锌镍电池由锌、氧化镍和质量浓度为25%~30%氢氧化钾溶液及隔膜等组成的。Zn/ Ni电池的电池反应机理:2Ni(OH)2+Zn(OH)2=2NiOOH+Zn+2H2O其正极组成为:氢氧化镍、镍粉和添加剂;负极组成为:氧化锌、锌粉、添加剂。通常锌电极由氧化锌、金属锌粉、添加剂和聚四氟乙烯乳液等混合滚压而成。碱性溶液中的锌电极,在热力学上是不稳定的。锌电极自放电不仅损失容量,同时产生了氢气。其反应如下:Zn + 2 OH——�0�1Zn (OH)2 + 2 eZnO + H2O2H2O + 2e—— 2 OH- + H2Zn + H2O——ZnO + H2
题目所给条件不足,无法解答
镍锌电池是锌电池中的一种,锌电池有多种电池,如:锌空气电池,锌锰电池,镍锌电池,银锌电池等多种电池。您的这个问题就相当于问:面粉和粮食有何差别?镍锌电池需要的材料除了镍外主要就是锌,这种电池以镍为正电极材料,镍电极的主要活性材料是ni(oh)2。锌作为电池负极。锌空气电池是用活性炭吸附空气中的氧或纯氧作为正极活性物质,以锌为负极,以氯化铵或苛性碱溶液为电解质的一种原电池。又称锌氧电池。锌锰电池是以二氧化锰为正极,锌为负极,氯化铵水溶液为主电解液的原电池,在学术界中又称为勒克朗谢电池。锌银电池的正极是氧化汞加石墨,或者是氧化银加石墨,负极材料是金属锌,电解质是强碱氢氧化钾。●希望我的回答能对你有所帮助。------------------------------------------------------------------------------------------------------------●以上内容根据“happy_slug”个人经验进行编写,仅代表个人意见和见解,任何人不得任意修改、删增;严禁抄袭。如需引用,请注明出处。
结论:锌空气电池作为电动车电池目前还处于研究阶段。原因:虽然锌空气电池作为电动车电池有很大的优势但是还有一些技术问题没有突破,目前为止,已经商业化的锌空气电池重要有方型和纽扣型两种,而具有巨大市场需求量的圆柱型特别是小圆柱型的锌空气电池则由于其结构复杂,在国内外一直没有突破性发展,尚未得到大量生产化。所以电池的供应就存在问题。一直以来圆柱型锌空气电池没有得到广泛发展的重要原因之一是电池密封难的问题。锌空气电池放电时要源源不断的来自空气中的氧气进入电池,所以电池不是完全密封的,电池外壳留有一个或多个空气孔,因此电池内部与外部是相通的。假如空气电极,特别是防水透气膜做的不好的话,电池就很容易发生爬碱漏液、电解液蒸发而干涸、或者由于吸潮而使电解液变稀,外界的CO2也会进入电池内部而使电解液碳酸盐化。这都会严重影响到锌空气电池的性能和质量。延伸:锌空气电池的性能,成本和经营方式是它进入市场的3个关键问题,值得研发人员进一步解决。
目前市场上动力型电池主要有铅酸电池, 镉镍电池、氢镍电池和锂离子电池。其中铅酸电池和福镶电池是早已广泛应用的二次电池, 占据了动力型电池的主要市场。但这两类电池比能量低, 商品电池一般只能达到30~50wh/kg, 同时铅和镉是有毒金属, 对环境有严重的污染, 已被世界各国限制生产和使用。氢镍电池工作电压较低, 高温时自放电较大, 只适合做小型工具的动力电源。锌镍二次电池由锌电极和镍电极组成, 兼有锌银电池锌负极高容量和镉镍电池镍正极长寿命的优越性能。锌镍二次电池在性能上具有容量大、比能量高一般为镉镍电池的一倍, 为氢镍电池的倍、安全性好、工作电压高、无记忆效应、优异的低温性能、可大电流快速充放电等优点, 在电池的生产和使用过程对环境不产生污染, 属于“ 绿色电池” 。国内锌镍电池产品生产技术应用现状 生产工艺介绍锌镍电池由锌、氧化镍和质量浓度为25%~30%氢氧化钾溶液及隔膜等组成的。Zn/ Ni电池的电池反应机理:2Ni(OH)2+Zn(OH)2=2NiOOH+Zn+2H2O其正极组成为:氢氧化镍、镍粉和添加剂;负极组成为:氧化锌、锌粉、添加剂。通常锌电极由氧化锌、金属锌粉、添加剂和聚四氟乙烯乳液等混合滚压而成。镍电极由两种方法制备: ①烧结式镍电极,它由羰基镍粉烧结成多孔基板。②发泡式镍电极是将氢氧化镍、导电石墨和聚四氟乙烯乳液滚压于发泡镍基底上制备而成。生产设备介绍主要设备: 单面间隙式涂布机、全自动分条机、全自动叠片机、极片自动成型机、手动冲片机、手动叠片机、定长裁片机、 双面真空封装机、顶侧封、八工位转盘式顶侧封、打钢珠机等。卷芯入壳机、压扁机、隔膜处理机、极耳裁切机、极耳包胶机,涂布设备 卷绕设备 分条设备 制片设备。极耳连接极片设备,极片烘干,滚压设备,软包装封装设备,超声波,点焊机,可以用来极耳连接极片,电池检测设备,X-RAY无损检测仪,顶封,侧封,化成封口,极片真空烘箱, 制氮机设备生产工艺革新路径目前国内锌镍电池研究与试产的企业主要存在以下问题:1、电池寿命短,一般在100~200 Cycles,2、电极的变形,3、锌极的腐蚀与溶解,4、锌枝晶的生长过快,5、过充的控制具体产生的原因:1、材料选择不当,2、添加剂的选择与量控制不合理,3、隔膜选择不当,4、工艺不合理,5、充电模式不合理。