首页

> 学术发表知识库

首页 学术发表知识库 问题

交流变换电路设计毕业论文

发布时间:

交流变换电路设计毕业论文

plc及其有关设备,都应按照易于与工业控制形成一个整体,易于扩充其功能的原则来设计。下面是我为大家精心推荐的plc毕业设计论文,希望能够对您有所帮助。

浅谈PLC的应用

【摘 要】可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计的。可编程控制器采用可编程序的存储器,用来在其内部执行逻辑运算、顺序控制、定时、计数和算术运算等操作指令,并通过数字式、模拟式的输入或输出,控制各类型的机械或生产过程。可编程控制器在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。

【关键词】可编程控制器;模拟量

可编程控制器是可编程序控制器(Programmable Controller)的简称,通常缩写为PC。但它不是个人计算机的PC(Personal Computer)。也不仅是(但包括)早期的可编程逻辑控制器PLC(Programmable Logic Controller)、可编程顺序控制器PSC(Programmable Sequenec Controller)及可编程矩阵控制器PMC(Programmable Matrix Controller)。

可编程控制器及其有关设备,都应按照易于与工业控制形成一个整体,易于扩充其功能的原则来设计。目前 ,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、 交通 运输、环保及文化娱乐等各个行业,使用情况主要分为如下几类:

1.开关量逻辑控制

取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。

2.工业过程控制

在工业生产过程当中,存在一些如温度、压力、流量、液位和速度等连续变化的量(即模拟量),PLC采用相应的A/D和D/A转换模块及各种各样的控制算法程序来处理模拟量,完成闭环控制。PID调节是一般闭环控制系统中用得较多的一种调节 方法 。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。

3.运动控制

可编程控制器可以用于圆周运动或直线运动的控制。一般使用专用的运动控制模块,如可驱动步进电机或伺服电机的单轴或多轴位置控制模块,广泛用于各种机械、机床、机器人、电梯等场合。

4.数据处理

可编程控制器具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。数据处理一般用于如造纸、冶金、食品工业中的一些大型控制系统。

5.通信及联网

可编程控制器通信含可编程控制器间的通信及可编程控制器与其它智能设备间的通信。随着工厂自动化网络的发展,现在的PLC都具有通信接口,通信非常方便。

可编程控制器是一种用于工业生产自动化控制的设备,一般不需要采取什么措施,就可以直接在工业环境中使用。然而,尽管有如上所述的可靠性较高,抗干扰能力较强,但当生产环境过于恶劣,电磁干扰特别强烈,或安装使用不当,就可能造成程序错误或运算错误,从而产生误输入并引起误输出,这将会造成设备的失控和误动作,从而不能保证可编程控制器的正常运行,要提高可编程控制器控制系统可靠性,一方面要求可编程控制器生产厂家提高设备的抗干扰能力;另一方面,要求设计、安装和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。

当今时代是一个自动化时代,交通灯控制等很多行业的设备都与计算机密切相关。因此,一个好的交通灯控制系统,将给道路拥挤、违章控制等方面给予技术革新。随着大规模集成电路及计算机技术的迅速发展,以及人工智能在控制技术方面的广泛运用,智能设备有了很大的发展,是现代科技发展的主流方向。本文介绍了一个智能交通灯系统的设计。该智能交通灯控制系统可以实现的功能有:对某市区的四个主要交通路口进行监控;各路口有固定的工作周期,并且在道路拥挤时中控中心能改变其周期;对路口违章的机动车能够即时拍照,并提取车牌号。在世界范围内,一个以微电子技术,计算机和通信技术为先导的,以信息技术和信息产业为中心的信息革命方兴未艾。而计算机技术怎样与实际应用更有效的结合并有效的发挥其作用是科学界最热门的话题,也是当今计算机应用中空前活跃的领域。本文主要从单片机的应用上来实现十字路口交通灯智能化的管理,用以控制过往车辆的正常运作。

随着城市和经济的发展,交通信号灯发挥的作用越来越大,正因为有了交通信号灯,才使车流、人流有了规范,同时,减少了交通事故发生的概率。然而,交通信号灯不合理使用或设置,也会影响交通的顺畅。

交通信号灯由红灯、绿灯、黄灯组成。红灯表示禁止通行,绿灯表示准许通行,黄灯表示警示。交通信号灯分为机动车信号灯、非机动车信号灯、人行横道信号灯、车道信号灯、方向指示信号灯、闪光警告信号灯、道路与铁路平面交叉道口信号灯。交通信号灯用于道路平面交叉路口,通过对车辆、行人发出行进或停止的指令,使各同时到达的人、车交通流尽可能减少相互干扰,从而提高路口的通行能力,保障路口畅通和安全。

十字路口交通信号灯现场示意图如图1所示,南北和东西每个方向各有红、绿、黄三种信号灯,为确保交通安全,要求如下。

1)采用PLC构成十字路口的南北向和东西向交通信号灯的电气控制。系统上电后,交通指挥信号控制系统由由一个3位转换开关SA1控制。SA1手柄指向左45°时,接点SA1-1接通,交通指挥系统开始按常规正常控制功能工作,按照如图2所示工作时序周而复始,循环往复工作。SA1手柄指向中间0°时,接点SA1-2接通,交通指挥系统南北向绿灯常亮,东西向红灯常亮,。SA1手柄指向右45°时,接点SA1-3接通,交通指挥系统东西向绿灯常亮,南北向红灯常亮。

2)正常控制时

①当东西方向允许通行(绿灯)时,南北方向应禁止通行(红灯);同样,当南北方向允许通行(绿灯)时,东西方向应禁止通行(红灯)。②在绿灯信号要切换为红灯信号之前,为提醒司机提前减速并刹车,应有明显的提示信号:绿灯闪烁同时黄灯亮。③信号灯控制系统启动后应能自动循环动作。

信号灯动作的时序图如图2所示,它是按信号灯置1与置0两种状态绘制的,置1表示信号灯点亮。

3)输入/输出信号分配

随着微处理器、网络通信、人―机界面技术的迅速发展,工业自动化技术日新月异,各种产品竞争激烈,新产品不断涌现。PLC也由最初的只能处理开关量而发展到可以处理模拟量和数据,加之与DCS、pid调节器、工业pc等技术相结合,使之不再是一种简单的控制设备,而且必将随着自动控制技术的不断发展而发展生存下去。可编程控制器在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。

PLC工程应用分析

摘要:文章针对PLC工程应用开发过程中的使用特点,研究了PLC硬件组成、软件结构,分析了PLC控制使用的工作过程,最后探讨了PLC编程语言语句,对PLC在控制系统的应用有一定指导意义。

关键词:PLC工程;硬件系统;软件系统;编程语言语句;控制系统 文献标识码:A

中图分类号:TP27 文章编号:1009-2374(2015)34-0033-03 DOI:10.13535/j.cnki.11-4406/n.2015.34.017

可编程序控制器(Programmable Logical Controller,PLC)是一种新型的工业自动化装置,PLC的核心是微处理器,由自动化、通信、计算机技术三者融合而成。PLC的特征是具有简单灵活的可编程性、能够抵抗恶劣工作环境的高抗压能力以及适应性能强。PLC凭借体积小、价格便宜、重量轻等优势,广泛应用于工业控制上,在热电厂自动化工程的应用也日益广泛。

1 PLC的结构研究

不同型号可编程逻辑控制器的结构及组成基本原理相同,研究可编程控制原理应该从硬件结构与软件开发入手。

1.1 PLC的硬件组成部分

PLC的硬件系统组成部分包括CPU板、输入和输出电路、存储器扩展接口等。

1.1.1 CPU板:PLC的核心系统就是CPU板,CPU板中包含中央处理器、只读存储器、随机存储器、并行接口及串行接口等等组成部件。CPU板在PLC的作用是运算和控制程序,对不同的逻辑运算、算术运算以及系统整体的部件起到管理、控制的作用。随机存储器和只读存储器配备在PLC程序内部,具有存储各种系统程序的作用。并行接口和串行接口实现中央处理器与每一个接口电路之间的信息交换。

1.1.2 输入/输出电路:输入电路包括直流输入和交流输入两种电路。输入电路能够对现场输入设备所提示的控制信号程序进行接收,接收后光电耦合器可将控制信号隔离进行程序编码,从而转换为PLC程序中的标准使用的信号格式,再经过CPU实现信号读入,从而传输至存储器内。

输出电路在PLC中,主要作用是实现输出信号,在PLC系统中的控制信号输出时,输出电路负责将控制信号传送至其他外部输出设备中,实现输出电路的工作。输出电路的形式分为三种:(1)继电器形式的输出电路,该形式的输出电路对继电器的线圈进行控制,使继电器的触点发生通断,从而达到电气隔离的目的;(2)晶体管输出型电路,该电路运用光电耦合器达到电路开关晶体管出现通断的目的,以此来对输出设备进行控制;(3)可控硅输出型,以可控硅为媒介对输出设备进行控制,当触发可控硅,即可出现电路通断。

1.1.3 存储器扩展接口:是只读存储器与随机存储器所运用的扩展卡盒。扩展卡盒常用的类型有三种:(1)COMS ROM,COMS可由主板上的锂电池提供备用电量,该卡盒的优点在于停电或断电故障下确保数据及程序不会丢失;(2)可擦除可编程ROM卡盒,该卡盒在写入时需要运用专门的编程器,才能将调试好的ROM内的资料进行写入,在擦写时,透过紫外线照射可见内部芯片,从而擦除其内的数据,且在写入时,需具备一定的编程电压,可以重复进行擦除和编程;(3)EEPROM卡盒,电可擦可编程只读存储器,是一种断电情况下也不会出现数据丢失,实施编程与擦除操作时运用专用编程器即可实现。

1.1.4 输入/输出扩展接口:CPU与输入、输出扩展接口之间通过总线连接法进行连接,它对所有的扩展单元均可连接,从而让信号点数规模具备更强的灵活性。输入/输出扩展接口也可与模拟量、高速脉冲等其他适配器进行连接,从而扩展、增强PLC的作用。

1.1.5 编程器及其接口:编程器在PLC中的作用是对数据和信息的输入进行调试、编辑以及检测输入数据的安全性。正常运行状态下的PLC不需要编程器进行编程数据,所以编程器作为PLC部件中独立设计的存在。PLC上通常设有一个编程器专用接口,该接口适应于连接不同类型的编程器,以便完成对PLC程序的写入及调试。

1.2 对可编程控制的研究分析

一个控制系统如要实现自身的控制功能,必须借助相应的控制程序才能得以实现。控制程序分为以下两种类型:

1.2.1 固定布线程序控制。在旧模式下的继电器中,如果要对各种程序进行控制,继电器的电路连接需为布线形式,输入设备的作用是将控制信号送入控制系统,如按钮开关、传感器等。输出设备的作用是将被控制者的动作进行控制。该设备对输出的控制信号的控制方式是由连线来完成的。接线完成后,控制程序也随之确定,如需要重新对控制程序改动时,需要将原先控制程序的整个连线重新布线连接,制定新的连接方式。在复杂的控制系统中,该类型的程序控制难度较大,编程可行性不高。

1.2.2 可编程序控制。可编程序控制对系统进行控制时,只需运用专用编程器,通过相应的程序语言实现编程,将控制程序下装至存储器中,最后借助可编程序控制器对编程实施各项操作。如要改动可编程系统,只需将程序存储器中的程序语言进行相应改动,通过编程器即可完成,无需改动电路连接重新布线。通俗地说就是使用特定的软件程序语言编写程序代码实现被控对象的各种动作控制。

2 PLC工程的工作原理

PLC的核心电子部件是微处理器,也可视为由继电器、定时器、状态器等的综合组成部件。PLC中,输入继电器通过外部开关进行驱动,输出继电器则安装有许多触点。PLC开展工作,其实就是执行程序。PLC在工作状态下,CPU以分时操作为工作原理,在一个周期内执行相应的操作,即CPU的程序扫描。CPU在对程序进行运算处理时速度很快,因此从宏观角度看其数据结果可发现CPU的程序运算似乎是在极短时间内完成。PLC对程序的执行过程分为以下三个部分:

2.1 输入处理 PLC在执行程序过程中,运用重复扫描来完成。执行前,CPU将所有的输入信号以地址中出现的编码顺序为标准编程至输入存储器中,随后开始开展程序执行。在CPU执行程序时,即使输入状态发生了变化,但输入寄存器中的数据内容不会随着输入状态的变化而发生变化,直至扫描周期结束CPU才对输入状态进行重新读取。

