就可以推进的反重力飞行器,而且这种飞行器还能在大风的空中控制自身保持稳定静止。在这篇论文中,特斯拉只是大概说了一下这一飞行器的外貌,没有说出具体的设计方法和原理。
也因为这个原因,所以当时的人们都觉得特斯拉是在空口说大话。但在后来的研究中,科学家们发现特斯拉所说的飞行器还真的有可能做到,那就是超导体飞行器。此类超导体飞行器可以在空中保持静止的状态,也被称为是“量子悬浮”。
很多的人猜测,特斯拉可能是担心如此先进的技术落入到一些为人不善的人群手中,所以就毁掉了这些手稿。当然,除了这个原因之外,还有其他的原因。
海森堡海森堡(Werner Heisenberg,1901年-1976年),德国著名物理学家,量子力学的创立人。他于20世纪20年代创立的量子力学,可用于研究电子、质子、中子以及原子和分子内部的其它粒子的运动,从而引发了物理界的巨大变化,开辟了20世纪物理时代的新纪元。为此,1932年,他获得诺贝尔物理奖,成为继爱因斯坦和波尔之后的世界级的伟大科学家。海森堡出生于德国的维尔茨堡,在慕尼黑长大,父亲是一名普通的希腊语教师。早在中学时海森堡就已展现出了他的天赋,老师曾评价说:他能看到事物的本质,而不仅仅拘泥于表象和细节。后来,海森堡成为慕尼黑的马克斯米里扬天才基金会成员。“世界只在两件事情上还会想到我:一是我于1941年到哥本哈根拜访过尼尔斯·玻尔,二是我的则不准原理”。这是海森堡经常挂在嘴边的话。的确,由海森堡创立的理论奠定了现代量子物理的基础,它可通过数学计算将每个物理问题转化成实实在在的、可以测量的量;它阐明了由量子力学解释的理论局限性;它指出某些成双的物理变量如位置和动量永远是相互影响的,虽可测量,但其有效性不可能同时测出精确值等。他的主要贡献,是帮助科学家更深入地了解世界。海森堡曾在自传中说,1925年5月,他在哥廷根给马克斯伯尔恩当助手时,开始酝酿他的理论。当时,这位23岁的年轻科学家正患枯草热,医生建议他到赫尔戈兰岛休息两周,他就是利用这段时间完成了自己的事业。他说,那时他根本就不想睡觉,每天用1/3的时间来计算量子力学、1/3的时间攀岩,余下的时间背诵近东国家的诗集。他当时的想法,就是要让旧理论完全让位于新理论。除散步外,他一直在思考解决问题的数学方式,几天后他终于搞明白,在物理中所观察到的量应当起作用,它可取代传统理论中的量子条件。海森堡的理论公布之后,曾遭到纳粹的猛烈批判。当时的德国结束了其科学黄金时代,最为惨烈的是大批犹太科学家被迫害,致使德国的科学和文化从一流下降到了五流水平,因此海森堡的理论也不断遭到攻击。纳粹把犹太人赶出德国还不算,还要对付“白色犹太人”,即“精神犹太”和同情犹太人的人,即像海森堡之流的名人。正如他的一名同事所说的,只要是他们不懂的东西都是犹太的东西。“很遗憾,当时正是物理将要取得重大突破的大好时机,可惜被政治断送了”。海森堡对此感到痛心。希特勒发动波兰战争时,命令海森堡来柏林,并要他写出核裂变可利用报告。他花了半个月的时间写了出来,但是,他本人虽然不公开反纳粹,却反对使用原子武器。二战结束后,他积极促进和平利用核能。1957年,他和其他科学家一道极力反对德国装备核武器,受到了德国人的爱戴。海森堡不仅对量子力学感兴趣,对艺术和音乐也十分在行。他的研究风格与达·芬奇作画时尽量利用素描、色彩和光线的明暗等手段相似,力求达到客观与主观的协调一致。海森堡对音乐的解释是,音乐如同语言,极具个性化;而物理研究也如同作曲,古典物理犹如巴赫的交响曲。海森堡把物理当成了作曲。不同的时,作曲家使用的是音符,海森堡则使用数学符号。他了解的是物理的自然法则,在其理论的声音里没有游离“音”,在他的证明空间里发出的“音调”是原子法则,其目的是为了完善原子理论详细介绍:一. 海森堡的青少年时代 (1901–1924年)W.K.海森堡1901年12月5日出生于巴伐利亚州小城乌尔兹堡。1910年海森堡一家迁居巴伐利亚州首府慕尼黑市。他的父亲A.海森堡在慕尼黑大学担任中世纪及现代希腊语言学终身教授。1911年海森堡进入久负盛名的慕尼黑马克希米廉斯中学,并获得巴伐利亚州马克希米廉斯基金会颁发的奖学金。他的外祖父曾任该校校长。海森堡的中学时代恰逢第一次世界大战。1917年至1919年间他作为志愿者服务于战争后方从事救助工作。