锌镍电池的成本:降低生产成本是碱性锌镍电池发展的关键。由于正极核心材料NiOOH 处于初级发展阶段,制造成本相对较高。技术研发现状锌镍电池的充放循环寿命较短,是由于锌负极在氢氧化钾电解液中的放电产物溶解度大,充电时发生不均匀的锌沉积。锌负极在多次充放电后形状发生改变,电极的四周变薄,中间增厚,有时则表现为上部变薄,下部增厚。电极活性表面积减小,电极容量下降[1999密封锌镍电池发展评述 ] 。 锌电极在充电后期,还产生像树枝状的沉积物,这种树枝状况积物有时可戳穿隔膜,引起电池内部短路,使电池寿命终止。碱性溶液中的锌电极,在热力学上是不稳定的。锌电极自放电不仅损失容量,同时产生了氢气。其反应如下:Zn + 2 OH——�0�1Zn (OH)2 + 2 eZnO + H2O2H2O + 2e—— 2 OH- + H2Zn + H2O——ZnO + H2锌负极在充放电过程中,还发生锌从负极向正极的迁移,使正极的孔隙被锌酸盐阻塞,导致正极容量的下降。为了提高锌镍电池的充放循环寿命,必须解决锌电极的变形,抑制锌枝晶的生长,抑制自放电产生氢气和锌从负极向正极的迁移。近年来国内外的研究还在不断地进行着,其目的在于保持它的优良性能,进一步降低镍电极的制造成本。镍电极在充电时产生的氧气必须得到消除,否则将使电池发生气胀。镍电极的问题还有如何抑制它在充放循环过程中发生膨胀。由于锌镍电池中,在锌电极上通常包数层再生纤维素膜或聚丙烯膜,以阻止锌酸根离子向正极方向的扩散、迁移和锌枝晶的穿透隔膜。 放电过程中消耗水,所以一定要有吸液性良好的隔膜。还要考虑有能阻抑锌酸根离子的迁移、扩散和阻止锌枝晶生长的再生纤维素膜或聚丙烯膜。但是,有了这些膜,又使得电池充电时正极上产生的氧不易达到锌负极表面发生还原反应。由于碱性溶液中锌电极的热力学不稳定性,锌电极自放电必导致产生氢气。所以在研制密封锌镍电池时,特别是容量比较大的电池时,应重视抑制锌电极的自放电,并设法消除由自放电产生的氢气。我国厦门的两家公司正与美国能量研究公司联合开发生产锌镍电池。电动车用锌镍电池的目标是达到一次充电行驶240km,总里程160000km,估价约200$/kwh。
用于无枝晶耐用锌电池的工程化多功能分子骨架层
第一作者:于铧铭
通讯作者:陈月皎*,陈立宝*
单位:中南大学
近日,来自中南大学的陈立宝、陈月皎课题组等人,在国际知名期刊Nano Energy上发表题为“Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries”的观点文章。 该观点文章采用一种可扩展、低成本的浸涂技术,整合硅烷疏水性和有机磷酸锌优异亲锌性,在锌负极上构建了超薄多功能层(MTSi-Hedp-Zn),实现锌负极无枝晶稳定长循环。DFT计算和COMSOL模拟结果表明,在分子骨架的顶部有丰富的O-Si-CH3基团作为疏水嵌块,这是阻止溶剂化水腐蚀的影响因素。主链有机磷酸块上的亲锌P=O键作为Zn2+快速吸附和输运动力学的吸引区。
同时,这种组合使锌金属上的表面首选(002)晶体面,使界面电场协同均匀化,在没有枝晶和副反应的情况下优先平坦生长。因此,MTSi-Hedp-Zn电极在1和10 mAcm-2时循环寿命超过2000 h,极化电压分别为和 mV。与正极组装的全电池(CNT/MnO2和五氧化二钒)都比裸锌负极有更高的容量保持率。硅烷-有机磷酸的疏水亲锌多功能界面为设计无枝晶和无腐蚀的锌电极提供了重要的构建策略。
要点一:MTSi-Hedp-Zn的设计和界面组成研究
XPS能谱结果可以证明,MTSi中的Si-OH基团可以与Hedp分子中的P-OH基团发生反应。因此,MTSi、Hedp和Zn之间存在较强的化学键合,从而对锌箔具有良好的粘附强度。DFT结果表明,通过络合和热固化工艺得到的MTSi-Hedp具有显著的电子亲和性和大量亲锌位点。这有利于锌离子在纳米膜层上的均匀、快速沉积,使MTSi-Hedp-Zn负极在速率能力、可逆性和循环性方面具有优异的电化学性能。
图2 (a) 裸锌箔和 (b) MTSi-Hedp-Zn 电极的 SEM 图像。 (c) MTSi-Hedp-Zn 电极的 EPMA 图像和相应的元素映射。 (d, e) MTSi-Hedp-Zn 电极的 XPS 分析。 (f) MTSi-Hedp-Zn 电极的 FTIR 光谱。 (g) 计算的三个有机分子的前沿分子轨道能量。 (h) MTSi-Hedp-Zn 的计算 ESP 分布。
要点二:MTSi-Hedp-Zn耐腐蚀性研究