2.2 程序执行

PLC在执行程序时,依据顺序对用户程序进行扫描。完成一条程序的执行后,所需信息将经过寄存器由程序读出,并参与程序运算,接着再将程序执行的数据结果编程到相关的寄存器中。

2.3 输出处理

当PLC将所有指令全部执行结束后,PLC会把所有程序结果输入到输出锁存寄存器中,最终传送至程序执行终端。

3 PLC的软件系统组成部分

一个完整的PLC控制系统由硬件系统和软件组成,两者结合构成复杂的控制功能。在PLC软件系统中,分为系统程序和用户程序。

系统程序在PLC中的作用是管理、服务和翻译用户程序,可将其视为一个软件平台。系统程序的质量与PLC的性能具有直接联系,系统程序质量好,则PLC的性能强,反之性能弱。系统软件是固定存在于程序中的,无法自行修改或存取。用户程序即应用程序,是用户根据控制系统的要求运用程序语言进行编制的应用,其存放于系统程序指定的存储位置。

4 PLC的编程语言

运用面向顺序和面向过程对程序进行控制的“自然语言”,即为PLC的编程语言,PLC的编程语言有很多,如梯形图、逻辑方程式、语名表或布尔代数式等语言种类。下面对常用的PLC编程语言进行介绍。

PLC的基本指令(如三菱FX2系列为例)如下所示:

4.1 逻辑联取及输出(LD/LDI/OUT)指令

LD/LDI指令用于取常开触点/常闭触点于母线相连。另外,在分支开始处,这些指令与后述的ANB(块与)指令组合使用;OUT指令用于驱动输出继电器,辅助继电器、状态器、定时器及计数器的线圈,但不能用来驱动输入继电器的线圈。对于定时器、计数器的线圈,在输出指令(OUT)后必须设定适当的常数。

4.2 触点串联指令

AND(与),ANI(非)指令,AND为常开触点串联连接,ANI即常闭触点串联连接,AND与ANI均可用于对触电进行串联连接,同时运算于逻辑。对串联触点并不限制其个数,是可以重复使用的程序指令。

4.3 触点并联指令

OR(或),ORI(或非)指令,OR常开触点并联连接,ORI常闭触点并联连接,两者可对触点进行并联连接或使用于逻辑运算。对并联触点的设置并不限制其个数,是可以重复使用的程序指令。当两个以上触点的串联电路块进行并联连接时,应使用后述的ORB(块或)指令。

4.4 串联电路块的并联指令(ORB)块

串联电路块是指将两个以上的触点电路进行串联连接,一般情况下,一个串联电路块就是一条线路分支。在对串联电路块实施并联连接的形式时,各分支的始端用LD或LDI指令,在分支的终点用ORB指令。在多重并联电路中,若每个串联电路块的终点分别使用ORB指令,则并联的串联电路块的数量不受限制。ORB指令与后述的ANB指令一样都是无操作元件号的独立指令。

4.5 并联电路块的串联指令

ANB(块与)并联电路块的串联连接两个以上的触点并联接的电路称为并联电路块,通常每一个并联电路块称为一条分支。在进行并联电路块的串联连接时,各分支的始端用LD或LDI指令,并联电路块结束后,使用ANB指令,实现与前面的电路串联。

ANB指令与前述的ORB指令一样,都是无操作元件号的独立指令。若多个并联电路块依次与前一电路串联,则ANB指令的使用数量不受限制。

4.6 主控触点指令

MC(主控),MCR(主控复位),MC主控电路块起点,MCR主控电路块终点。

在编程过程中,经常会遇到几个逻辑行同时受一个触点或一组触点的控制,受到一个公共条件的控制,叫做主控,这时就可以使用MC/MCR指令进行编辑。当主控条件满足时,执行MC和MCR之间的指令。执行MC指令后,使母线移至MC主控触点之后,执行MCR指令后,母线又返回到原来的位置上。MC和MCR指令必须配对使用。

4.7 置位和复位指令

SET(置位),RST(复位),SET令元件自保持ON,令元件自保持OFF,清除数据寄存器。当执行SET指令时,将对应的操作元件(Y,M,S)置位,并具有自保持功能。当执行RST指令时,将对应的操作元件(Y,M,S)置位,并具有自保功能。使用RST指令还可以数据寄存器D、变址寄存器V和Z清零。

4.8 END(程序结束)指令

END输入输出处理程序回到第“0”步。

5 结语

在使用PLC系统设计时,要求输入点数很多。尤其对于需要进行多个位置、多点控制的热电厂系统,对输入点数要求较为突出。所以,能够有效地减少系统的输入点,有效地降低PLC的成本。在进行PLC控制系统的设计时,要求运用以下的技巧和要点:(1)在设计时,根据软件的控制功能不同进行相应设计,如果是梯形图,则设计方式应采用模块化形式;(2)在使用循环扫描时,应保持指令与指令、模块与模块之间的时序关系不变,使程序在设计功能基础上正常运行;(3)对于自动关门、换速、自动切换时间等需要进行调节的参数项目,使其与程序分离。因此,在需要进行调整参数时,无需将程序进行改动,方便快捷、便于调试,同时能够使软件的可靠性有效提高;(4)对于串联开关、联动开关,比如层门之间的连锁开关、轿顶和轿厢之间,可将其设置为一个输入点;(5)对于具备相同作用的开关信号,如安全触板的开关以及大门开关,可将其采用并联的形式输入PLC内;(6)采用组合式按钮输入法,应用该方法时应使用两个输入点数,把按钮键进行组合,再由程序自动对组合信号进行识别和复原;(7)进行编码的输入:运用二进制编码,在按钮开关中输入识别信号,再自动转接到PLC程序进行复原、识别,可以非常有效地减少PLC输入点数。

参考文献

[1] 朱善君,等.可编程序控制系统原理、应用、维护[M].北京:清华大学出版社,1992.

[2] 王兆义.可编成控制器教程[M].北京:机械工业出版社,2000.

作者简介:王琼(1980-),男,浙江嵊州人,上虞杭协热电有限公司热控工程师,研究方向:电厂自动化控制系统管理与维护、硬件的日常维护及软件编程。

电梯控制系统设计基于西门子PLC的电梯控制系统

电子式多功能电能表的设计与实现 本文阐述了电子式多功能电能表的设计方法、硬件设计的技术关键和软件设计流程。并以NEC的uPD78F0338单片机为例,实现了一款具有四种费率、六条负荷曲线和两套费率结构的三相四线电子式多功能电能表 电子式多功能电能表主要针对国内市场三相用电的工业用户。随着电力行业改革深入,工业三相用电对多功能电能表的需求大量增加。目前国内多功能表种类少、价格较高、功能不完善,往往仅是针对某些地区的特定要求开发,缺乏通用性,某些产品未能完全达到国标的要求。本文介绍的电子式多功能电能表正是为了适应这种市场需求而设计的。 这是一款智能型高科技电能计量产品,该表可以同时计量正/反向有功电能、正/反向无功电能、四象限无功电能,还具有多费率控制,负荷曲线记录,各相失压、过压、频率超限记录,数据LCD显示等多种功能。主站可以通过RS-485总线或手持红外抄表器对该电表进行查表、设表、抄表等操作。 软件代码全部采用C/C++语言编写,编码效率高,可维护性好,便于实现模块化设计,可根据用户的需求方便地对功能模块进行裁剪。而且代码经过优化,其生成的目标代码大小和执行效率已与汇编代码相差无几。该产品的技术指标全面符合GB/T 17215-1998《1级和2级静止式交流有功电度表》、DL/T614-1997《多功能电能表》和DL/T645—1997《多功能电能表通信规约》的要求。 多功能电能表的总体结构和硬件设计 多功能表总体结构 电子式多功能电能表硬件的核心MCU主控制器,它负责按键输入扫描、工作状态检测,计量数据的读入、计算和存储、电表参数的现场配置以及与外界的通信控制等。其主要功能单元包括MCU主控制器单元、电量计量模块、红外和RS—485通信模块、校表模块、EEPROM存储阵列等;其他辅助模块主要有:时钟日历电路、工作异常报警电路、按键输入电路、复位和看门狗电路、开关电源模块和后备电池电路、大屏幕液晶显示模块和LED显示模块。多功能表总体结构框图如图1所示。 高性能主控制器单元 主控制器采用NEC公司8位单片机中的高档产品uPD78P0338。该款单片机为120脚QFP封装,单片集成有60KBFlash、一个异步通信串行口、40x4段LCD驱动器、高达10MHz的总线时钟和10路10位精度的ADC,并可通过简单的接口进行在系统编程,极大地方便在线调试和软件升级。并且支持高级语言,较好地满足了多功能表任务繁多、数据量庞大、算法较复杂的功能要求。 串口复用通信单元 通信电路模块主要包括TSOPl838红外接收头、红外发射二极管、载波电路、MAX487专用485收发电路、驱动/开关二极管和其他元件。 本电能表为便于用户抄表,设计有红外本地抄表和RS-485集中抄表两种串行抄表方式,因为uPD78F0338仅有一个串口,故通信电路设计时采用串口复用技术。由9012、9014和若干电阻等器件组成互补开关,由MCU的一个I/O口来控制红外和RS-485通信方式的切换,如图2所示。 高精度电量计量模块 计量模块由高精度专用电能计量芯片SA9904,电流互感器和其他外围电路元件组成。SA9904是Sames公司生产的一款三相双向功率/电能计量芯片,可以计量有功/无功功率、电压、频率、相序异常等,可以单独计量每一相的用电信息,符合IEC521/1036标准,可达到1级交流电能表的精度要求,各数据寄存器具有24位精度,可通过三线SPI接口与CPU交换数据。从而可以较好地适应多功能表需要计量多种电量数据的要求。SA9904引脚及其外围电路图如图3所示。 其中,CLK、DO、DI构成与MCU控制器的接口,用于传输控制命令和测得的电量数据,IIps、IIPt、IIPr用来对电流取样,IVPl、IVP2、IVP3用来对电压取样。 时钟日历模块 时钟电路采用EPSON生产的RTC-4553实时时钟芯片。内部集成了32.768kHz的石英晶体振荡器,简化外围电路,并可以根据需要进行自由设置以得到较高的频率;同时集成有时钟和日历计数器,可选择24或12小时显示模式,时钟可通过软件方式进行间隔30秒的调整,并提供0.1Hz或1024Hz的定时脉冲输出,以便于在电能表的外部对时钟精度进行定期检查。RTC-4553引脚及其外围电路图如图4所示。其中,SCK、Sin、Sout与主处理器接口,用于发送控制指令或者传输日期时间数据,本系统日历时钟模块采用电池作后备电源,以确保在停电状态下,日期时间的准确无误。 多功能电能表的软件设计 数据结构设计 多功能电能表涉及的数据类型种类繁多。按字节分包括单字节、双字节、三字节、四字节和六字节等,按表征的意义分有时间、时刻、电压、电流、有功功率、无功功率、有功电能、无功电能、次数、功率因数、门限、状态字、系数、表号等。复杂的数据类型对数据结构的设计提出了较高的要求,本实现方案通过采用多种数据寻址方式和多种类型存储器较好地解决了这一问题。 数据结构设计要点 系统的数据存放方式有:内部ROM、RAM和外挂EEPROM。 内部ROM用来存放大量的常数表格,RAM用于存放临时变量和堆栈,本方案需要2.5KB左右的RAM,串行EEPROM则存储各种用户电量数据和设表参数,通过12C总线与CPU交换数据,电能表按设计需求的最大要求大约需要250KB的EEPROM,本方案采用8片256位EEPROM通过级联来实现。 数据寻址方式 EEPROM数据访问采用两种方式;直接地址访问,通过数据的EEPROM地址直接读写数据;数据ID寻址,通过数据的编码读写数据。 通信口复用功能设计 红外通信和RS-485共用一个串行口(RxD/TxD)通信,由于串行口通信开始都有一低电平位(0),因此将红外接收端(与485接收端用一三极管隔开)引到一中断引脚INTP1,通过其引发的中断可判断串行口数据是否来自红外。发送时按时应方式发送,使其不互相干扰。由于红外通信和遥控接收用同一接收管,因此在判断红外来源的中断中启动定时器INTTM4检测红外接收端,如果检测到脉冲宽度为9ms或0.56ms,则判断为红外遥控,并根据定时检测遥控编码;否则判断为红外产生的串行口接收中断,并将定时检测关闭。 红外38.4kHz调制信号由CPU内部分频输出(P05/PCL)。f=fx/27=4.9152/128=38.4kHz。 因红外发送字节之间可选有15~20ms的延时,而485通信则不需要延时。数据发送在发送中断中进行,红外通信在发送操作后立即关闭发送中断允许,待延时时间到后再允许发送中断。 多功能表程序流程图 多功能表主程序流程主要包括初始化、数据校验、负荷曲线修补和事务处理等,其流程图如图5所示。 日常事务处理流程集中体现了多功能表的大部分主要功能,包括费率处理、计量数据采集及处理、自动抄表、电能脉冲输出、校表模块和掉电检测及处理模块等,其流程图如图6所示。

VB类作品

财务管理系统

点灯游戏

学生档案管理系统(VB+...