1920年海森堡以优异成绩完成了中学学业,转入路易.马克希米廉斯大学(即慕尼黑大学)开始学习物理,数学,化学和天文学。在大学第一学期海森堡想加入数学家F.林德曼的研讨班,却被拒绝了。他转而选择物理学家A.索末菲作为导师。索末菲教授精通原子理论,引导海森堡进入了新兴的量子论最前沿领域。1922年冬季索末菲带领海森堡来到哥廷根大学聆听物理学大师N.玻尔关于原子结构的系列讲座。年轻的海森堡给玻尔留下了深刻印象,两人的师生友谊也从此开始。索末菲为海森堡选定的博士学位研究课题是一个经典难题—湍流。经过深入研究,海森堡提出了一种巧妙独到的解决湍流问题的方案。索末菲对海森堡的才能青睐有加,曾写信给他的父亲A.海森堡称赞道,“你的家庭出了一位物理学与数学奇才”。尽管受到实验物理学家W.韦恩的刁难,海森堡还是通过了博士论文答辩,于1923年夏天毕业。获得博士学位后,海森堡受聘于哥廷根大学,担任物理学家M.玻恩的助手。 这时他的主要研究兴趣转到了量子理论。经过一年的努力,海森堡在哥廷根顺利通过了申请终身教授职位的资格考试。1924年9月海森堡离开哥廷根,以洛克菲勒基金会研究员的身份奔赴他向往已久的理论物理学圣地—哥本哈根大学玻尔研究所。这是他人生的一个重要转折点。二. 量子力学的诞生 (1924 – 1927年)在哥本哈根访问工作数月后,海森堡于1925年5月返回德国,暂时任教于哥廷根大学。1926年5月他再次访问哥本哈根大学,担任理论物理学讲师和玻尔的主要研究助手。作为量子力学的创始人之一,1924至1927年是年轻的海森堡学术生涯的第一个颠峰期。玻尔与索末菲的半经典原子理论假设电子在围绕原子核的固定轨道上转动。这一理论取得了很大成功,但在解释几个关键实验结果(如光谱的反常拉曼效应和辐射性质)时却彻底失败了。为了克服玻尔-索末菲模型的缺陷,玻恩、海森堡和W.泡利在德国以及玻尔等在丹麦分别展开了深入细致的研究工作。1925年6月在海格兰岛养病期间,海森堡的研究有了突破性进展,从而导致了全新自洽的原子理论—量子力学的诞生。之后不久,玻恩、P.约丹和海森堡在哥廷根大学建立了量子力学的完备数学体系,称为矩阵力学。当时量子力学有五种不同的数学体系:(1)矩阵力学,由玻恩、约丹和海森堡在哥廷根建立;(2)Q-代数,由P.狄拉克在剑桥建立;(3)积分方程理论,由K.兰酋斯在法兰克福建立;(4)算符力学,由玻恩和N.维也纳合作完成;(5)波动力学,由苏黎世大学的E.薛定谔于1926年根据L.德布勒意在1923年提出的物质波思想推导建立。在这五种不同表述中,薛定谔的波动力学最为实用,因为它的数学形式直观简洁,可以计算当时所有的原子问题。如何诠释量子力学波函数的概念是1926年理论物理学界的一大焦点。经过一番辩论,薛定谔的“连续诠释”观点被玻恩的“统计诠释”观点和狄拉克-约丹的“统计变换理论”驳倒了。1927年海森堡首次提出并证明了量子力学的“测不准原理”。紧接着玻尔发展了“互补性原理”。至此量子力学的基本概念得到了完备自洽的物理解释。三. 莱比锡—原子理论的新中心 (1927 – 1933年)早在1926年春天海森堡就收到邀请,莱比锡大学有意提供给他一个特聘教授职位。但是他放弃了这个难得的机会,赴哥本哈根访问并同玻尔一起工作。莱比锡大学的教授职位后来给了索末菲的另一个得意门生G.温奇尔。1927年年关前后,莱比锡大学的两位物理学终身教授T.德司考蒂意斯和O.维也纳相继去世。他们空出的实验物理学教授职位由索末菲的第一个博士生P.德拜填补上,而理论物理学教授职位则给了海森堡。海森堡于1927年10月到莱比锡任职后,立即吸引了许多天才后生前来求学。海森堡带领学生们开始了凝聚态量子力学的研究工作,并同其它原子理论研究中心(比如哥本哈根,哥廷根,慕尼黑和苏黎世)一直保持密切的学术交流。他与苏黎世的关系尤其特殊,因为他的密友泡利在苏黎世高等工业大学工作。泡利于1928年获得了理论物理学终身教授职位。当1928年夏天温奇尔离开莱比锡去苏黎世大学接替薛定谔时(后者已于早些时候赴柏林大学就任以量子论的创始人M.普朗克命名的终身教授职位),罗斯道克大学的F.洪特加盟海森堡的研究所并担任数学物理终身教授。洪特与海森堡早在哥廷根就是好朋友,两人在为人与教学等方面相得益彰,吸引了大批年轻学生和著名学者从世界各地前来莱比锡参加他们的讲座与研讨会。