有疏水功能块的MTSi-Hedp保护层可以有效抑制锌金属负极在水系电解质中的腐蚀。由于其自身具备大量的疏水功能块(O-Si-CH3基团),可以有效实现锌负极表面去溶剂化,阻止活性水分子与锌负极的直接接触。采用飞行时间二次离子质谱(TOF-SIMS)和差分电化学质谱(DEMS)评估其抑制析氢的能力,极少的副产物堆积和氢气析出量表明,MTSi-Hedp-Zn负极可有效抑制锌负极腐蚀。
图3 电极在 2 M ZnSO4 水溶液中浸泡一周的 SEM 图像:(a)锌箔和(b)MTSi-Hedp-Zn。 (c) Zn 和 MTSi-Hedp-Zn 电极在 2 M ZnSO4 水溶液中浸泡一周后的相应 XRD 图谱。 (d) 裸 Zn 和 (e) MTSi-Hedp-Zn 电极上电解质的接触角。 (f) 裸 Zn 和 MTSi-Hedp-Zn 电极在 2 M ZnSO4 水溶液中的线性极化曲线。 (g) 裸 Zn 和 (h) MTSi-Hedp-Zn 电极的 TOF-SIMS 映射图像(ZnO+ 物质)。 原位 DEMS 曲线显示在第一个循环期间释放 H2 气体:(i) Zn//Zn 和 (j) MTSi-Hedp-Zn//MTSi-Hedp-Zn 对称电池。 (k) Zn//Zn 和 MTSi-Hedp-Zn//MTSi-Hedp-Zn 电池在经历交替循环(1 mA cm-2 和 1 mAh cm-2)和静止过程时的电化学性能。
要点三:锌负极的稳定性和电化学性能
基于上述发现和分析,MTSi-Hedp-Zn电极在疏水功能块和亲锌构建块的多功能作用下表现出优异的电化学性能。MTSi-Hedp-Zn在2000小时内保持了优越的循环稳定性,并且始终保持着极低的极化电压,证明了其作为ZIBs的高性能锌负极的有效性。此外,在倍率性能测试中,MTSi-Hedp-Zn负极具有优异的循环可逆性和结构稳定性。在整个循环中,均能保持较小的极化电压和较低的能垒,这表明电极表面没有阻碍离子传导的有害副产物的积累,从而实现了极其可逆的镀锌/剥离。
图4 (a) 对于 1 mAh cm-2,对称电池在 1 mA cm-2 下的电流-电压曲线。 (b) 对称电池在第 25 次循环时的放大电压曲线。 (c) 对称电池在 到 10 mA cm-2 的不同电流密度下的倍率性能,容量为 1 mAh cm-2。 ( d )在逐步增加的电流密度下对称电池的潜在演变。 (e) Zn//Zn 和 MTSi-Hedp-Zn//MTSi-Hedp-Zn 对称电池在 1 mA cm-2, mAh cm-2 的长期电流-电压曲线。 (f) 原位光学显微镜观察 (f) 裸 Zn 和 (g) MTSi-Hedp-Zn 电极在 10 mA cm-2 下的 Zn 沉积。
要点四:无枝晶锌沉积行为
形成的MTSi-Hedp-Zn层可以在丰富的表面疏水O-Si-CH3基团下阻断水,促进Zn2+溶剂化鞘的去除。这种包含大量亲锌-Zn-O-P=O基团的保护层也促进了锌离子的迁移,为锌的沉积提供了更多的亲锌位点和形核位点。MTSi-和hedp-结构的协同效应使稳定的循环和快速的Zn2+动力学具有平坦的沉积形态。
图5. 50 次循环后电极的 SEM 图像:(a,b)裸 Zn; (c, d) MTSi-Hedp-Zn。 50 个循环后电极的光学表面轮廓测量图像:(e)裸锌和(f)MTSi-Hedp-Zn。 在 (g) 裸 Zn 和 (h) MTSi-Hedp-Zn 电极上沉积过程中 Zn 离子通量分布的模拟。 (i) 在裸锌箔(上)和 MTSi-Hedp-Zn 电极(下)上镀锌的示意图。
要点五:全电池的电化学性能研究
与CNT/MnO2正极材料匹配后,MTSi-Hedp-Zn//CNT/MnO2电池的放电容量可保持在194 mAh g-1,300次循环后可保持在. 与商用V2O5材料匹配后,全电池在3Ag-1条件下进行2000次循环后,也提供了稳定的循环和的高容量保留率。同时,MTSi-Hedp-Zn负极也在倍率性能测试和自放电测试中表现出极大的优势。
图5 (a) 使用 CNT/MnO2 正极在 1 A g-1 的电流密度下与裸 Zn 和 MTSi-Hedp-Zn 电极配对的全电池的循环比较。 在 2 C 下 100 次循环后阳极的 SEM 图像:(b)裸锌和(c)MTSi-Hedp-Zn。 (d) 循环前使用 CNT/MnO2 作为阴极材料的全电池的 EIS 曲线。 (e) mV s 1 时的 CV 曲线。 (f) 自放电曲线。 (g) Zn//V2O5 和 MTSi-Hedp-Zn//V2O5 全电池在 3 A g-1 电流密度下的长期循环性能。 (h) MTSi-Hedp-Zn//CNT/MnO2 软包电池的照片。
Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries, .