医院工资管理系统

旅游资源管理系统(综合版...

POS(财务+人事+库房...

销售管理系统(VB+SQ...

图书管理系统

Delphi类作品

酒店客房管理系统(前台+...

人事档案管理系统

工资管理系统

固定资产管理系统

人力资源管理系统

库存管理系统

手机销售管理系统

远程教育管理系统

ASP类作品

课程辅助教学网站

在线考试系统

留言板(2)

在线校友录

学生成绩管理系统

在线聊天室(2)

企业网上办公系统

在线聊天室

VC类作品

电话拨号程序

Web浏览与搜索

传真收发

对Modem的控制

云台控制系统

自动报警系统

VC串口编程调试精灵

VC单片机通信

JSP类作品

简易论坛

在线聊天室

物流信息管理

企业网站

电子商务系统

企业经销存管理系统

企业OA(办公自动化系统...

人力资源管理系统

其他类作品

人事管理系统

企业员工考勤管理系统

简易留言本

贸易管理系统

小区管理系统(综合版)

会员管理系统

票据管理系统

经销存管理系统

企业员工计时和帐单管理

图片库管理系统

.NET类作品

在线购物网站(C#)

简易公司网站

在线图书管理系统(C#)

多彩网络文本编辑器(C#...

音乐合(C#)

论坛(C#)

在线服务网站(C#)

个人秘书办公系统

定做作品展示

工程图纸管理系统

电话号码查询系统

出版社信息系统

火车站售票系统

学生成绩管理系统

彩票号码查询分析系统

成绩查询系统

超市后台管理系统

电脑销售管理系统

工地工伤信息管理系统

访问地址 www 51ebysj com

路由交换毕业论文设计题目

计算机网络技术专业毕业论文题目

你是不是在为选计算机网络技术专业毕业论文题目烦恼呢?以下是我为大家整理的关于计算机网络技术专业毕业论文题目,希望大家喜欢!

1. 基于移动互联网下服装品牌的推广及应用研究

2. 基于Spark平台的恶意流量监测分析系统

3. 基于MOOC翻转课堂教学模式的设计与应用研究

4. 一种数字货币系统P2P消息传输机制的设计与实现

5. 基于OpenStack开放云管理平台研究

6. 基于OpenFlow的软件定义网络路由技术研究

7. 未来互联网试验平台若干关键技术研究

8. 基于云计算的海量网络流量数据分析处理及关键算法研究

9. 基于网络化数据分析的社会计算关键问题研究

10. 基于Hadoop的网络流量分析系统的研究与应用

11. 基于支持向量机的移动互联网用户行为偏好研究

12. “网络技术应用”微课程设计与建设

13. 移动互联网环境下用户隐私关注的影响因素及隐私信息扩散规律研究

14. 未来互联网络资源负载均衡研究

15. 面向云数据中心的虚拟机调度机制研究

16. 基于OpenFlow的数据中心网络路由策略研究

17. 云计算环境下资源需求预测与优化配置方法研究

18. 基于多维属性的社会网络信息传播模型研究

19. 基于遗传算法的云计算任务调度算法研究

20. 基于OpenStack开源云平台的网络模型研究

21. SDN控制架构及应用开发的研究和设计

22. 云环境下的资源调度算法研究

23. 异构网络环境下多径并行传输若干关键技术研究

24. OpenFlow网络中QoS管理系统的研究与实现

25. 云协助文件共享与发布系统优化策略研究

26. 大规模数据中心可扩展交换与网络拓扑结构研究

27. 数据中心网络节能路由研究

28. Hadoop集群监控系统的设计与实现

29. 网络虚拟化映射算法研究

30. 软件定义网络分布式控制平台的研究与实现

31. 网络虚拟化资源管理及虚拟网络应用研究

32. 基于流聚类的网络业务识别关键技术研究

33. 基于自适应流抽样测量的网络异常检测技术研究

34. 未来网络虚拟化资源管理机制研究

35. 大规模社会网络中影响最大化问题高效处理技术研究

36. 数据中心网络的流量管理和优化问题研究

37. 云计算环境下基于虚拟网络的资源分配技术研究

38. 基于用户行为分析的精确营销系统设计与实现

39. P2P网络中基于博弈算法的优化技术研究

40. 基于灰色神经网络模型的网络流量预测算法研究

41. 基于KNN算法的Android应用异常检测技术研究

42. 基于macvlan的Docker容器网络系统的设计与实现

43. 基于容器云平台的网络资源管理与配置系统设计与实现

44. 基于OpenStack的SDN仿真网络的研究

45. 一个基于云平台的智慧校园数据中心的设计与实现

46. 基于SDN的数据中心网络流量调度与负载均衡研究

47. 软件定义网络(SDN)网络管理关键技术研究

48. 基于SDN的数据中心网络动态负载均衡研究

49. 基于移动智能终端的医疗服务系统设计与实现

50. 基于SDN的网络流量控制模型设计与研究

51. 《计算机网络》课程移动学习网站的设计与开发

52. 数据挖掘技术在网络教学中的应用研究

53. 移动互联网即时通讯产品的用户体验要素研究

54. 基于SDN的负载均衡节能技术研究

55. 基于SDN和OpenFlow的流量分析系统的研究与设计

56. 基于SDN的网络资源虚拟化的研究与设计

57. SDN中面向北向的`控制器关键技术的研究

58. 基于SDN的网络流量工程研究

59. 基于博弈论的云计算资源调度方法研究

60. 基于Hadoop的分布式网络爬虫系统的研究与实现

61. 一种基于SDN的IP骨干网流量调度方案的研究与实现

62. 基于软件定义网络的WLAN中DDoS攻击检测和防护

63. 基于SDN的集群控制器负载均衡的研究

64. 基于大数据的网络用户行为分析

65. 基于机器学习的P2P网络流分类研究

66. 移动互联网用户生成内容动机分析与质量评价研究

67. 基于大数据的网络恶意流量分析系统的设计与实现

68. 面向SDN的流量调度技术研究

69. 基于P2P的小额借贷融资平台的设计与实现

70. 基于移动互联网的智慧校园应用研究

71. 内容中心网络建模与内容放置问题研究

72. 分布式移动性管理架构下的资源优化机制研究

73. 基于模糊综合评价的P2P网络流量优化方法研究

74. 面向新型互联网架构的移动性管理关键技术研究

75. 虚拟网络映射策略与算法研究

76. 互联网流量特征智能提取关键技术研究

77. 云环境下基于随机优化的动态资源调度研究

78. OpenFlow网络中虚拟化机制的研究与实现

79. 基于时间相关的网络流量建模与预测研究

80. B2C电子商务物流网络优化技术的研究与实现

81. 基于SDN的信息网络的设计与实现

82. 基于网络编码的数据通信技术研究

83. 计算机网络可靠性分析与设计

84. 基于OpenFlow的分布式网络中负载均衡路由的研究

85. 城市电子商务物流网络优化设计与系统实现

86. 基于分形的网络流量分析及异常检测技术研究

87. 网络虚拟化环境下的网络资源分配与故障诊断技术

88. 基于中国互联网的P2P-VoIP系统网络域若干关键技术研究

89. 网络流量模型化与拥塞控制研究

90. 计算机网络脆弱性评估方法研究

91. Hadoop云平台下调度算法的研究

92. 网络虚拟化环境下资源管理关键技术研究

93. 高性能网络虚拟化技术研究

94. 互联网流量识别技术研究

95. 虚拟网络映射机制与算法研究

96. 基于业务体验的无线资源管理策略研究

97. 移动互联网络安全认证及安全应用中若干关键技术研究

98. 基于DHT的分布式网络中负载均衡机制及其安全性的研究

99. 高速复杂网络环境下异常流量检测技术研究

100. 基于移动互联网技术的移动图书馆系统研建

101. 基于连接度量的社区发现研究

102. 面向可信计算的分布式故障检测系统研究

103. 社会化媒体内容关注度分析与建模方法研究

104. P2P资源共享系统中的资源定位研究

105. 基于Flash的三维WebGIS可视化研究

106. P2P应用中的用户行为与系统性能研究

107. 基于MongoDB的云监控设计与应用

108. 基于流量监测的网络用户行为分析

109. 移动社交网络平台的研究与实现

110. 基于 Android 系统的 Camera 模块设计和实现

111. 基于Android定制的Lephone系统设计与实现

112. 云计算环境下资源负载均衡调度算法研究

113. 集群负载均衡关键技术研究

114. 云环境下作业调度算法研究与实现

115. 移动互联网终端界面设计研究

116. 云计算中的网络拓扑设计和Hadoop平台研究

117. pc集群作业调度算法研究

118. 内容中心网络网内缓存策略研究

119. 内容中心网络的路由转发机制研究

120. 学习分析技术在网络课程学习中的应用实践研究

随着互联网技术的不断发展,网络工程专业越来越受到国家和社会的关注,我们在写作网络工程 毕业 论文时,题目也是值得我们关注的。下面是我带来的关于网络工程毕业论文题目的内容,欢迎阅读参考!网络工程毕业论文题目(一) 1. 基于 Web的分布式 EMC数据库集成查询系统 2. 基于 Web的网络课程的设计 3. 基于工作流的业务系统开发 4. B1级安全数据库设计的设计与实现 5. 数据库加密及密钥管理 方法 研究 6. 企业应用集成(EAI)中数据集成技术的应用 7. 基于数据仓库连锁店决策支持系统模型的研究 8. VC开发基于 Office 组件应用程序 9. 从 XML到关系数据库映射技术研究 10. ORACLE9i 数据库系统性能优化研究与实践 11. MIS系统统用报表的设计与实现 12. 数字机顶盒系统的软件加密设计 13. 网上体育用品店的ASP实现 14. 基于ASP的毕业设计管理系统 15. 基于ASP的考务管理系统 16. 如何在网上营销好生意 17. 网上商店顾客消费心理的研究 18. 信息产品与网络营销 19. 网络营销中的 广告 策略研究 20. 网络营销中的价格策略研究 网络工程毕业论文题目(二) 1. 网络校园网络工程综合布线方案 2. ARP攻击与防护 措施 及解决方案 3. 路由器及其配置分析 4. 服务器的配置与为维护 5. 入侵检测技术研究 6. 复杂环境下网络嗅探技术的应用及防范措施 7. 网络病毒技术研究 8. 网络蠕虫传播模型的研究 9. 无尺度网络中邮件蠕虫的传播与控制 10. 网络路由协议研究 11. 可动态配置的移动网络协议设计研究 12. Ipv4/Ipv6 双协议栈以太网接入认证和移动技术 13. 虚拟路由器的体系结构及实现 14. 一种基于分布式并行过滤得前置式邮件过滤模型 15. XML应用于信息检索的研究 16. JMX框架下 SNMP适配器的实现与应用 17. MANET 路由协议性能分析 18. Internet用户 Ipv6 协议试验网设计与实现 19. 基于光纤通道的网络文件管理系统设计与实现 20. 网络拓扑结构的测量协议与技术 21. 办公业务对象在关系数据库中的存储 网络工程毕业论文题目(三) 1、基于协同过滤的个性化Web推荐 2、Web导航中用户认知特征及行为研究 3、Web服务器集群系统的自适应负载均衡调度策略研究 4、动态Web技术研究 5、语义Web服务的关键技术研究 6、面向语义Web服务的发现机制研究 7、Web服务组合研究与实现 8、构建REST风格的Web应用程序 9、企业架构下WebService技术的研究 10、Web回归桌面的研究与应用 11、Web服务选择的研究 12、Web服务的授权访问控制机制研究 13、基于WEB标准的网络课程设计与开发 14、基于Web的教师个人知识管理系统的设计与开发 15、基于Android平台的手机Web地图服务设计 16、基于Web的信息管理系统架构的研究 17、基于Web使用挖掘的网站优化策略研究 18、基于Web的自适应测试系统的研究 19、面向语义Web服务的发现机制研究 20、面向语义Web服务的分布式服务发现研究 猜你喜欢: 1. 最新版网络工程专业毕业论文题目 2. 网络工程论文题目 3. 网络工程专业毕业论文题目 4. 网络工程专业毕业论文精选范文 5. 网络工程论文选题 6. 关于网络工程毕业论文范文