此外,与数学家们的密切合作使海森堡进一步巩固了量子力学的数学基础。名噪一时的“莱比锡大学周”是由德拜组织的。这一活动促进了现代物理和化学的理论与实验方法的广泛交流。在第一次大学周活动中,狄拉克做了关于相对论电子的全新量子理论的讲演。四. 周游世界及荣获诺贝尔奖 (1929 – 1933年)1929年3月初海森堡完成了一篇重要的研究手稿,概括了他两年来推导相对论性量子场论的尝试和结果。之后他开始访问美国,首先到达东海岸的麻省理工学院(波士顿)和哥伦比亚大学(纽约),接着来到芝加哥大学并做了题为“量子理论的物理原理”的系列讲座。当时海森堡的朋友狄拉克正在威斯康星大学访问工作。两人相约一道去了美国西部,游览了著名的黄石国家公园和加州大学。后来他们经由夏威夷访问日本。海森堡和狄拉克向汤川秀树等日本同行介绍了他们各自在量子力学方面的最新研究工作。最后海森堡取道中国和印度返回了莱比锡,而狄拉克则穿越了苏联经由莫斯科回到剑桥。这趟世界之旅大大提高了海森堡本人和量子力学的知名度。1932年他再次应邀访问美国。许多美国和日本学生及学者频繁来莱比锡求学或讲学。国际著名的物理学大会(如1930年和1933年在布鲁塞尔召开的索尔维会议和1931年在罗马召开的核物理大会)也纷纷邀请海森堡参加并做报告。这些国际大会以及玻尔研究所举办的精英荟萃的小型研讨会激发了海森堡的物理思想也同时传播了他的最新研究成果,其中包括关于原子核结构的理论和关于宇宙线中的高能基本粒子过程的理论。1933年底海森堡名至实归,荣获1932年度的诺贝尔物理学奖—该奖项肯定了他对量子力学理论及其应用的创造性贡献。与此同时,诺贝尔奖评委会宣布将1933年度的物理学奖颁发给狄拉克和薛定谔,以表彰他们对新的原子理论的杰出贡献。五.“犹太物理学”与“德意志家庭”(1933 – 1939年)1933年初由新纳粹政府蓄意煽动的第一波种族歧视浪潮对德国各大学造成严重冲击。海森堡在哥廷根的老师玻恩和J.弗兰克不得不移居国外,他的助手F.布劳赫离开了莱比锡,原先的学生如R.佩尔斯和E.泰勒以及原来的助手G.贝克等都无法在德国的大学保留原职。1933年11月,首次针对海森堡的人身攻击开始了,原因是他拒绝在一篇向A.希特勒献媚的致词中签名。然而海森堡依旧公开反对政府强行解雇更多的犹太同事,尽管他和他的朋友们的这种努力在残酷的现实面前是徒劳的。在犹太学者被驱逐出德国各大学和研究所之后,科学界的纳粹帮凶们加强了他们反对普朗克、M.冯劳厄和索末菲的活动。更有甚者,他们把矛头指向年轻的海森堡,因为在这些人眼中海森堡是“犹太物理学”(特别是相对论和量子力学)的主要代表人物之一。海森堡成功地抵制了用心险恶的诽谤,但最终他没有被当局允许去接任他的导师索末菲在慕尼黑大学的终身教授职位。此后,现代物理学的研究环境在德国急剧恶化,而美国则在许多方面取代德国处于领先地位。许多莱比锡的同事在这段困难时期给予了海森堡巨大帮助和安慰。1937年4月,海森堡与E.苏玛赫结婚,组成了一个典型的“德意志家庭”。两人共生育了七个孩子。有限的国外旅行以及那仍旧具有国际水准的莱比锡理论物理研讨会使得海森堡能够和世界范围的量子物理学家们保持一定程度的联系和交流。尽管战争的阴云笼罩欧洲,尽管收到名声卓著的美国大学的高薪聘请,海森堡经过一个夏天在巴伐利亚的阿尔卑斯山避难之后依然于1939年8月返回莱比锡。六. 从和平到战争:核物理与核能源 (1935 – 1945年)在三十年代海森堡继续探索一个能够满足相对论的量子场理论。他为此与泡利和其他苏黎世的同行开展了合作研究。海森堡和他的学生在高能宇宙线和介子理论方面也做了大量工作,并和日本著名物理学家汤川秀树就有关问题通过书信进行探讨。他成功地创立了莱比锡理论核物理讲习班, 在国际上久负盛誉。这个讲习班直到第二次世界大战爆发后才被迫停办。1938年12月O.哈恩和F.思特拉斯曼发现了铀裂变。这一发现使得原子能的开发和利用成为可能。1939年9月战争在欧洲爆发,德国军械局把利用铀裂变制造核武器的研究立项,并招海森堡来领导这个项目。海森堡首先在理论上分析了“铀裂变机器”的工作原理,然后和他的莱比锡同事进行了实验研究。1942年春天他们相当肯定地得出结论, 建立以天然铀为燃料和以重水为缓冲剂的核反应堆是现实可行的。