【通讯作者简介】
陈月皎 副教授简介:中南大学粉末冶金研究院副教授。2015年获湖南大学博士学位,之后在香港理工大学从事博士后研究(2016-2018年)。她的研究兴趣集中在高性能电池,如锌/锂离子电池和柔性能源设备。
陈立宝 教授简介:中南大学粉末冶金研究院教授。2007年毕业于中国科学院上海微系统与信息技术研究所,获材料物理与化学博士学位。他的研究方向是特种锂电池和储能系统及其关键材料,包括宽温域锂离子电池、高比能锂金属电池和锌离子电池。
【第一作者介绍】
于铧铭 :中南大学粉末冶金研究院2020级硕士研究生。主要从事水系锌离子电池和电容器的材料设计和性能优化,包括锌负极表面修饰、结构试剂和电解液优化等。
最近国家开始重视和扶持新能源了,作为新能源汽车的必需材料锂离子电池和钠离子电池一段被炒得狂热。在此同时,一家原本生产鼓风机企业也将生产钠离子电磁的上市公司股价一度被推高,就是学姐今天与大家分享的机械行业公司---山东章鼓。
在向大家介绍山东章鼓前,我整理好的机械行业龙头股名单分享给大家,点击就可以领取:宝藏资料:机械行业龙头股一览表
一、从公司角度来看
公司介绍:山东章鼓已经成长为拥有50多年风机设计、生产、制造经验和技术的公司,还是一家控股子公司、两家中日合资企业的持有者,同时还在美国有设立分公司,在工业园拥有生产面积43万平方米。
公司主营业务为罗茨鼓风机、离心鼓风机、气力输送成套系统、磨机、渣浆泵等机械产品的设计、加工制造、销售、服务。
在简单介绍了山东章鼓的公司情况后,我们来看下山东章鼓公司有什么亮点,推荐大伙投资吗?
亮点一:参股公司艾诺冈获得锌离子电池研发技术突破
对于山东艾诺冈新能源技术有限公司的股份,山东章鼓持有比例为40%,这个参股公司关于锌离子电池的技术研发上取得过重大突破,锌离子电池从安全方面比较,确实比锂电池更安全,反而成本更低,有希望成为储能电池重要电池材料之一,当然也能满足公司产品对锌离子电池的需求。
亮点二:罗茨鼓风机领域的领军企业
山东章鼓在罗茨鼓风机领域拥有40多年的设计和制造经验,自2000年起,公司销售的罗茨鼓风机一直稳居国内第一。该产品被广泛应用于化工、水泥、污水处理、钢铁、电力、冶金、煤炭、粮油等行业。
同时,公司的16项新技术研发是用来补全国内空白的,占据了维尼纶、煤化工行业的90%以上市场,50%以上的污水处理、空分、精细化工领域市场都被占据了。
亮点三:产品品种齐全,公司客户优质
山东章鼓目前能够生产包括L系列、RR系列、3H系列、ZR系列大型罗茨鼓风机(罗茨真空泵)等8大系列和140多个规格的产品,对于多行业领域的客户而言,可以满足其对于罗茨鼓风机不同需求。公司产品质量良好,并且在性能以及功效方面均超过了国外进口产品,目前已拥有山东石横发电厂、广东珠江电厂、江苏徐州发电厂、中国石化等优质客户。
由于所剩篇幅不多,更多关于山东章鼓的深度报告和风险提示,我全部的整理在这篇研报当中了,想查看就点击下:【深度研报】山东章鼓点评,建议收藏!