恒流源电路设计毕业论文

高效率音频功率放大器的研制白林景,邵光存,李岸然,常兴连,王振伟(山东省科学院激光研究所,山东济宁 272100) 摘 要:本设计以高效率D类功率放大器为中心,输出开关管采用高速场效应管,连接成互补对称H桥式结构,兼有输出1: 1双变单电路和输出短路保护功能,比较理想地实现了输出功率大于2w,平均效率可达到75%的高效音功率放大器。关键词:D类音频功率放大器; PWM调制器; H桥功率放大器中图分类号: TN722. 1 文献标识码:A引言全球音频领域数字化的浪潮以及人们对音频节能环保的要求,要求我们尽快研究开发高效、节能、数字化的音频功率放大器。传统的音频功率放大器工作于线性放大区,功率耗散较大,虽然采用推挽输出,仍然很难满足大功率输出;而且需要设计复杂的补偿电路和过流,过压,过热等保护电路。D类开关音频功率放大器的工作于PWM模式,将音频信号与采样频率比较,经过自然采样,得到脉冲宽度与音频信号幅度成正比例变化的PWM波,经过驱动电路,加到MOS的栅极,控制功率器件的开关,实现放大,放大的PWM信号送入滤波器,还原为音频信号。从而实现大功率高效率的音频功率放大器。系统电路本文采用H型桥式D类功率放大电路,电路如图一所示。图一 音频功率放大器电路(1) 三角波产生电路利用NE555构成的多谐振荡器以恒流源的方式对电容线性冲、放电产生三角波。接通电源瞬间,NE555芯片的3脚输出高电平,二极管D2、D3 截止,D1、D4 导通, Vcc通过T1 , T2 , R1 ,D1 对电容C1 恒流充电,当C1 上电压达到2 /3Vcc时,NE555芯片的输出发生翻转,即3脚输出低电平,此时,D2、D3 导通, D1、D4 截止,电容C1 通过D2 , T3 ,T4 , R2 恒流放电,直到C1电压等于1 /3Vcc,电容又开始充电,如此循环,电容C1上可以得到线性度良好的三角波。为了提高带负载能力,输出通过由LM358A组成的电压跟随器。输出三角波频率的计算:电阻R1 上电压等于T1 的VVbe≈ 0. 7V,故流过R1 的电流I = 0. 7V /300Ω = 2. 33mA,忽略T1 的基极电流,则流过R1 的电流即为T2 的射级电流,约等于T2 的集电极电流,故C1 的充电电流约为2mA,同理, C1 的放电电流约为2mA。设充电时间为t1 ,放电时间为t2 ,则有:23Vcc =13Vcc +i ×t1C13Vcc =23Vcc -i ×t2C可得三角波的周期: T = t1 + t2 =2Vcc ×C3 ×i故三角波频率为: f =3 ×i2Vcc ×C(2)前置放大电路 前置放大电路采用低噪声、高速运放的NE5532运算放大器,组成增益可调的同相宽带放大电路。功放最大不失真输出时,负载上等效正弦波的电压峰峰值为VP - P ,载波调制的调制波(正弦波)最大峰峰— 27 —值为VP - Pm ax ,对应的调制放大增益为AV2 =VP - PVP - Pm ax,运算放大电路中反馈电阻为R8 ,反相端电阻R7 ,则前置放大器的增益AV1为:AV1 = 1 +R8R7,通过选取调制波的峰值电压VP - Pm ax和调整R8 的阻值,可实现整个功率放大单元的电压增益连续可调。(3)脉宽调制( PWM)电路 采用高速、精密的比较器芯片,以音频信号为调制波,频率为f的三角波为载波,两路信号均加上1 /2Vcc的直流偏置电压,通过比较器进行比较,得到幅值相同,占空比随音频幅度变化的脉冲信号。(4)驱动电路 驱动电路由施密特触发器芯片和三极管组成,两个三极管组成的互补对称式射极跟随器。PWM信号经过驱动电路后,形成两个前后沿更加陡峭的倒相脉冲,两脉冲之间有一定的死区时间,防止了桥式驱动电路出现直通现象。(5) H型桥式驱动电路 由场效应管组成的功率开关管和四阶巴特沃兹LC滤波电路组成。T9、T12导通, T10、T11截止时,负载上的电压降VM AB0 =Vcc; T10、T11导通,T9、T12截止时,负载上的电压降VAB = - Vcc,因此,负载上的电压降可达到2倍的电源电压。解调信号放大后经过LC滤波送到扬声器。(6)短路保护电路 短路(或过流)保护电路采用0. 1过流取样电阻与扬声器串联方式, 0. 1电阻上的取样电压经过由NE5532组成的减法放大器进行放大。电压放大倍数为:Av =R19R17经放大后的音频信号再通过由D9、C9、R20组成的峰值检波电路,检出幅度电平,送给电压比较器U7的“ + ”端,U7的“—”端电平设置为5. 1v,由R22和稳压管D12组成,比较器接成迟滞比较方式,一旦过载,即可锁定状态。正常工作时,通过0. 1上的最大电流幅度Im =Vcc /(R + 0. 1) , 0. 1上的最大压降为0. 1 ×Im ,经放大后输出的电压幅值为Vim ×AV = 0. 1 ×Im ×AV ,检波后的直流电压稍小于此值,此时比较器输出低电平, T13截止,继电器J1不吸合,处于常闭状态,电源Vcc通过常闭触点送给功放。一旦扬声器两端短路或输入电流过大, 0. 1上电流、电压增大,经过电压放大、峰值检波后,大于比较器反相端电压,则比较器翻转为高电平并自锁, T13导通,继电器吸合,切断功放Vcc电源,功放电路得到保护。R21、C11、D10、D11组成开机延时电路,防止开机瞬间比较器自锁,关机后C11上的电压通过D10快速放掉,以保证再开机时C11的起始电压为零。讨论D类放大器工作于开关状态,无信号输入时无电流,而导通时,没有直流损耗。事实上由于关断时器件尚有微小漏电流,而导通时器件并没有完全短路,尚有一定的管压降,故存在较少直流损耗,实际效率在80% - 90% ,是实用放大器中效率最高的。参考文献:[ 1 ]Wing - Hong, Lau , IEEE Trans. Realization ofDigitalAudi2o Amp lifier Using Zero - Voltage - Switched PWM PowerConverter, Circuits Syst . Vol 47,NO. 3,March 2000.[ 2 ]Ashok Bindra. All - digital App roach HikesAudio Quality InConsumer Product.[ 3 ]李子升,吴锦铭,钟国新. 高效率音频功率放大器.[ 4 ]李振玉,姚光圻. 高效率放大及功率合成技术. 中国铁道出版社, 1985.[ 5 ]陈伟鑫. 新型实用电路精选指南. 电子工业出版社.[ 6 ]瞿安连. 应用电子技术. 北京科学出版社, 2003.[ 7 ]王金明等编著. 数字系统设计. 电子工业出版社出版.[ 8 ]全国大学生电子设计竞赛获奖作品精选. 1994 - 1999.[ 9 ]虎永存,现代音响技术, D类放大器的原理和电路, 1998年第5期.[ 10 ]无线电2004合订本第2、3期. 无线电杂志社,人民邮电出版社.这个是从付费论文网站上买的,真珍贵的

30kHz高频开关电源变压器的设计2) 48V50A开关电源整流模块主电路设计3) 12232液晶显示程序4) A题直流稳定电源5) ISD2560芯片在汽车报站器的应用6) ISD2560语音芯片在排队机系统中的应用7) LC振荡器制作方案8) MCS51单片机应用系统设计9) RCC电路间歇振荡的研究10) RCC电路间歇振荡现象的研究11) UC3842应用于电压反馈电路中的探讨12) UC3843 是高性能固定频率电流模式控制器专为离线和直流变换器应用而设计13) UC3843A的内部等效电路框图14) VHDL基本语法单元15) 八路抢答器16) 别墅区可视对讲系统17) 波形发生器(A题)18) 采用CoolSET-ICE2B265的30瓦开关电源设计19) 出租车多功能计费器的设计20) 出租车计费器设计与实现21) 单端反激开关电源变压器设计22) 单片机应用系统设计技术教学大纲23) 单片机游戏设计24) 单片机在家用电器中的应用25) 低成本DC-DC转换器34063的应用26) 电压 控 制 LC 振 荡 器27) 电源输入端口的电磁兼容设计28) 调频收音机设计29) 调频无线话筒接收机电路30) 对“C51语言应用编程的若干问题”31) 发射三极管32) 高频高效DC-DC模块电源33) 高频开关电源34) 高压开关电源的应用电路设计35) 红外电路36) 基于AT89C51SND1C单片机的MP3硬件播放器的实现37) 基于AT89C205 1和ISD2560的录放音系统设计 38) 基于CPLD/FPGA的出租车计费39) 基于CPLD/FPGA的出租车计费器40) 基于CPLD和接触式图像传感器的图像采集系统41) 基于CPLD控制的DDS数字频率合成器设计42) 基于D类功放的宽范围可调开关电源的设计43) 基于GPS的高精度无误差倒计时牌的设计44) 基于μPD78F0034单片机的出租车计费器的设计与实现45) 基于大容量IC卡AT45D041的出租车数据采集系统46) 计算机控制灯阵列47) 开关电源EMC设计48) 开关电源保护电路的研究49) 开关电源测试参考50) 开关电源冲击电流控制51) 开关电源电感器的选用52) 开关电源高频变压器设计——正激式53) 开关电源论文最终54) 开关电源原理及其应用55) 开关电源原理与维修56) 开关式稳压电源的工作原理57) 开关稳压电源的设计58) 扩频通信59) 两种调制60) 论文—多点无线数据传输系统61) 频率记62) 汽 车 尾 灯 设 计63) 汽车智能MP3无线发射器的设计64) 数字显示“L、C”表的制作电路65) 无线识别装置66) 无线遥控设计67) 液体点滴速度监控装置68) 一种输出电压4~16V开关稳压电源的设计69) 用AT89C2051设计超声波测距仪70) 于CPLD/FPGA的出租车计费器

你这个电源功率有点大,而且电流要可调节。已经比较专业了。估计在学校的学生很难完成,主要是高频变压器的设计。估计你这个论文现成的难找。我设计过,没有这么大功率,电流也不可调节。要科技调节,我想到用单片机来控制结合运放电路和比较器来完成