到了1942年年中,纳粹军械局将上述铀裂变项目转交民用部门负责。海森堡被任命为凯萨-威海姆物理研究所所长兼柏林大学教授,计划在柏林进行核武器的具体研制和大规模实验。由于战争条件的限制,该计划直到1945年初才在德国南部小城海格劳赫实施并近乎取得成功。尽管海森堡肩负战时秘密使命,他仍被允许数次出访国外,其中包括1941年9月的哥本哈根之行。海森堡是否在哥本哈根将德国的核武器计划泄露给了玻尔已成为一个历史谜团。就海森堡本人而言,他希望访问交流能使自己与丹麦、荷兰、匈牙利以及瑞士的同事和朋友保持学术联系。在欧洲战事即将结束时,一个美国特别分队逮捕了海森堡和其他九位德国原子物理学家。他们被拘留在英国将近一年,接受盟军的秘密审讯。在拘留所里,海森堡等人获悉了日本广岛和长琦被美军原子弹摧毁的消息。第二次世界大战以核武器的研制成功和毁灭性使用后果而告终。七. 重建德国和欧洲的物理事业 (1945 – 1957年)1945年10月,和海森堡一同被拘留在英国的德国物理学家哈恩荣获1944年度的诺贝尔化学奖—该奖项肯定了他率先发现铀裂变的科学意义。在这之前,英国物理学家及政府科学顾问P.布拉克特已经同哈恩,海森堡和冯劳厄讨论了重建德国科学事业的可能性。重建工作是在盟军的严格监督和限制下展开的。由于饱受战火的摧残,德国当时一片废墟。几个前凯撒-威海姆学会所属的研究所迁到英美控制区,由马克思-普朗克学会统一领导。这样海森堡将他的物理研究所从柏林迁至哥廷根,并增加了基本粒子物理和天体物理等新学科。不久以后海森堡与英国、意大利、瑞士和西班牙的同行恢复了密切的学术交流。日益广泛的国际交流慢慢冲淡了盟军原定的对德国科学家从事原子和原子核物理研究的种种限制。在重振西德的科学事业过程中,海森堡和时任马普学会主席的哈恩起了关键作用。1949至1951年间,海森堡担任德意志研究院院长。他同时是西德政府处理核问题的科学顾问。到了五十年代中期,西德也参加了一些开发利用核能的项目。然而海森堡、哈恩、冯魏茨塞克和其他科学家坚决反对政府生产制造任何核武器。他们为此于1957年4月发表了著名的哥廷根限制核武器宣言。1952年6月,由海森堡等人倡议的西欧核子研究中心(CERN)在日内瓦正式创建。这是一个以研究基本粒子和原子核的性质与相互作用为目标的国际物理中心,海森堡是该中心的首任科学政策委员会主席。德国的许多科研机构(如海森堡任所长的哥廷根物理研究所)都参加了西欧核子中心的合作项目。1953年海森堡担任战后重建的A.冯洪堡基金会主席,邀请世界各国的优秀青年学者到西德的大学和研究所从事科学研究和交流。他担当这一职务达二十七年之久,直到去世。如今冯洪堡基金会名声显赫,受它资助过的学者遍布全世界。八. 科学、政治、哲学和艺术 (1955 – 1976年)通过战后的各种活动,海森堡逐步规划和重组了德国的基础科学研究。特别是在马普学会内部和涉及所谓“大规模科学研究”计划方面,海森堡起的作用影响深远。1958年9月海森堡回到慕尼黑,将他原先的研究所扩展为国际著名的马克思-普朗克物理和天体物理研究所,并与L.比尔曼共同担任所长。以此为模式,海森堡又在慕尼黑附近的伽兴市推动成立了马普等离子体研究所和马普大气物理所,在斯坦堡市推动成立了马普生态环境研究所。对于海森堡来说,一个关于物质的最基本组份的理论应该基于对称性、简单性和完整性。这不仅反映了他作为物理学家的深邃洞察力,也是他的世界观的思想基础。他认为对称性、简单性和完整性是概括物质世界的普遍规律的出发点,可以从物理学、化学和生物学延伸到人类意识、社会秩序、宗教行为和艺术活动的各个方面。海森堡晚年致力于建立一个描述基本粒子及其相互作用的统一量子场论。他的研究工作最初得到了泡利的支持,但是后来泡利开始怀疑海森堡的物理想法并最终退出了合作。海森堡的有关研究结果虽然在1959年后陆续发表,却没有被物理学界广泛接受。这种情况是他以往不曾遇到的,也很令他失望。尽管如此,海森堡的所谓非线性旋量场理论包含了许多具有创新意义的物理思想,启发后人最终成功地建立了电磁和弱相互作用的统一量子理论。虽然战后德国分裂成东西两个不同的政治实体,这并没有影响海森堡偶尔从西德造访属于东德的莱比锡。他于1958年在莱比锡物理研究所和1967年在萨克逊科学院的讲演吸引了大批听众,造成了广泛的影响。1976年2月1日,一代物理学宗师海森堡在慕尼黑逝世,享年七十五岁