二、从行业角度来看
目前,虽然我国鼓风机市场主要集中在中低端客户群体,尤其是近两年的发展,我国的鼓风机高端产品已经逐渐的代替国外高端产品,随着消费者的需求在下游市场持续不断的释放,国产高端鼓风机将会逐步占据市场,所以我认为,在未来我国的鼓风机行业可以更深入发展。
综上所述,国产鼓风机在国内市场份额上占据了很大部分,与此同时外国鼓风机正在不断被国产高端鼓风机替代,成为市场上大众最喜爱的产品。而作为拥有50多年鼓风机研发生产历史的山东章鼓将会在高端市场站稳脚跟,成为我国高端鼓风机主要生产商。
但是文章会有一些延时,如果想更准确地知道山东章鼓未来行情,直接浏览下方文章就好了,有专业的投顾协助你诊股,看下山东章鼓现在行情是否到买入或卖出的好时机:【免费】测一测山东章鼓还有机会吗?
应答时间:2021-09-27,最新业务变化以文中链接内展示的数据为准,请点击查看
钠电池,氢电池,空气电池基本上都没戏。当然在国家层面上,那是另外一回事。
第一作者:Yuqi Li
通讯作者:胡勇胜,陆雅翔
通讯单位:中国科学院物理研究所
【研究亮点】
报告了一种能量密度超过200 Wh kg-1的初始无负极钠电池,高于商用 LiFePO4||石墨电池。 通过在铝集流体上引入石墨碳涂层以及电池中加入含硼电解质,结果表明均匀的成核和稳定界面可实现可逆和无裂纹的钠沉积。钠电池在不施加额外压力的情况下的 循环寿命达到了260次 ,这是零过量钠的大尺寸电池的最长寿命。
【主要内容】
考虑到全球丰富的钠储量及其分布,钠离子电池(NIBs)是一种具有成本效益的电能存储选择。然而,受限于Na相对较大的原子尺寸和重量,目前NIBs的能量密度普遍低于160 Wh kg-1,低于商业锂离子电池的能量密度。实现更高能量的一个有前景的解决方案是用超薄钠金属替换NIB中的插入型电极,以制造钠金属电池(NMB)。然而,由于金属钠的柔软和粘性,加工和成型都很难生产出超薄的钠金属负极。另一方面,具有含有过量钠的厚负极NMB可能会牺牲能量密度。无负极钠电池 (AFNB) 配置可以解决上述问题。在AFNB中,“真正的负极”是在第一次充电过程中原位电化学形成的;在负极侧形成的Na始终被封装而没有暴露在空气中,并且没有Na被浪费,因为活性Na+穿梭完全来自正极材料。这不仅有利于制造过程,而且还提高了AFNB的能量密度。 然而,在AFNB运行过程中,活性Na被不断消耗并且易断裂和重建的固体电解质界面相(SEI)将导致容量快速衰减。在重复沉积和剥离过程中,不均匀的沉积形态也会导致“死钠”,从而导致低库仑效率 (CE)。
鉴于此, 中国科学院物理研究所 胡勇胜研究员、陆雅翔副研究员团队使用BPG电解质( M NaPF6和 M NaBF4 溶在二甘醇二甲醚中)、GC(石墨碳)集 流体和层状氧化物正极,通过界面工程策略制造了具有协同界面的AFNB。 基于GC上的小而均匀的Na成核,实现了平整的Na沉积以及稳定的SEI和CEI。冷冻电镜以及TOF-SIMS等先进表征手段和分子动力学模拟表明,由于BPG的特殊溶剂化形态,B-O在SEI的外层呈现二维分布,而在CEI的内层呈现三维分布。 这有效地抑制了死Na或Na枝晶的形成,修复了Na沉积和剥离过程中形成的裂纹,保护了正极的结构完整性并防止了与电解质的副反应。 组装的具有高安全性的无负极钠电池可提供超过 200 Wh kg 1的能量密度,考虑到使用无Co、V层状氧化物正极、贫非浓缩电解质、薄涂层集流体以及干燥室生产,这是非常具有成本效益的。 此外,得益于构建的协同界面,AFNB的循环寿命延长至260次以上,而且无需额外的压力或高温。 AFNB目前的瓶颈是能量密度低和实际条件下的循环稳定性有限。在这些方面,通过展示使用贫醚电解质的高压区间应用,这项工作为高性能钠电池提供了对应的原型解决方案。本文提出的界面工程的思路有望刺激电池组件的进一步优化,促进未来AFNB的大规模应用。
Fig. 1 | Sodium batteries with cooperative interfaces using a graphitic carbon coating as the current collector and BPG as the electrolyte.
Fig. 2 | Current collectors and morphologies of Na plating and stripping.
Fig. 3 | Selection and assessment of electrolytes and SEI/CEI films.
Fig. 4 | Performance and mechanism of cooperative interfaces.
Fig. 5 | Comparison among different kinds of Na-based batteries.
Fig. 6 | Electrochemical performances and safety assessment of proposed Na batteries with cooperative interfaces.
【文献信息】
Li, Y., Zhou, Q., Weng, S. et al. Interfacial engineering to achieve an energy density of over 200 Wh kg 1 in sodium batteries. Nat Energy (2022).