反激变换器设计毕业论文

引言 众所周知,任何闭环系统在增益为单位增益l,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。因此几乎所有的开关电源都有一个闭环反馈控制系统,从而能获得较好的性能。在负反馈系统中,控制放大器的连接方式有意地引入了180°相移,如果反馈的相位保持在180°以内,那么控制环路将总是稳定的。当然,在现实中这种情况是不会存在的,由于各种各样的开关延时和电抗引入了额外的相移,如果不采用适合的环路补偿,这类相移同样会导致开关电源的不稳定。1 稳定性指标 衡量开关电源稳定性的指标是相位裕度和增益裕度。相位裕度是指:增益降到0dB时所对应的相位。增益裕度是指:相位为零时所对应的增益大小(实际是衰减)。在实际设计开关电源时,只在设计反激变换器时才考虑增益裕度,设计其它变换器时,一般不使用增益裕度。 在开关电源设计中,相位裕度有两个相互独立作用:一是可以阻尼变换器在负载阶跃变化时出现的动态过程;另一个作用是当元器件参数发生变化时,仍然可以保证系统稳定。相位裕度只能用来保证“小信号稳定”。在负载阶跃变化时,电源不可避免要进入“大信号稳定”范围。工程中我们认为在室温和标准输入、正常负载条件下,环路的相位裕度要求大于45°。在各种参数变化和误差情况下,这个相位裕度足以确保系统稳定。如果负载变化或者输入电压范围变化非常大,考虑在所有负载和输入电压下环路和相位裕度应大于30°。 如图l所示为开关电源控制方框示意图,开关电源控制环路由以下3部分构成。<<<<<这个地方有图,不过百度只能上传1张图>>>>>> (1)功率变换器部分,主要包含方波驱动功率开关、主功率变压器和输出滤波器; (2)脉冲宽度调节部分,主要包含PWM脉宽比较器、图腾柱功率放大; (3)采样、控制比较放大部分,主要包含输出电压采样、比较、放大(如TL431)、误差放大传输(如光电耦合器)和PWM集成电路内部集成的电压比较器(这些放大器的补偿设计最大程度的决定着开关电源系统稳定性,是设计的重点和难点)。2 稳定性分析 如图1所示,假如在节点A处引入干扰波。此方波所包含的能量分配成无限列奇次谐波分量。如果检测到真实系统对不断增大的谐波有响应,则可以看出增益和相移也随着频率的增加而改变。如果在某一频率下增益等于l且总的额外相移为180°(此相移加上原先设定的180°相移,总相移量为360°),那么将会有足够的能量返回到系统的输入端,且相位与原相位相同,那么干扰将维持下去,系统在此频率下振荡。如图2所示,通常情况下,控制放大器都会采用反馈补偿元器件Z2减少更高频率下的增益,使得开关电源在所有频率下都保持稳定。<<<<这里也有图>>>>波特图对应于小信号(理论上的小信号是无限小的)扰动时系统的响应;但是如果扰动很大,系统的响应可能不是由反馈的线性部分决定的,而可能是由非线性部分决定的,如运放的压摆率、增益带宽或者电路中可能达到的最小、最大占空比等。当这些因素影响系统响应时,原来的系统就会表现为非线性,而且传递函数的方法就不能继续使用了。因此,虽然小信号稳定是必须满足的,但还不足以保证电源的稳定工作。因此,在设计电源环路补偿时,不但要考虑信号电源系统的响应特性,还要处理好电源系统的大信号响应特性。电源系统对大信号响应特性的优劣可以通过负载跃变响应特性和输入电压跃变响应特性来判断,负载跃变响应特性和输入电压跃变响应特性存在很强的连带关系,负载跃变响应特性好,则输入电压跃变响应特性一定好。对开关电源环路稳定性判据的理论分析是很复杂的,这是因为传递函数随着负载条件的改变而改变。各种不同线绕功率元器件的有效电感值通常会随着负载电流而改变。此外,在考虑大信号瞬态的情况下,控制电路工作方式转变为非线性工作方式,此时仅用线性分析将无法得到完整的状态描述。下面详细介绍通过对负载跃变瞬态响应波形分析来判断开关电源环路稳定性。3 稳定性测试 测试条件: (1)无感电阻; (2)负载变化幅度为10%~100%; (3)负载开关频率可调(在获得同样理想响应波形的条件下,开关频率越高越好); (4)限定负载开关电流变化率为5A/μs或者2A/μs,没有声明负载电流大小和变化率的瞬态响应曲线图形无任何意义。 图3(a)为瞬变负载波形。 图3(b)为阻尼响应,控制环在瞬变边缘之后带有振荡。说明拥有这种响应电源的增益裕度和相位裕度都很小,且只能在某些特定条件下才能稳定。因此,要尽量避免这种类型的响应,补偿网络也应该调整在稍低的频率下滑离。<<<<这里也有图>>>>图3(c)为过阻尼响应,虽然比较稳定,但是瞬态恢复性能并非最好。滑离频率应该增大。 图3(d)为理想响应波形,接近最优情况,在绝大多数应用中,瞬态响应稳定且性能优良,增益裕度和相位裕度充足。 对于正向和负向尖峰,对称的波形是同样需要的,因此从它可以看出控制部分和电源部分在控制内有中心线,且在负载的增大和减少的情况下它们的摆动速率是相同的。 上面介绍了开关电源控制环路的两个稳定性判据,就是通过波特图判定小信号下开关电源控制环路的相位裕度和通过负载跃变瞬态响应波形判定大信号下开关电源控制环路的稳定性。下面介绍四种控制环路稳定性的设计方法。4.1 分析法 根据闭环系统的理论、数学及电路模型进行分析(计算机仿真)。实际上进行总体分析时,要求所有的参数要精确地等于规定值是不大可能的,尤其是电感值,在整个电流变化范围内,电感值不可能保持常数。同样,能改变系统线性工作的较大 瞬态响应也是很难预料到的。4.2 试探法 首先测量好脉宽调整器和功率变换器部分的传递特性,然后用“差分技术”来确定补偿控制放大器所必须具有的特性。 要想使实际的放大器完全满足最优特性是不大可能的,主要的目标是实现尽可能地接近。具体步骤如下: (1)找到开环曲线中极点过零处所对应的频率,在补偿网络中相应的频率周围处引入零点,那么在直到等于穿越频率的范围内相移小于315°(相位裕度至少为45°); (2)找到开环曲线中EsR零点对应的频率,在补偿网络中相应的频率周围处引入极点(否则这些零点将使增益特性变平,且不能按照期望下降); (3)如果低频增益太低,无法得到期望的直流校正那么可以引入一对零极点以提高低频下的增益。 大多数情况下,需要进行“微调”,最好的办法是采用瞬态负载测量法。4. 3 经验法 采用这种方法,是控制环路采用具有低频主导极点的过补偿控制放大器组成闭环来获得初始稳定性。然后采用瞬时脉冲负载方法来补偿网络进行动态优化,这种方法快而有效。其缺点是无法确定性能的最优。4.4 计算和测量结合方法 综合以上三点,主要取决于设计人员的技能和经验。 对于用上述方法设计完成的电源可以用下列方法测量闭环开关电源系统的波特图,测量步骤如下。 如图4所示为测量闭环电源系统波特图的增益和相位时采用的一个常用方法,此方法的特点是无需改动原线路。<<<<这里有图>>>>如图4所示,振荡器通过变压器T1引入一个很小的串联型电压V3至环路。流入控制放大器的有效交流电压由电压表V1测量,输出端的交流电压则由电压表V2测量(电容器C1和C2起隔直流电流的作用)。V2/V1(以分贝形式)为系统的电压增益。相位差就是整个环路的相移(在考虑到固定的180°负反馈反相位之后)。 输入信号电平必须足够小,以使全部控制环路都在其正常的线性范围内工作。4.5 测量设备 波特图的测量设备如下: (1)一个可调频率的振荡器V3,频率范围从10Hz(或更低)到50kHz(或更高); (2)两个窄带且可选择显示峰值或有效值的电压表V1和V2,其适用频率与振荡器频率范围相同; (3)专业的增益及相位测量仪表。 测试点的选择:理论上讲,可以在环路的任意点上进行伯特图测量,但是,为了获得好的测量度,信号注入节点的选择时必须兼顾两点:电源阻抗较低且下一级的输入阻抗较高。而且,必须有一个单一的信号通道。实践中,一般可把测量变压器接入到图4或图5控制环路中接入测量变压器的位置。 图4中T1的位置满足了上述的标准。电源阻抗(在信号注入的方向上)是电源部分的低输出阻抗,而下一级的输入阻抗是控制放大器A1的高输入阻抗。图5中信号注入的第二个位置也同样满足这一标准,它位于图5中低输出的放大器A1和高输入阻抗的脉宽调制器之间。<<<<<这里有图>>>>5 最佳拓扑结构 无论是国外还是国内DC/DC电源线路的设计,就隔离方式来讲都可归结为两种最基本的形式:前置启动+前置PWM控制和后置隔离启动+后置PWM控制。具体结构框图如图6和图7所示。<<<<这里有图>>>>国内外DC/DC电源设计大多采用前置启动+前置PWM控制方式,后级以开关形式将采样比较的误差信号通过光电耦合器件隔离传输到前级PWM电路进行脉冲宽度的调节,进而实现整体DC/DC电源稳压控制。如图6所示,前置启动+前置PWM控制方式框图所示,输出电压的稳定过程是:输出误差采样→比较→放大→光隔离传输→PWM电路误差比较→PWM调宽→输出稳压。Interpoint公司的MHF+系列、SMHF系列、MSA系列、MHV系列等等产品都属于此种控制方式。此类拓扑结构电源产品就环路稳定性补偿设计主要集中在如下各部分: (1)以集成电路U2为核心的采样、比较电路的环路补偿设计; (2)以前置PWM集成电路内部电压比较器为核心的环路补偿设计; (3)输出滤波器设计主要考虑输出电压/电流特性,在隔离式电源环路稳定性补偿设计时仅供参考; (4)其它部分如功率管驱动,主功率变压器等,在隔离式电源环路稳定性补偿设计时可以不必考虑。 而如图7所示,后置隔离启动+后置PWM控制方式框图,输出电压的稳定过程是:输出误差采样→PWM电路误差比较→PWM调宽→隔离驱动→输出稳压。此类拓扑结构电源产品就环路稳定性补偿设计主要集中在如下各部分: (1)以后置PWM集成电路内部电压比较器为核心的环路补偿设计; (2)输出滤波器设计主要考虑输出电压/电流特性,在隔离式电源环路稳定性补偿设计时仅供参考。 (3)其它部分如隔离启动、主功率变压器等,在隔离式电源环路稳定性补偿设计时可以不必考虑。 比较图6和图7控制方式和环路稳定性补偿设计可知,图7后置隔离启动+后置PWM控制方式的优点如下:(1)减少了后级采样、比较、放大和光电耦合,控制环路简捷; (2)只需对后置PWM集成电路内部电压比较器进行环路补偿设计,控制环路的响应频率较宽; (3)相位裕度大; (4)负载瞬态特性好; (5)输入瞬态特性好; (6)抗辐照能力强。实验证明光电耦合器件即使进行了抗辐照加固其抗辐照总剂量也不会大于2x104Rad(Si),不适合航天电源高可靠、长寿命的应用要求。6 结语 开关电源设计重点有两点:一是磁路设计,重点解决的是从输入到输出的电压及功率变换问题。二是稳定性设计,重点解决的是输出电压的品质问题。开关电源稳定性设计的好坏直接决定着开关电源启动特性、输入电压跃变响应特性、负载跃变响应特性、高低温稳定性、生产和调试难易度。将上述开关电源稳定性设计方法和结论应用到开关电源的研发工作中去,定能事半功倍。具体的参数自己改下.我就不改了.这里有全文的图片参考资料:

这个我做过,不错的。好了要加分

再加一千分我会给你更详细的

第1章基本拓扑1.1引言——线性调整器和Buck、Boost及反相开关型调整器1.2线性调整器——耗能型调整器1.2.1基本工作原理1.2.2线性调整器的缺点1.2.3串接晶体管的功率损耗1.2.4线性调整器的效率与输出电压的关系1.2.5串接PNP型晶体管的低功耗线性调整器1.3开关型调整器拓扑1.3.1Buck开关型调整器1.3.2Buck调整器的主要电流波形1.3.3Buck调整器的效率1.3.4Buck调整器的效率(考虑交流开关损耗)1.3.5理想开关频率的选择1.3.6设计例子1.3.7输出电容1.3.8有直流隔离调整输出的Buck调整器的电压调节1.4Boost开关调整器拓扑1.4.1基本原理1.4.2Boost调整器的不连续工作模式1.4.3Boost调整器的连续工作模式1.4.4不连续工作模式的Boost调整器的设计1.4.5Boost调整器与反激变换器的关系1.5反极性Boost调整器1.5.1基本工作原理1.5.2反极性调整器设计关系参考文献第2章推挽和正激变换器拓扑2.1引言2.2推挽拓扑2.2.1基本原理(主/辅输出结构)2.2.2辅输出的输入—负载调整率2.2.3辅输出电压偏差2.2.4主输出电感的最小电流限制2.2.5推挽拓扑中的磁通不平衡(偏磁饱和现象)2.2.6磁通不平衡的表现2.2.7磁通不平衡的测试2.2.8磁通不平衡的解决方法2.2.9功率变压器设计2.2.10初/次级绕组的峰值电流及有效值电流2.2.11开关管的电压应力及漏感尖峰2.2.12功率开关管损耗2.2.13推挽拓扑输出功率及输入电压的限制2.2.14输出滤波器的设计2.3正激变换器拓扑2.3.1基本工作原理2.3.2输出/输入电压与导通时间和匝数比的设计关系2.3.3辅输出电压2.3.4次级负载、续流二极管及电感的电流2.3.5初级电流、输出功率及输入电压之间的关系2.3.6功率开关管最大关断电压应力2.3.7实际输入电压和输出功率限制2.3.8功率和复位绕组匝数不相等的正激变换器2.3.9正激变换器电磁理论2.3.10功率变压器的设计2.3.11输出滤波器的设计2.4双端正激变换器拓扑2.4.1基本原理2.4.2设计原则及变压器的设计2.5交错正激变换器拓扑2.5.1基本工作原理、优缺点和输出功率限制2.5.2变压器的设计2.5.3输出滤波器的设计参考文献第3章半桥和全桥变换器拓扑3.1引言3.2半桥变换器拓扑3.2.1工作原理3.2.2半桥变换器磁设计3.2.3输出滤波器的设计3.2.4防止磁通不平衡的隔直电容的选择3.2.5半桥变换器的漏感问题3.2.6半桥变换器与双端正激变换器的比较3.2.7半桥变换器实际输出功率的限制3.3全桥变换器拓扑3.3.1基本工作原理3.3.2全桥变换器磁设计3.3.3输出滤波器的计算3.3.4变压器初级隔直电容的选择第4章反激变换器4.1引言4.2反激变换器基本工作原理4.3反激变换器工作模式4.4断续工作模式4.4.1输入电压、输出电压及导通时间与输出负载的关系4.4.2断续模式向连续模式的过渡4.4.3反激变换器连续模式的基本工作原理4.5设计原则和设计步骤4.5.1步骤1:确定初/次级匝数比4.5.2步骤2:保证磁心不饱和且电路始终工作于DCM模式4.5.3步骤3:根据最小输出电阻及直流输入电压调整初级电感4.5.4步骤4:计算开关管的最大电压应力和峰值电流4.5.5步骤5:计算初级电流有效值和导线尺寸4.5.6步骤6:次级电流有效值和导线尺寸4.6断续模式下的反激变换器的设计实例4.6.1反激拓扑的电磁原理4.6.2铁氧体磁心加气隙防止饱和4.6.3采用MPP磁心防止饱和4.6.4反激变换器的缺点4.7120V/220V交流输入反激变换器4.8连续模式反激变换器的设计原则4.8.1输出电压和导通时间的关系4.8.2输入、输出电流与功率的关系4.8.3最小直流输入时连续模式下的电流斜坡幅值4.8.4断续与连续模式反激变换器的设计实例4.9交错反激变换器4.9.1交错反激变换器次级电流的叠加4.10双端(两开关管)断续模式反激变换器4.10.1应用场合4.10.2基本工作原理4.10.3双端反激变换器的漏感效应参考文献第5章电流模式和电流馈电拓扑5.1简介5.1.1电流模式控制5.1.2电流馈电拓扑5.2电流模式控制5.2.1电流模式控制的优点5.3电流模式和电压模式控制电路的比较5.3.1电压模式控制电路5.3.2电流模式控制电路5.4电流模式优点详解5.4.1输入网压的调整5.4.2防止偏磁5.4.3在小信号分析中可省去输出电感简化反馈环设计5.4.4负载电流调整原理5.5电流模式的缺点和存在的问题5.5.1恒定峰值电流与平均输出电流的比例问题5.5.2对输出电感电流扰动的响应5.5.3电流模式的斜率补偿5.5.4用正斜率电压的斜率补偿5.5.5斜率补偿的实现5.6电压馈电和电流馈电拓扑的特性比较5.6.1引言及定义5.6.2电压馈电PWM全桥变换器的缺点5.6.3Buck电压馈电全桥拓扑基本工作原理5.6.4Buck电压馈电全桥拓扑的优点5.6.5Buck电压馈电PWM全桥电路的缺点5.6.6Buck电流馈电全桥拓扑——基本工作原理5.6.7反激电流馈电推挽拓扑(Weinberg电路)参考文献第6章其他拓扑6.1SCR谐振拓扑概述6.2SCR和ASCR的基本工作原理6.3利用谐振正弦阳极电流关断SCR的单端谐振逆变器拓扑6.4SCR谐振桥式拓扑概述6.4.1串联负载SCR半桥谐振变换器的基本工作原理6.4.2串联负载SCR半桥谐振变换器的设计计算6.4.3串联负载SCR半桥谐振变换器的设计实例6.4.4并联负载SCR半桥谐振变换器6.4.5单端SCR谐振变换器拓扑的设计6.5Cuk变换器拓扑概述6.5.1Cuk变换器的基本工作原理6.5.2输出/输入电压比与开关管Q1导通时间的关系6.5.3L1和L2的电流变化率6.5.4消除输入电流纹波的措施6.5.5Cuk变换器的隔离输出6.6小功率辅助电源拓扑概述6.6.1辅助电源的接地问题6.6.2可供选择的辅助电源6.6.3辅助电源的典型电路6.6.4Royer振荡器辅助电源的基本工作原理6.6.5作为辅助电源的简单反激变换器6.6.6作为辅助电源的Buck调节器(输出带直流隔离)参考文献第7章变压器及磁性元件设计7.1引言7.2变压器磁心材料与几何结构、峰值磁通密度的选择7.2.1几种常用铁氧体材料的磁心损耗与频率和磁通密度的关系7.2.2铁氧体磁心的几何尺寸7.2.3峰值磁通密度的选择7.3磁心最大输出功率、峰值磁通密度、磁心和骨架面积及线圈电流密度的选择7.3.1变换器拓扑输出功率公式的推导7.3.2推挽变换器输出功率公式的推导7.3.3半桥拓扑输出功率公式的推导7.3.4全桥拓扑输出功率公式的推导7.3.5以查表的方式确定磁心和工作频率7.4变压器温升的计算7.5变压器中的铜损7.5.1引言7.5.2集肤效应7.5.3集肤效应——定量分析7.5.4不同规格的线径在不同频率下的交/直流阻抗比7.5.5矩形波电流的集肤效应[14 ]7.5.6邻近效应7.6引言:利用面积乘积(AP)法进行电感及磁性元件设计7.6.1AP法的优点7.6.2电感器设计7.6.3信号级小功率电感7.6.4输入滤波电感7.6.5设计举例:60Hz共模输入滤波电感7.6.6差模输入滤波电感7.7磁学:扼流线圈简介——直流偏置电流很大的电感7.7.1公式、单位和图表7.7.2有磁化直流偏置的磁化曲线特征7.7.3磁场强度Hdc7.7.4增加扼流圈电感或者额定直流偏置量的方法7.7.5磁通密度ΔB7.7.6气隙的作用7.7.7温升7.8磁设计——扼流圈磁心材料简介7.8.1适用于低交流应力场合的扼流圈材料7.8.2适用于高交流应力场合的扼流圈材料7.8.3适用于中等范围的扼流圈材料7.8.4磁心材料饱和特性7.8.5磁心材料损耗特性7.8.6材料饱和特性7.8.7材料磁导率参数7.8.8材料成本7.8.9确定最佳的磁心尺寸和形状7.8.10磁心材料选择总结7.9磁学:扼流圈设计例子7.9.1扼流圈设计例子:加了气隙的铁氧体磁心7.9.2步骤一:确定20%纹波电流需要的电感量7.9.3步骤二:确定面积乘积(AP)7.9.4步骤三:计算最小匝数7.9.5步骤四:计算磁心气隙7.9.6步骤五:确定最佳线径7.9.7步骤六:计算最佳线径7.9.8步骤七:计算绕组电阻7.9.9步骤八:确定功率损耗7.9.10步骤九:预测温升——面积乘积法7.9.11步骤十:核查磁心损耗7.10磁学:用粉芯磁心材料设计扼流圈——简介7.10.1影响铁粉芯磁心材料选择的因素7.10.2粉芯材料的饱和特性7.10.3粉芯材料的损耗特性7.10.4铜耗——低交流应力时限制扼流圈设计的因素7.10.5磁心损耗——高交流应力时限制扼流圈设计的因素7.10.6中等交流应力时的扼流圈设计7.10.7磁心材料饱和特性7.10.8磁心的几何结构7.10.9材料成本7.11扼流圈设计例子:用环形Kool Mμ材料设计受铜耗限制的扼流圈7.11.1引言7.11.2根据所储存能量和面积乘积法选择磁心尺寸7.11.3受铜耗限制的扼流圈设计例子7.12用各种E形粉芯设计扼流圈的例子7.12.1引言7.12.2第一个例子:用#40E形铁粉芯材料设计扼流圈7.12.3第二个例子:用#8E形铁粉芯磁心设计扼流圈7.12.4第三个例子:用#60 E形Kool Mμ磁心设计扼流圈7.13变感扼流圈设计例子:用E形Kool