爱因斯坦、图灵、霍夫、
北京时间9月23日,特斯拉将在年度股东大会之后举办“电池日”活动。 近期特斯拉CEO伊隆·马斯克(Elon Musk)发推预热电池日,这次似乎要宣布电池技术的重大进展。 让我们提前预测一下可能发布什么新技术。 早在去年4月,马斯克就宣布将在2020年投产一种新型电池,这种电池在失效前能够驱动特斯拉 汽车 行驶100万英里(约160万公里),是普通电池寿命的2-3倍。 我们知道电池能量密度一直是电动 汽车 的痛点,相对于燃油 汽车 ,电动 汽车 要额外多安装几百公斤的电池组。目前,单体能量密度最高的锂离子电池是松下为特斯拉生产的镍钴铝(NCA)21700电池,能量密度达到322Wh/kg。相对其他 汽车 厂家有不小的优势。 除了能量密度以外,电池还有其他重要指标,比如说电池的衰减。反复充放电会造成电池衰减,当衰减到一定程度以后性能会迅速下降,电池的使用寿命也就到了。 汽车 锂离子电池的充放电循环一般在1000~2000次左右,大约能够行驶50万公里。这使得有些时候电池的寿命要小于整车的寿命,许多用户因此无法接受电动 汽车 ,另外电动 汽车 的保值率也远低于燃油车。 如果电池寿命能够达到百万英里,那么它电动 汽车 的总拥有成本和使用寿命将能够提高到与燃油车相同的水平上,这将是一个重要的突破。 2019年9月,特斯拉的电池合作伙伴Jeff Dahn团队发表论文介绍了新的电池技术,经过1000次充放电后能保持95%的容量,4000次充放电后,能保持90%的容量。 Dahn团队近两年主要专注于改善锂电池的循环寿命,其中涉及正极材料的制造工艺、电池的制造工艺和新型电解液添加剂。 综合以上信息,百万英里电池很可能是这次电池日将要发布的技术。 2019年2月,特斯拉重金收购了一家叫做Maxwell的电池技术厂家。Maxwell有一个独门绝技:干电极技术。这种技术使得电池的正负极不需要使用溶剂,从而克服高镍电极稳定性差的问题。Maxwell的干电极技术,能够在降低电池成本的同时提高能量密度和续航里程,目前电池能量密度能达到300Wh/kg,未来可能突破500Wh/kg。 此外还有一种可能的新技术,被称为硅纳米线技术。我们注意到特斯拉电池日注册页面放了一张背景图片,很可能就是硅纳米线的显微图。 硅纳米线技术来自于一家叫做Amprius的公司,近期Amprius把公司总部搬到了特斯拉电池工厂旁边,特斯拉电池日就在这里举办。新电池使用硅纳米线技术的可能性非常大。 传统锂离子电池中的负极材料是石墨,如果用硅纳米线取代石墨可以减轻电池重量和体积,提高电池效率,有助于制造能量密度更高、使用寿命更长的电池。 锂离子电池的主要限制因素是可以保留在电池电极中的锂含量。在传统锂离子电池中,阳极由石墨形式的碳制成,但这并不是最佳选择,硅的存储容量约为石墨的10倍。不过使用硅做电极有一个主要缺点,充电时,硅会急剧膨胀,膨胀会导致硅破裂并导致电池失效。一些公司尝试将硅与石墨混合,但是这些电池无法完全发挥硅的优势。 Amprius拥有硅纳米线专利,它的硅纳米线宽度大约是10纳米左右,内部晶核是单晶硅,外部有一层Si〇2进行包覆。 纳米线技术的硅无需粘合剂即可直接连接至基材,阳极厚度可以做到石墨电极的一半,这意味着高导电性和连接性。 纳米线技术中使用单晶硅意味着能够制成世界上能量密度最高的电池。 近期Electrek网站发布了一张图片,据说这将是特斯拉新电池的样子。从图片上看,新电池体积巨大,直径约54毫米,高度约98毫米。如果这个数据属实,那么单个电池的体积将相当于21700电池的9.25倍。 电池的外壳,电极需要占据一定的体积,采用大电池设计能够减少外壳、电极所占的比例,这样就能够在同样的体积下存储更多的能量。同时,一个电池包所需要的电池数量将减少一个数量级,这将大大简化生产线和工艺流程,能够大幅降低生产成本。 仅仅增加电池的体积,就能得到显著的提高,那么以前为什么不做呢。其实特斯拉已经做过尝试了,从最初的18650电池升级成了21700电池,电池体积提高了46%。小幅度提升一个原因就是散热,这次一下子将电池体积提高了接近10倍,显然散热问题得到了很好的解决。 