1.钠资源丰富
随着新能源汽车市场高速发展,锂电池需求不断攀升,国内锂资源供给处于紧张状态,产业链公司争抢锂资源。在锂资源紧张的背景下,钠离子电池战略意义凸显。钠资源分布于全球各地,完全不受资源和地域的限制,钠离子电池相比锂离子电池有非常大的资源优势。
2.钠离子电池具有成本优势
钠电池成本优势使其更有经济性。锂电池负极只能使用铜箔,而钠电池则可以在正极负极都使用铝箔,单Kwh钠电池消耗铝箔量将较锂电池翻倍,同时铝箔价格更低,有望进一步降低钠电池材料成本。
3.钠离子电池安全性高
由于钠离子电池的内阻比锂电池高,所以其在短路的情况下瞬时发热量少,温升较低,热失控温度高于锂电池,具备更高的安全性。另一方面,锂电池在低温下充电会析锂,而钠电池却不会发生析出,故钠离子电池拥有更宽的工作温度范围。钠离子电池可以在-40℃到80℃的温度区间正常工作,-20℃的环境下容量保持率接近90%,高低温性能优于锂离子电池。
电池内正极壳一端填充由氧化银和石墨组成的正极活性材料,负极盖一端填充锌汞合金组成的负极活性材料,电解质溶液为KOH浓溶液. 电极反应式如下: 负极:Zn + 2OH- -2e-=== ZnO + H2O 正极:Ag2O + H2O + 2e- === 2Ag + 2OH- 你说的是正极的反应.
用于无枝晶耐用锌电池的工程化多功能分子骨架层
第一作者:于铧铭
通讯作者:陈月皎*,陈立宝*
单位:中南大学
近日,来自中南大学的陈立宝、陈月皎课题组等人,在国际知名期刊Nano Energy上发表题为“Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries”的观点文章。 该观点文章采用一种可扩展、低成本的浸涂技术,整合硅烷疏水性和有机磷酸锌优异亲锌性,在锌负极上构建了超薄多功能层(MTSi-Hedp-Zn),实现锌负极无枝晶稳定长循环。DFT计算和COMSOL模拟结果表明,在分子骨架的顶部有丰富的O-Si-CH3基团作为疏水嵌块,这是阻止溶剂化水腐蚀的影响因素。主链有机磷酸块上的亲锌P=O键作为Zn2+快速吸附和输运动力学的吸引区。
同时,这种组合使锌金属上的表面首选(002)晶体面,使界面电场协同均匀化,在没有枝晶和副反应的情况下优先平坦生长。因此,MTSi-Hedp-Zn电极在1和10 mAcm-2时循环寿命超过2000 h,极化电压分别为和 mV。与正极组装的全电池(CNT/MnO2和五氧化二钒)都比裸锌负极有更高的容量保持率。硅烷-有机磷酸的疏水亲锌多功能界面为设计无枝晶和无腐蚀的锌电极提供了重要的构建策略。
要点一:MTSi-Hedp-Zn的设计和界面组成研究
XPS能谱结果可以证明,MTSi中的Si-OH基团可以与Hedp分子中的P-OH基团发生反应。因此,MTSi、Hedp和Zn之间存在较强的化学键合,从而对锌箔具有良好的粘附强度。DFT结果表明,通过络合和热固化工艺得到的MTSi-Hedp具有显著的电子亲和性和大量亲锌位点。这有利于锌离子在纳米膜层上的均匀、快速沉积,使MTSi-Hedp-Zn负极在速率能力、可逆性和循环性方面具有优异的电化学性能。
图2 (a) 裸锌箔和 (b) MTSi-Hedp-Zn 电极的 SEM 图像。 (c) MTSi-Hedp-Zn 电极的 EPMA 图像和相应的元素映射。 (d, e) MTSi-Hedp-Zn 电极的 XPS 分析。 (f) MTSi-Hedp-Zn 电极的 FTIR 光谱。 (g) 计算的三个有机分子的前沿分子轨道能量。 (h) MTSi-Hedp-Zn 的计算 ESP 分布。
要点二:MTSi-Hedp-Zn耐腐蚀性研究
有疏水功能块的MTSi-Hedp保护层可以有效抑制锌金属负极在水系电解质中的腐蚀。由于其自身具备大量的疏水功能块(O-Si-CH3基团),可以有效实现锌负极表面去溶剂化,阻止活性水分子与锌负极的直接接触。采用飞行时间二次离子质谱(TOF-SIMS)和差分电化学质谱(DEMS)评估其抑制析氢的能力,极少的副产物堆积和氢气析出量表明,MTSi-Hedp-Zn负极可有效抑制锌负极腐蚀。