Mμ磁芯设计受铜耗限制的扼流圈7.13.1变感扼流圈7.13.2变感扼流圈设计例子参考文献第8章双极型大功率晶体管的基极驱动电路8.1引言8.2双极型晶体管的理想基极驱动电路的主要目标8.2.1导通期间足够大的电流8.2.2导通瞬间基极过驱动峰值输入电流Ib18.2.3关断瞬间反向基极电流尖峰Ib28.2.4关断瞬间基射极间的-1~-5V反向电压尖峰8.2.5贝克(Baker)钳位电路(能同时满足高、低β值的晶体管工作要求的电路)8.2.6对驱动效率的改善8.3变压器耦合的贝克(Baker)钳位电路8.3.1Baker钳位的工作原理8.3.2使用变压器耦合的Baker钳位电路8.3.3结合集成变压器的Baker钳位8.3.4达林顿管(Darlington)内部的Baker钳位电路8.3.5比例基极驱动8.3.6其他类型的基极驱动电路参考文献第9章MOSFET和IGBT及其驱动电路9.1MOSFET概述9.1.1IGBT概述9.1.2电源工业的变化9.1.3对新电路设计的影响9.2MOSFET管的基本工作原理9.2.1MOSFET管的输出特性(Id-Vds)9.2.2MOSFET管的通态阻抗rds(on)9.2.3MOSFET管的输入阻抗米勒效应和栅极电流9.2.4计算栅极电压的上升和下降时间已获得理想的漏极电流上升和下降时间9.2.5MOSFET管栅极驱动电路9.2.6MOSFET管rds温度特性和安全工作区9.2.7MOSFET管栅极阈值电压及其温度特性9.2.8MOSFET管开关速度及其温度特性9.2.9MOSFET管的额定电流9.2.10MOSFET管并联工作9.2.11推挽拓扑中的MOSFET管9.2.12MOSFET管的最大栅极电压9.2.13MOSFET管源漏极间的体二极管9.3绝缘栅双极型晶体管(IGBT)概述9.3.1选择合适的IGBT9.3.2IGBT构造概述9.3.3IGBT工作特性9.3.4IGBT并联使用9.3.5技术参数和最大额定值9.3.6静态电学特性9.3.7动态特性9.3.8温度和机械特性参考文献第10章磁放大器后级调节器10.1引言10.2线性调整器和Buck后级调整器10.3磁放大器概述10.3.1用作快速开关的方形磁滞回线磁心10.3.2磁放大器中的关断和导通时间10.3.3磁放大器磁心复位及稳压10.3.4利用磁放大器关断辅输出10.3.5方形磁滞回线磁心特性和几种常用磁心10.3.6磁心损耗和温升的计算10.3.7设计实例——磁放大器后级整流10.3.8磁放大器的增益10.3.9推挽电路的磁放大器输出10.4磁放大器脉宽调制器和误差放大器10.4.1磁放大器脉宽调制及误差放大器电路参考文献第11章开关损耗分析与负载线整形缓冲电路设计11.1引言11.2无缓冲电路的晶体管的关断损耗11.3RCD关断缓冲电路11.4RCD缓冲电路中电容的选择11.5设计范例——RCD缓冲电路11.5.1接电源正极的RCD缓冲电路11.6无损缓冲电路11.7负载线整形(减少尖峰电压以防止晶体管二次击穿的缓冲器)11.8变压器无损缓冲电路参考文献第12章反馈环路的稳定12.1引言12.2系统振荡原理12.2.1电路稳定的增益准则12.2.2电路稳定的增益斜率准则12.2.3输出LC滤波器的增益特性(输出电容含/不含ESR)12.2.4脉宽调制器的增益12.2.5LC输出滤波器加调制器和采样网络的总增益12.3误差放大器幅频特性曲线的设计12.4误差放大器的传递函数、极点和零点12.5零点、极点频率引起的增益斜率变化规则12.6只含单零点和单极点的误差放大器传递函数的推导12.7根据2型误差放大器的零点、极点位置计算相移12.8考虑ESR时LC滤波器的相移12.9设计实例——含有2型误差放大器的正激变换器反馈环路的稳定性12.103型误差放大器的应用及其传递函数12.113型误差放大器零点、极点位置引起的相位滞后12.123型误差放大器的原理图、传递函数及零点、极点位置12.13设计实例——通过3型误差放大器反馈环路稳定正激变换器12.143型误差放大器元件的选择12.15反馈系统的条件稳定12.16不连续模式下反激变换器的稳定12.16.1从误差放大器端到输出电压节点的直流增益12.16.2不连续模式下反激变换器的误差放大器输出端到输出电压节点的传递函数12.17不连续模式下反激变换器误差放大器的传递函数12.18设计实例——不连续模式下反激变换器的稳定12.19跨导误差放大器参考文献第13章谐振变换器13.1引言13.2谐振变换器13.3谐振正激变换器13.3.1某谐振正激变换器的实测波形13.4谐振变换器的工作模式13.4.1不连续模式和连续模式;过谐振模式和欠谐振模式13.5连续模式下的谐振半桥变换器13.5.1并联谐振变换器(PRC)和串联谐振变换器(SRC)13.5.2连续模式下串联负载和并联负载谐振半桥变换器的交流等效电路和增益曲线13.5.3连续模式(CCM)下串联负载谐振半桥变换器的调节13.5.4连续模式下并联负载谐振半桥变换器的调节13.5.5连续模式下串联/并联谐振变换器13.5.6连续模式下零电压开关准谐振变换器13.6谐振电源小结参考文献第14章开关电源的典型波形14.1引言14.2正激变换器波形14.2.180%额定负载下测得的Vds和Id的波形14.2.240%额定负载下的Vdc和Ids的波形14.2.3导通/关断过程中漏源极间电压和漏极电流的重叠14.2.4漏极电流、漏源极间的电压和栅源极间的电压波形的相位关系14.2.5变压器的次级电压、输出电感电流的上升和下降时间与功率晶体管漏源电压波形14.2.6图14.1中的正激变换器的PWM驱动芯片(UC3525A)的关键点波形14.3推挽拓扑波形概述14.3.1最大、额定及最小电源电压下,负载电流最大时变压器中心抽头处的电流和开关管漏源极间的电压14.3.2两开关管Vds的波形及死区期间磁心的磁通密度14.3.3栅源极间电压、漏源极间电压和漏极电流的波形14.3.4漏极处的电流探头与变压器中心抽头处的电流探头各自测量得到的漏极电流波形的比较14.3.5输出纹波电压和整流器阴极电压14.3.6开关管导通时整流器阴极电压的振荡现象14.3.7开关管关断时下降的漏极电流和上升的漏源极间电压重叠产生的交流开关损耗14.3.820%最大输出功率下漏源极间电压和在变压器中心抽头处测得的漏极电流的波形14.3.920%最大输出功率下的漏极电流和漏极电压的波形14.3.1020%最大输出功率下两开关管漏源极间电压的波形14.3.11输出电感电流和整流器阴极电压的波形14.3.12输出电流大于最小输出电流时输出整流器阴极电压的波形14.3.13栅源极间电压和漏极电流波形的相位关系14.3.14整流二极管(变压器次级)的电流波形14.3.15由于励磁电流过大或直流输出电流较小造成的每半周期两次“导通”的现象14.3.16功率高于额定最大输出功率15%时的漏极电流和漏极电压的波形14.3.17开关管死区期间的漏极电压振荡14.4反激拓扑波形14.4.1引言14.4.290%满载情况下,输入电压为其最小值、最大值及额定值时漏极电流和漏源极间电压的波形14.4.3输出整流器输入端的电压和电流波形14.4.4开关管关断瞬间缓冲器电容的电流波形参考文献第15章功率因数及功率因数校正15.1功率因数15.2开关电源的功率因数校正15.3校正功率因数的基本电路15.3.1用于功率因数校正的连续和不连续工作模式Boost电路对比15.3.2连续工作模式下Boost变换器对输入网压变化的调整15.3.3连续工作模式下Boost变换器对负载电流变化的调整15.4用于功率因数校正的集成电路芯片15.4.1功率因数校正芯片Unitrode UC385415.4.2用UC3854实现输入电网电流的正弦化15.4.3使用UC3854保持输出电压恒定15.4.4采用UC3854芯片控制电源的输出功率15.4.5采用UC3854芯片的Boost电路开关频率的选择15.4.6Boost输出电感L1的选择15.4.7Boost输出电容的选择15.4.8UC3854的峰值电流限制15.4.9设计稳定的UC3854反馈环15.5Motorola MC34261功率因数校正芯片15.5.1Motorola MC34261的详细说明(图15.11)15.5.2MC34261的内部逻辑及结构(图15.11和图15.12)15.5.3开关频率和L1电感量的计算15.5.4MC34261电流检测电阻(R9)和乘法器输入电阻网络(R3和R7)的选择参考文献第16章电子镇流器——应用于荧光灯的高频电源16.1引言:电磁镇流器16.2荧光灯的物理特性和类型16.3电弧特性16.3.1在直流电压下的电弧特性16.3.2交流驱动的荧光灯16.3.3带电子镇流器荧光灯的伏安特性16.4电子镇流器电路16.5DC/AC逆变器的一般特性16.6DC/AC逆变器拓扑16.6.1电流馈电式推挽拓扑16.6.2电流馈电式推挽拓扑的电压和电流16.6.3电流馈电拓扑中的“电流馈电”电感的幅值16.6.4电流馈电电感中具体磁心的选择16.6.5电流馈电电感线圈的设计16.6.6电流馈电拓扑中的铁氧体磁心变压器16.6.7电流馈电拓扑的环形磁心变压器16.7电压馈电推挽拓扑16.8电流馈电并联谐振半桥拓扑16.9电压馈电串联谐振半桥拓扑16.10电子镇流器的封装参考文献第17章用于笔记本电脑和便携式电子设备的低输入电压变换器17.1引言17.2低输入电压芯片变换器供应商17.3凌特(Linear Technology)公司的Boost和Buck变换器17.3.1凌特LT1170 Boost变换器17.3.2LT1170 Boost变换器的主要波形17.3.3IC变换器的热效应17.3.4LT1170 Boost变换器的其他应用17.3.5LTC其他类型高功率Boost变换器17.3.6Boost变换器的元件选择17.3.7凌特Buck变换器系列17.3.8LT1074 Buck变换器的其他应用17.3.9LTC高效率、大功率Buck变换器17.3.10凌特大功率Buck变换器小结17.3.11凌特低功率变换器17.3.12反馈环的稳定性17.4Maxim公司的变换器芯片17.5由芯片产品构成的分布式电源系统