这次特斯拉很可能应用了电极无突起技术。传统电池的电芯是一个多层卷,包含了外隔离层、阴极、内隔离层、阳极,电极需要焊接一个小的金属箔突起,金属箔再焊接到外部电极上。 这样的工艺有一些致命的弱点。焊接占用了生产中的大量时间,导致电池成本上升。从整卷的电极到一个小小的金属箔,会导致电池内阻增大,从而增加损耗和发热。特斯拉电池虽然能量密度高,但是电池发热导致性能下降甚至是事故一直是特斯拉的痛点。 无突起电极技术利用电极的整条边作为连接,能够将电池内阻降低到原来的1/5至1/20,解决了发热问题,为制造更大型的电池铺平了道路。 显然,特斯拉正在通过整合一系列的新技术来大大提高电池的性能,这次电池日提出百万英里电池、超过320Wh/kg甚至是350Wh/kg的能量密度以及更大型的电池都是有可能的。一些分析认为特斯拉有能力将电池能量密度提升30%,生产成本降低50%。考虑到特斯拉目前使用的电池就已经领先对手不少了,这次的新突破将使特斯拉更具优势,很可能把竞争对手甩在身后,燃油 汽车 的默认也许比预想来的更早一些。 #科学燃计划#
马斯克作为一位企业家成功发射了目前世界上运载能力最大的火箭“猎鹰”。比中国最先进的长征五号运载能力要高出两倍以上,比美国的德尔塔火箭的运载能力也要高,实现了用个人企业能力超越世界大国的壮举。2002年6月,马斯克成立了第三家公司——太空探索技术公司SpaceX并兼任CEO和CTO。2004年,马斯克个人投资Tesla并担任该公司的董事长。2016年11月17日特斯拉电动车收购美国太阳能发电系统供应商SolarCity,将使特斯拉转型成为全球唯一垂直整合的能源公司,向客户提供端到端的清洁能源产品。马斯克是天才创业冒险家。据说《钢铁侠》是以他的故事为蓝本。扮演电影中的发明家斯塔克的唐尼向导演建议,为演好角色最好能和马斯克聊聊。2013年11月21日,美国著名财经杂志《财富》揭晓了“2013年度商业人物”,特斯拉汽车CEO马斯克荣登榜首。
金融行业的创新,创立“贝宝”,移动支付的带头人。打破传统汽车行业的垄断,纯电力汽车品牌“特斯拉”成功上市。私人企业发展航空业,成功发射了“猎鹰九号火箭”。
特斯拉是很多人比较熟悉的电动汽车品牌,那么你知道它的老板是谁吗?他有什么样的经历呢?下面我就给大家具体的说说,让你知道他都开了哪些公司?
特斯拉的老板是谁
埃隆·马斯克(Elon Musk),1971年6月28日出生于南非的行政首都比勒陀利亚,拥有加拿大和美国双重国籍,企业家、工程师、慈善家,现担任太空探索技术公司(SpaceX)CEO兼CTO、特斯拉公司CEO兼产品架构师、太阳城公司(SolarCity)董事会主席。
这位来自硅谷的汽车门外汉试图以自己的方式引领电动车的未来。
2013年11月21日,美国着名财经杂志《财富》揭晓了“2013年度商业人物”,特斯拉汽车CEO马斯克荣登榜首。
2016年12月14日,荣获“2016年最具影响力CEO”荣誉。
2017年12月4日,位列《彭博商业周刊》2017年度全球50大最具影响力人物榜单第43位。
特斯拉简介:
特斯拉(Tesla),是一家美国电动车及能源公司,产销电动车、太阳能板、及储能设备。总部位于美国加利福尼亚州硅谷的帕罗奥多(Palo Alto),2003年最早由马丁·艾伯哈德(Martin Eberhard)和马克·塔彭宁(Marc Tarpenning)共同创立,2004年埃隆·马斯克(Elon Musk)进入公司并领导了A轮融资。创始人将公司命名为“特斯拉汽车(Tesla Motors)”,以纪念物理学家尼古拉·特斯拉(Nikola Tesla)。
太空探索技术公司简介:
太空探索技术公司,即美国太空探索技术公司(SpaceX),是一家由PayPal早期投资人埃隆·马斯克(Elon Musk)2002年6月建立的美国太空运输公司。
它开发了可部分重复使用的猎鹰1号和猎鹰9号运载火箭。SpaceX同时开发Dragon系列的航天器以通过猎鹰9号发射到轨道。
SpaceX主要设计、测试和制造内部的部件,如Merlin、Kestrel和Draco火箭发动机。
以下就是我的回答