图3 电极在 2 M ZnSO4 水溶液中浸泡一周的 SEM 图像:(a)锌箔和(b)MTSi-Hedp-Zn。 (c) Zn 和 MTSi-Hedp-Zn 电极在 2 M ZnSO4 水溶液中浸泡一周后的相应 XRD 图谱。 (d) 裸 Zn 和 (e) MTSi-Hedp-Zn 电极上电解质的接触角。 (f) 裸 Zn 和 MTSi-Hedp-Zn 电极在 2 M ZnSO4 水溶液中的线性极化曲线。 (g) 裸 Zn 和 (h) MTSi-Hedp-Zn 电极的 TOF-SIMS 映射图像(ZnO+ 物质)。 原位 DEMS 曲线显示在第一个循环期间释放 H2 气体:(i) Zn//Zn 和 (j) MTSi-Hedp-Zn//MTSi-Hedp-Zn 对称电池。 (k) Zn//Zn 和 MTSi-Hedp-Zn//MTSi-Hedp-Zn 电池在经历交替循环(1 mA cm-2 和 1 mAh cm-2)和静止过程时的电化学性能。
要点三:锌负极的稳定性和电化学性能
基于上述发现和分析,MTSi-Hedp-Zn电极在疏水功能块和亲锌构建块的多功能作用下表现出优异的电化学性能。MTSi-Hedp-Zn在2000小时内保持了优越的循环稳定性,并且始终保持着极低的极化电压,证明了其作为ZIBs的高性能锌负极的有效性。此外,在倍率性能测试中,MTSi-Hedp-Zn负极具有优异的循环可逆性和结构稳定性。在整个循环中,均能保持较小的极化电压和较低的能垒,这表明电极表面没有阻碍离子传导的有害副产物的积累,从而实现了极其可逆的镀锌/剥离。
图4 (a) 对于 1 mAh cm-2,对称电池在 1 mA cm-2 下的电流-电压曲线。 (b) 对称电池在第 25 次循环时的放大电压曲线。 (c) 对称电池在 到 10 mA cm-2 的不同电流密度下的倍率性能,容量为 1 mAh cm-2。 ( d )在逐步增加的电流密度下对称电池的潜在演变。 (e) Zn//Zn 和 MTSi-Hedp-Zn//MTSi-Hedp-Zn 对称电池在 1 mA cm-2, mAh cm-2 的长期电流-电压曲线。 (f) 原位光学显微镜观察 (f) 裸 Zn 和 (g) MTSi-Hedp-Zn 电极在 10 mA cm-2 下的 Zn 沉积。
要点四:无枝晶锌沉积行为
形成的MTSi-Hedp-Zn层可以在丰富的表面疏水O-Si-CH3基团下阻断水,促进Zn2+溶剂化鞘的去除。这种包含大量亲锌-Zn-O-P=O基团的保护层也促进了锌离子的迁移,为锌的沉积提供了更多的亲锌位点和形核位点。MTSi-和hedp-结构的协同效应使稳定的循环和快速的Zn2+动力学具有平坦的沉积形态。
图5. 50 次循环后电极的 SEM 图像:(a,b)裸 Zn; (c, d) MTSi-Hedp-Zn。 50 个循环后电极的光学表面轮廓测量图像:(e)裸锌和(f)MTSi-Hedp-Zn。 在 (g) 裸 Zn 和 (h) MTSi-Hedp-Zn 电极上沉积过程中 Zn 离子通量分布的模拟。 (i) 在裸锌箔(上)和 MTSi-Hedp-Zn 电极(下)上镀锌的示意图。
要点五:全电池的电化学性能研究
与CNT/MnO2正极材料匹配后,MTSi-Hedp-Zn//CNT/MnO2电池的放电容量可保持在194 mAh g-1,300次循环后可保持在. 与商用V2O5材料匹配后,全电池在3Ag-1条件下进行2000次循环后,也提供了稳定的循环和的高容量保留率。同时,MTSi-Hedp-Zn负极也在倍率性能测试和自放电测试中表现出极大的优势。
图5 (a) 使用 CNT/MnO2 正极在 1 A g-1 的电流密度下与裸 Zn 和 MTSi-Hedp-Zn 电极配对的全电池的循环比较。 在 2 C 下 100 次循环后阳极的 SEM 图像:(b)裸锌和(c)MTSi-Hedp-Zn。 (d) 循环前使用 CNT/MnO2 作为阴极材料的全电池的 EIS 曲线。 (e) mV s 1 时的 CV 曲线。 (f) 自放电曲线。 (g) Zn//V2O5 和 MTSi-Hedp-Zn//V2O5 全电池在 3 A g-1 电流密度下的长期循环性能。 (h) MTSi-Hedp-Zn//CNT/MnO2 软包电池的照片。
Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries, .