交换路由毕业论文

光纤通信技术的发展趋势[摘要]对光纤通信技术领域的主要发展热点作一简述与展望,主要有超高速传输系统,超大容量波分复用系统,光联网技术,新一代的光纤,IP over SDH与IP overOptical以及光接入网.关键词:光纤 超高速传输 超大容量波分复用 光联网光纤通信的诞生与发展是电信史上的一次重要革命.近几年来,随着技术的进步,电信管理体制的改革以及电信市场的逐步全面开放,光纤通信的发展又一次呈现了蓬勃发展的新局面,本文旨在对光纤通信领域的主要发展热点作一简述与展望.1 向超高速系统的发展从过去2O多年的电信发展史看,网络容量的需求和传输速率的提高一直是一对主要矛盾.传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,每当传输速率提高4倍,传输每比特的成本大约下降30%~40%;因而高比特率系统的经济效益大致按指数规律增长,这就是为什么光纤通信系统的传输速率在过去20多年来一直在持续增加的根本原因.目前商用系统已从45Mbps增加到10Gbps,其速率在20年时间里增加了20O0倍,比同期微电子技术的集成度增加速度还快得多.高速系统的出现不仅增加了业务传输容量,而且也为各种各样的新业务,特别是宽带业务和多媒体提供了实现的可能.目前10Gbps系统已开始大批量装备网络,全世界安装的终端和中继器已超过5000个,主要在北美,在欧洲,日本和澳大利亚也已开始大量应用.我国也将在近期开始现场试验.需要注意的是,10Gbps系统对于光缆极化模色散比较敏感,而已经敷设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通.在理论上,上述基于时分复用的高速系统的速率还有望进一步提高,例如在实验室传输速率已能达到4OGbps,采用色度色散和极化模色散补偿以及伪三进制(即双二进制)编码后已能传输100km.然而,采用电的时分复用来提高传输容量的作法已经接近硅和镓砷技术的极限,没有太多潜力可挖了,此外,电的40Gbps系统在性能价格比及在实用中是否能成功还是个未知因素,因而更现实的出路是转向光的复用方式.光复用方式有很多种,但目前只有波分复用(WDM)方式进入大规模商用阶段,而其它方式尚处于试验研究阶段.2 向超大容量WDM系统的演进光纤接入|光纤传输如前所述,采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘.如果将多个发送波长适当错开的光源信号同时在一极光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路.采用波分复用系统的主要好处是:(1)可以充分利用光纤的巨大带宽资源,使容量可以迅速扩大几倍至上百倍;(2)在大容量长途传输时可以节约大量光纤和再生器,从而大大降低了传输成本;(3)与信号速率及电调制方式无关,是引入宽带新业务的方便手段;(4)利用WDM网络实现网络交换和恢复可望实现未来透明的,具有高度生存性的光联网.鉴于上述应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速.如果认为1995年是起飞年的话,其全球销售额仅仅为1亿美元,而2000年预计可超过40亿美元,2005年可达120亿美元,发展趋势之快令人惊讶.目前全球实际敷设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2*16*10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80*2.5Gbps)或400Gbps(40*10Gbps).实验室的最高水平则已达到2.6Tbps(13*20Gbps).预计不久实用化系统的容量即可达到1Tbps的水平.可以认为近2年来超大容量密集波分复用系统的发展是光纤通信发展史上的又一里程碑.不仅彻底开发了无穷无尽的光传输键路的容量,而且也成为IP业务爆炸式发展的催化剂和下一代光传送网灵活光节点的基础.3 实现光联网——战略大方向上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想.如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力.根据这一基本思路,光的分插复用器(OADM)和光的交叉连接设备(OXC)均已在实验室研制成功,前者已投入商用.实现光联网的基本目的是:(1)实现超大容量光网络;(2)实现网络扩展性,允许网络的节点数和业务量的不断增长;(3)实现网络可重构性,达到灵活重组网络的目的;(4)实现网络的透明性,允许互连任何系统和不同制式的信号;(5)实现快速网络恢复,恢复时间可达100ms.鉴于光联网具有上述潜在的巨大优势,发达国家投入了大量的人力,物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目,如以Be11core为主开发的"光网技术合作计划(ONTC)",以朗讯公司为主开发的"全光通信网"预研计划","多波长光网络(MONET)"和"国家透明光网络(NTON)"等.在欧洲和日本,也分别有类似的光联网项目在进行.光纤接入|光纤传输综上所述光联网已经成为继SDH电联网以后的又一新的光通信发展高潮.其标准化工作将于2000年基本完成,其设备的商用化时间也大约在2000年左右.建设一个最大透明的.高度灵活的和超大容量的国家骨干光网络不仅可以为未来的国家信息基础设施(NII) 奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义.4 新一代的光纤近几年来随着IP业务量的爆炸式增长,电信网正开始向下一代可持续发展的方向发展,而构筑具有巨大传输容量的光纤基础设施是下一代网络的物理基础.传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分.目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光纤(G.655光纤)和无水吸收峰光纤(全波光纤).4.1 新一代的非零色散光纤 非零色散光纤(G.655光纤)的基本设计思想是在1550窗口工作波长区具有合理的较低色散,足以支持10Gbps的长距离传输而无需色散补偿,从而节省了色散补偿器及其附加光放大器的成本;同时,其色散值又保持非零特性,具有一起码的最小数值(如2ps/(nm.km)以上),足以压制四波混合和交叉相位调制等非线性影响,适宜开通具有足够多波长的DWDM系统,同时满足TDM和DWDM两种发展方向的需要.为了达到上述目的,可以将零色散点移向短波长侧(通常1510~1520nm范围)或长波长侧(157nm附近),使之在1550nm附近的工作波长区呈现一定大小的色散值以满足上述要求.典型G.655光纤在1550nm波长区的色散值为G.652光纤的1/6~1/7,因此色散补偿距离也大致为G.652光纤的6~7倍,色散补偿成本(包括光放大器,色散补偿器和安装调试)远低于G.652光纤.4.2 全波光纤 与长途网相比,城域网面临更加复杂多变的业务环境,要直接支持大用户,因而需要频繁的业务量疏导和带宽管理能力.但其传输距离却很短,通常只有50~80km,因而很少应用光纤放大器,光纤色散也不是问题.显然,在这样的应用环境下,怎样才能最经济有效地使业务量上下光纤成为网络设计至关重要的因素.采用具有数百个复用波长的高密集波分复用技术将是一项很有前途的解决方案.此时,可以将各种不同速率的业务量分配给不同的波长,在光路上进行业务量的选路和分插.在这类应用中,开发具有尽可能宽的可用波段的光纤成为关键.目前影响可用波段的主要因素是1385nm附近的水吸收峰,因而若能设法消除这一水峰,则光纤的可用频谱可望大大扩展.全波光纤就是在这种形势下诞生的.全波光纤采用了一种全新的生产工艺,几乎可以完全消除由水峰引起的衰减.除了没有水峰以外,全波光纤与普通的标准G.652匹配包层光纤一样.然而,由于没有了水峰,光纤可以开放第5个低损窗口,从而带来一系列好处:(1)可用波长范围增加100nm,使光纤的全部可用波长范围从大约200nm增加到300nm,可复用的波长数大大增加;(2)由于上述波长范围内,光纤的色散仅为155Onm波长区的一半,因而,容易实现高比特率长距离传输;(3)可以分配不同的业务给最适合这种业务的波长传输,改进网络管理;(4)当可用波长范围大大扩展后,允许使用波长间隔较宽,波长精度和稳定度要求较低的光源,合波器,分波器和其它元件,使元器件特别是无源器件的成本大幅度下降,这就降低了整个系统的成本.5 IP over SDH与IP over Optical以IP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持IP业务已成为新技术能否有长远技术寿命的标志.目前,ATM和SDH均能支持IP,分别称为IP over ATM和IP over SDH两者各有千秋.IP over ATM利用ATM的速度快,颗粒细,多业务支持能力的优点以及IP的简单,灵活,易扩充和统一性的特点,可以达到优势互补的目的,不足之处是网络体系结构复杂,传输效率低,开销损失大(达25%~30%).而SDH与IP的结合恰好能弥补上述IP overATM的弱点.其基本思路是将IP数据包通过点到点协议(PPP)直接映射到SDH帧,省掉了中间复杂的ATM层.具体作法是先把IP数据包封装进PPP分组,然后利用HDLC组帧,再将字节同步映射进SDH的VC包封中,最后再加上相应SDH开销置入STM-N帧中即可.IP over SDH在本质上保留了因特网作为IP网的无连接特征,形成统一的平面网,简化了网络体系结构,提高了传输效率,降低了成本,易于IP组插和兼容的不同技术体系实现网间互联.最主要优点是可以省掉ATM方式所不可缺少的信头开销和IP overATM封装和分段组装功能,使通透量增加25%~30%,这对于成本很高的广域网而言是十分珍贵的.缺点是网络容量和拥塞控制能力差,大规模网络路由表太复杂,只有业务分级,尚无优先级业务质量,对高质量业务难以确保质量,尚不适于多业务平台,是以运载IP业务为主的网络理想方案.随着千兆比高速路由器的商用化,其发展势头很强.采用这种技术的关键是千兆比高速路由器,这方面近来已有突破性进展,如美国Cisco公司推出的12000系列千兆比特交换路由器(GSR),可在千兆比特速率上实现因特网业务选路,并具有5~60Gbps的多带宽交换能力,提供灵活的拥塞管理,组播和QOS功能,其骨干网速率可以高达2.5Gbps,将来能升级至10Gbps.这类新型高速路由器的端口密度和端口费用已可与ATM相比,转发分组延时也已降至几十微秒量级,不再是问题.总之,随着千兆比特高速路由器的成熟和IP业务的大发展,IP overSDH将会得到越来越广泛的应用.光纤接入|光纤传输但从长远看,当IP业务量逐渐增加,需要高于2.4Gbps的链路容量时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单统一的IP网结构(IP overOptical).显然,这是一种最简单直接的体系结构,省掉了中间ATM层与SDH层,减化了层次,减少了网络设备;减少了功能重叠,简化了设备,减轻了网管复杂性,特别是网络配置的复杂性;额外的开销最低,传输效率最高;通过业务量工程设计,可以与IP的不对称业务量特性相匹配;还可利用光纤环路的保护光纤吸收突发业务,尽量避免缓存,减少延时;由于省掉了昂贵的ATM交换机和大量普通SDH复用设备,简化了网管,又采用了波分复用技术,其总成本可望比传统电路交换网降低一至二个量级!综上所述,现实世界是多样性的,网络解决方案也不会是单一的,具体技术的选用还与具体电信运营者的背景有关.三种IP传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用.但从面向未来的视角看,IP over Optical将是最具长远生命力的技术.特别是随着IP业务逐渐成为网络的主导业务后,这种对IP业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术.在相当长的时期,IP over ATM,IP overSDH和IP over Optical将会共存互补,各有其最佳应用场合和领域.6 解决全网瓶颈的手段——光接入网过去几年间,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都已更新了好几代.不久,网络的这一部分将成为全数字化的,软件主宰和控制的,高度集成和智能化的网络.而另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上),原始落后的模拟系统.两者在技术上的巨大反差说明接入网已确实成为制约全网进一步发展的瓶颈.目前尽管出现了一系列解决这一瓶颈问题的技术手段,如双绞线上的xDSL系统,同轴电缆上的HFC系统,宽带无线接入系统,但都只能算是一些过渡性解决方案,唯一能够根本上彻底解决这一瓶颈问题的长远技术手段是光接入网.接入网中采用光接入网的主要目的是:减少维护管理费用和故障率;开发新设备,增加新收入;配合本地网络结构的调整,减少节点,扩大覆盖;充分利用光纤化所带来的一系列好处;建设透明光网络,迎接多媒体时代. 所谓光接入网从广义上可以包括光数字环路载波系统(ODLC)和无源光网络(PON)两类.数字环路载波系统DLC不是一种新技术,但结合了开放接口VS.1/V5.2,并在光纤上传输综合的DLC(IDLC),显示了很大的生命力,以美国为例,目前的1.3亿用户线中,DLC/IDLC已占据3600万线,其中IDLC占2700万线.特别是新增用户线中50%为IDLC,每年约500万线.至于无源光网络技术主要是在德国和日本受到重视.德国在1996年底前共敷设了约230万线光接入网系统,其中PON约占100万线.日本更是把PON作为其网络光纤化的主要技术,坚持不懈攻关十多年,采取一系列技术和工艺措施,将无源光网络成本降至与铜缆绞线成本相当的水平,并已在1998年全面启动光接入网建设,将于2010年达到6000万线,基本普及光纤通信网,以此作为振兴21世纪经济的对策.近来又计划再争取提前到2005年实现光纤通信网.光纤接入|光纤传输在无源光网络的发展进程中,近来又出现了一种以ATM为基础的宽带无源光网络(APON),这种技术将ATM和PON的优势相互结合,传输速率可达622/155Mbps,可以提供一个经济高效的多媒体业务传送平台并有效地利用网络资源,代表了多媒体时代接入网发展的一个重要战略方向.目前国际电联已经基本完成了标准化工作,预计1999年就会有商用设备问世.可以相信,在未来的无源光网络技术中,APON将会占据越来越大的份额,成为面向21世纪的宽带投入技术的主要发展方向.7 结束语从上述涉及光纤通信的几个方面的发展现状与趋势来看,完全有理由认为光纤通信进入了又一次蓬勃发展的新高潮.而这一次发展高潮涉及的范围更广,技术更新更难,影响力和影响面也更宽,势必对整个电信网和信息业产生更加深远的影响.它的演变和发展结果将在很大程度上决定电信网和信息业的未来大格局,也将对下一世纪的社会经济发展产生巨大影响.

目 录 摘  要 I ABSTRACT II 1  英诚医院内部网络需求分析 1 1.1  对用户需求进行分析 1 1.2  主要设计的目标 2 2  英诚医院内部网络整体设计 4 2.1  英诚医院内部网络整个架构 4 2.2  技术的选择 5 2.2.1  接入层的技术选择方案 5 2.2.2  汇聚层的技术选择方案 5 2.2.3  核心层的技术选择方案 5 2.2.4  网络安全技术选择方案 7 2.3  设备的选型 7 2.3.1  思科SW2960介绍 8 2.3.2  思科SW3560介绍 9 2.3.3  思科的Router大概介绍 9 3  英诚医院内部网络综合布线 11 3.1  信息点数量 11 3.2  设备间布局 12 3.3  耗材数量 12 4  英诚医院内部网络的配置和实施 14 4.1  划分VLAN 14 4.2  配置trunk 16 4.3  配置RSTP 17 4.4  配置SVI 17 4.5  配置GLBP 18 4.6  配置OSPF协议 22 4.7  配置OSPF下的发默认路由 24 4.8  配置NAT 24 4.9  配置出口备份默认路由技术 25 5  英诚医院内部网络测试与验收 26 5.1  测试与验收网络效果参数 26 5.2  测试阶段 31 5.2.1  测试门诊楼访问医技大楼 31 5.2.2测试医院门诊楼访问急诊楼 31 5.2.3  测试医院医技大楼访问化验大楼 32 5.2.4  测试医院行政楼访问医技楼 32 5.2.5  测试医院医技楼访问网络服务器 32 5.2.6  测试医院门诊楼访问服务器 33 5.2.7  测试医院住院楼访问服务器 33 5.2.8  测试医院办公楼访问服务器 33 5.2.9  测试医技楼访问公网 34 5.2.10  测试急诊楼访问公网 34 5.2.11  测试住院楼访问公网 34 5.2.12  测试行政楼访问公网 35 5.3  验收阶段 35 总  结 36 参考文献 37 致 谢 38 摘  要 随着经济的快速发展和英诚医院内部网络规模的不断发展,英诚医院内部网络服务的人群发生了许多变化。来自不同地区的不同模型。现有英诚医院内部网络存在数据交互延迟、安全接入等级低、通信实时验证等诸多问题,这些问题直接影响医院未来的发展和运营。随着科学技术的发展和应用的普及,特别是计算机技术和网络技术的发展,随着英诚医院内部网络应用需求的不断扩大,现有的网络结构和模式已不能满足现有的要求。 这次论文基于英诚医院内部网络,规划设计了整个英诚医院内部网络的拓扑设计、IP地址规划、交换机和路由器的配置、科室之间的VLAN划分。网关冗余和以太网通道配置、NAT私网地址和公网地址转换、网络安全和帧中继配置等构建了网络系统的硬件平台。基于已建立的网络硬件平台,配置DNS、DHCP等服务,以及域环境下的用户控制和管理,组策略应用,网络打印机,软件发布,磁盘文件管理和安全策略设置,WEB服务器,FTP服务器,MAIL服务器的设置,实现网络的整体规划设计。 关键词:医院网络;医院内部网络;网络规划;网络设计;拓扑结构 ABSTRACT With the rapid development of economy and the continuous development of the internal network scale of Yingcheng Hospital, the population of the internal network service has undergone many changes.Different models derived from different regions.There are many problems in the existing internal network of Yingcheng Hospital, such as data interaction delay, low security access level, real-time communication verification, which directly affect the future development and operation of the hospital.With the development of science and technology and the popularization of the application, especially the development of computer technology and network technology, and with the continuous expansion of the internal network application needs of Yingcheng Hospital, the existing network structure and mode can no longer meet the existing requirements. This paper is based on the internal network of Yingcheng Hospital, which plans and designs the topology design, IP address planning, switch and router configuration, and VLAN division of the whole internal network of Yingcheng Hospital.Gateway redundancy and Ethernet channel configuration, NAT private network address and public network address conversion, network security and frame relay configuration build the hardware platform of the network system.Based on the established network hardware platform, configure DNS, DHCP and other services, as well as user control and management in the domain environment, group policy application, network printer, software release, disk file management and security policy setting, WEB server, FTP server, MAIL server setting, realize the overall network planning and design. Key words: hospital network; hospital internal network; network planning; network design; topology 本文来自: 毕业作品网站(www.biyezuopin.vip) 详细出处参考:

相关百科

热门百科

首页
发表服务