2014年马斯克开放了特斯拉的所有专利,所有人都怀疑他......一直以来特斯拉把所有的最新成果和技术细节都毫无保留的展示出来,它们难道不怕被抄袭吗?马斯克认为真正决定一个企业会不会被超越,是他创新的速度究竟有多快,而不是竞争者设置壁垒,所以他开放了所有专利。肯定有人会问,既然真心开场专利,为啥还要申请,直接不要申请专利不就好了吗?他们不申请专利不代表别人不会利用他们的技术去申请专利来搞他们,他们申请专利的动作更多的是防御性质的。对老马来说,如果有人利用了他的技术加速了世界向持续能源的转变,造福了人类,哪怕用特斯拉的技术超越了特斯拉,他认为这是一件好事,这就是用正确的方法做正确的事情,这就是格局。
提起新能源汽车,目前的市场主力军要属特斯拉了。而特斯拉之所以能够在市场获得如此大的优势,还要得益于其专注于电动汽车的研发,以及早先在市场进行布局的优势。比如新能源车型最为看重的自动驾驶技术,特斯拉也是发展的最为迅速的一个品牌,而现在的造车新势力发展能够如此迅速,也离不开特斯拉开放的专利技术,而且是全部的专利技术,这让不少人困惑,马斯克这是为了什么呢?自从2014年开始,特斯拉就开始开放所有的专利技术,到现在为止,已经有8年的时间,那么特斯拉就能是为了什么呢?它难道不怕被超越吗?我们一起来看看这其中的奥秘。特斯拉在全球拥有3304项专利,其中有986个独特的专利,而且在3304项专利中有2147项专利是有效的,而这些全部都是开放。比如三星、宝马和Ethicon Llc等公司都引用了特斯拉的专利。总的来看,特斯拉专利组合被引用最多的就是能源生成、存储和电池技术,其中LG、福特汽车都是它的受益者,而且LG是申请最多的。不过,特斯拉可不是无条件开放专利,也是带有一些苛刻条件的。[比如,如果你接受了特斯拉免费的专利,那就不能用任何专利或者知识产权起诉特斯拉,不但不能用专利起诉,更不能用其他知识产权起诉,即便特斯拉侵犯了你的商标、商业机密,也不可以起诉。对此你怎么看?
特斯拉为什么敢于开放?所有的专利,简单的说,最终的解释权在官方
很简单,开放所有专利,面临所以抄习,压力空前大,创新力度火箭势暴涨,人才培养递增势投入,对全人类也说是好事。
我也不知道是谁说的,我非常赞同一句话,真正的竞争优势,是足够快的创新速度,而不是遏制别人进步的程度。
其实说到特斯拉开放所有专利是2014年开始的事,当时马斯克在特斯拉官网发表了一篇文章,名字翻译成中文叫《我们所有的专利属于你》,里面就提到特斯拉将开放所有专利,只要是做好事,特斯拉不会起诉。
对于这件事,特斯拉方面也做过解释,开放专利是希望更多人参与研发电动车技术,这肯定是好事啊。
不否认这一层意图,但更本质的应该是特斯拉在以小博大。
大家听过一句话吗?“三流企业做产品、二流企业做品牌、一流企业做标准”,仔细想象,很有道理。
所谓“标准”,它是一个产业要遵守的规则,具有强制性。比如,国家标准,食用油黄曲霉素要≤20ppb,这是要强制遵循的,在中国市场上卖食用油所含的黄曲霉素一定要符合≤20ppb的标准,否则你就别想卖。还有无数的标准,大家有兴趣的可以去搜一下。
我们想一下,如果一个企业掌握了一个行业标准必要的专利,在这个市场上只要卖一个产品,就要向掌握标准的这家企业缴纳专利费,这不就是躺赚嘛。
可是标准怎么来呢?从过往行业经验来看,标准都是来自主流技术,而主流技术需要有个必要条件,那就是用的人多,这个技术就可以变成主流技术。
特斯拉开放所有专利的意图是不是很明显了,如今电动汽车市场还处于发展阶段,马斯克宣布开放专利,鼓励大家都来使用特斯拉技术,那么特斯拉可以借力把产业做大,利益将唾手可得。而且,刚才说了,技术用得多了,特斯拉的技术就有可能成为主流技术,当要制定电动汽车技术标准的时候,特斯拉就占据主导地位了。
网上也有人分享过一个观点,就是你用我的,我不告你,以后我用你,你也不能告我,大家看下图分析可以细品。
大家知道人家现在已经开放多少专利了吗?已经超过300项了,包括电池、充电等关键技术。
内部高管说过,从2014年至今,特斯拉开放的专利已经超过300项了,未来会继续开放专利技术。
根据专利检索网站Patent Cloud显示,特斯拉目前共拥有接近1000笔相关专利,50多笔外观专利,900多笔发明专利。其中的发明专利大部分是电池热管理、电机、充电三类。
在其10项最佳专利中,US7923144B2是最受欢迎(被引用575次)的专利,被三星、宝马等公司引用。
被引用次数最多的10项专利名单
总之,特斯拉公开所有专利肯定不是出于公益目的,如果为了公益,为什么还要先申请再公开呢?完全可以直接公开啊,个中道理你品,你细品。当然了,我相信推动全球绿色汽车产业的发展也是特斯拉想做的。
特斯拉成本的降低得益于上海超级工厂的建成,逐步完善了整条产业链,零部件成本降低,五年内,特斯拉的本土化率将达到100%。
特斯拉自从2013年开始进入到中国,在那个主打燃油车的时代,大家似乎对这个未曾听说的电动汽车不太感冒,那一年特斯拉的销量只有2650辆。随着时间的推移,年轻人开始掌握自己的财政大全,对于这样有着时尚外观,同时概念超前的新能源汽车逐渐从接受到喜爱,到2020年,特斯拉的销量已经达到了49万辆,增长了185倍。
在飞速增长的过程中,特斯拉一直有个非常头疼的问题,就是在销量飞速增长的同时,其产能却没有跟上,消费者购买了特斯拉后要等待相当长的一段时间才能够拿到新车。根据马斯克在2018的采访中所说,为了实现全自动化的生产和组装,特斯拉美国工厂设计了一条非常复杂的传送带系统,但后来因为运行的不好全拆了,改用大量的人工代替能够7*24小时工作的机器人。通过这里其实已经能够说明特斯拉产量的一些问题,设计的复杂性加上过于追求自动化的生产,整个产线的效率低下。
同时人工的装配也带来另外的问题:要完成积压的订单不得不赶工生产,没有了自动化机器对工人的需求自然更多。而美国严苛的福利保障规定决定了这些人工将会产生大量的人工成本,为了控制成本,或多或少会间接有一些质量问题的产生,导致某段时间内特斯拉在全球大面积出现电池自燃、刹车失灵等严重质量问题,舆论对特斯拉十分不利。
为了改善产能同时控制成本,特斯拉瞄准了人工成本相对较低的中国,与上海政府一拍即合,在2018年决定在中国建立产线,而上海也给予了特斯拉大量的支持,一年的时间就建成了工厂,2019年投入使用,年产能达到45万辆,基本解决了现有的产能不足问题。
但近年来,国产新能源车奋起直追,从低档车到高档车的全体新能源化,特斯拉的竞争对手越来越多,为了在价格上有一定优势或者是不让价格成为自己的劣势,特斯拉需要进一步控制成本,那么现在人工成本难以再降的情况下自然就是零部件的本土化。
而中国制造汽车零部件本身也是有深厚的基础的,作为承接世界制造业代工的第一大国,为知名车企生产零部件已经有很完善的供应链了。而之前只是燃油车的占比更多,随着国产新能源车的规模化,这些供应链自然而然的会进行产线升级,那么特斯拉零部件本土化自然也顺理成章,达到9成的占比也是水到渠成的事了
特斯拉成本降至3.8万元每辆,这是美元折合成人民币的话差不多是25万的这个价格,应该说这个成本卖出去的价格,它的利润率起码得保证在10%以上,所以说就是30万左右,这不是所有车子都这样,是某一个系列的。
他们成本能控制到这样一个程度,其实从我们人民币的角度来说挺高的,但是从他们那个角度来说并不高,因为他们很简单,赚的是美元花的也是美元,所以美元的购买力即使比较强,但在他们国内这个车子也没有那么贵,所以变换成人民币到我们这儿就显得很贵了,因为人家的工资水平比我们要高啊,我们一个月5000块钱在人那块3000块钱,但人家是美元,所以购买力比我们要强的,从他们那个角度来说,成本控制的已经可以了。
因为现在特斯拉已经成规模了,那是5年前特斯拉在市场的占有率还是资本规模都不够,但现在已经够了一个产品,它具备了足够大的规模,它就有了规模效益,原来成本5万一辆,现在有规模效益了,生产的量多了,智能化技术,自动化技术越来越好了,就可以把成本控制到3万8,未来再过半年,一年他可能就能控制到35,000,甚至是3万,这都有可能,随着技术的进步,这一切都是能做到的。
特斯拉在智能化汽车制造这方面,可以说已经是在这个行业里面占据龙头老大的位置了,国内也有一些新能源汽车制造厂商,但是你从这个产品规模以及技术专利拥有度来说,跟特斯拉比确实还有差距,瘦子骆驼比马大,破船还有三金钉,所以哪怕现在特斯拉面临着自动驾驶刹车失灵等各方面的问题,在市场占有度上,在国内已经有了很大的下降了,差不多下降了20%,但是在全球市场的占领上仍然是相当高的。
说明了特斯拉已经在中国建立数据中心,以实现数据存储本地化,并将陆续增加更多本地数据中心 。