【通讯作者简介】
陈月皎 副教授简介:中南大学粉末冶金研究院副教授。2015年获湖南大学博士学位,之后在香港理工大学从事博士后研究(2016-2018年)。她的研究兴趣集中在高性能电池,如锌/锂离子电池和柔性能源设备。
陈立宝 教授简介:中南大学粉末冶金研究院教授。2007年毕业于中国科学院上海微系统与信息技术研究所,获材料物理与化学博士学位。他的研究方向是特种锂电池和储能系统及其关键材料,包括宽温域锂离子电池、高比能锂金属电池和锌离子电池。
【第一作者介绍】
于铧铭 :中南大学粉末冶金研究院2020级硕士研究生。主要从事水系锌离子电池和电容器的材料设计和性能优化,包括锌负极表面修饰、结构试剂和电解液优化等。
水系锌离子电池电解液是水溶液,水系锌离子电池使用水溶液作为电解液,具有导电性高、安全不易燃、制备相对简单的特点,近年来引起人们的关注。由于锌的元素丰度高、价格低、理论密度高达825 mAh/g和较低的氧化还原电位(),被认为有望取代锂离子电池。
水系锌基电池具有安全性高、成本低、能量密度高等优点,在便携式电子设备、电动汽车和大规模储能领域具有应用前景。
目前,水系锌基电池面临的主要挑战为:锌负极一侧锌的不均匀沉积导致枝晶生长与脱落,影响锌基电池的循环稳定性;水系电解液离子传导率随着温度的降低而急剧下降,使得该体系电池在低温下无法运行,限制水系锌基电池应用范围。
该电解液由水(H2O)、乙二醇(EG)和硫酸锌(ZnSO4)组成,在低温下具有高的离子传导率(-40℃时为)。研究通过实验并结合理论计算,阐明Zn2+-EG分子间的相互作用,能显著提高EG-H2O分子间氢键相互作用,从而破坏电解液中H2O分子间连续的氢键,降低混合电解液的凝固点,在低温下实现Zn2+快速传输。
研究发现,采用该混合电解液构筑的锌离子混合超级电容器(ZHSC)和锌离子电池(ZIB),在-20℃均展现出高能量密度(ZHSC为36Wh/kg,ZIB为109Wh/kg)、高功率密度(ZHSC为,ZIB为)和长循环寿命(ZHSC为5500个循环,ZIB为250个循环)的特点。
成果简介
有机化合物材料环保,资源丰富,结构通用性强,组装成本低,被公认为阴极材料用于锂离子和钠离子电池。然而,有机化合物固有的较高溶解度和较低电导率材料严重影响其工业应用。 本文,青岛大学Cunguo Wang(第一作者)与中科院苏州纳米所等研究人员在《ACS Appl. Energy Mater.》期刊 发表名为“High-Performance PDB Organic Cathodes Reinforced by 3D Flower-like Carbon for Lithium-/Sodium-Ion Batteries”的论文, 研究报告了一种具有三维花状多孔碳结构(PDB/3D-FC) 的聚(2,3-二硫-1,4-苯醌)复合材料。
原位聚合方法使得PDB的分布更均匀,并且三维花状多孔碳结构防止 PDB 的积累。此外,PDB/3D-FC 的分级多孔结构为电子/离子提供了有效的传输路径。受益于理想的制造策略和精心挑选的材料中,DB/3D-FC电极在锂离子电池中显示出203 mAh g–1的优良倍率容量,在钠离子电池中显示出183 mAh g–1的优良倍率容量。本文报道的制备策略是通用的,适用于增强其他有机电极的电化学特性材料.
图文导读
图1. 由导电碳和有机材料组装PDB/3D-FC电极的方案
图2. 形态和成分分析
方案1. 制备聚合物PDB的合成路线
图3. (a) 3D-FC 和 PDB/3D-FC 的 XPS 光谱。(b) 3D-FC 的高分辨率 N1s 光谱。(c) S 2p 和 (d) C 1s 的 PDB/3D-FC 的 XPS 光谱。
图4. 用于 LIB 的 PDB/3D-FC 阴极的电化学性能。
图5. SIBs的PDB/3D-FC阴极的电化学性能。
文献:
科学家们发现了钠离子电池(sib)所需要的成分,这有助于提高sib的性能,如充电速度。尽管锂离子电池目前很受欢迎,但由于锂不仅昂贵而且有限,人们预计锂离子电池将很快找到新能源。研究结果表明,SiB有可能成为锂离子电池的替代品。
在无机晶体结构数据库中对约4300种化合物进行了钠迁移能的高通量计算,该化合物确实表现出优异的高速率性能和循环耐久性;详细地说,该化合物表现出稳定的10C循环,其完全充电的速率仅为6分钟。/在室温下进行50次充放电循环后,放电和约94%的容量保持率。这些结果与钠离子电池的典型阴极材料相当或优于后者。
日本名古屋理工学院(Nitech)的研究人员已经证明,一种特殊的材料可以作为钠离子电池的高效电池组分,与锂离子电池在多个电池特性,特别是充电速度方面进行竞争。
研究结果发表在2018年11月的科学报告中,由Nitech高级陶瓷系助理教授Naoto Tanibata博士领导。
流行的锂离子电池有几个好处——它们是可充电的,应用范围很广。它们被用于笔记本电脑和手机等设备,以及混合动力和全电动 汽车 。电动 汽车 是解决农村污染和实现清洁可持续交通的重要技术,在解决能源和环境危机方面发挥着重要作用。锂的一个缺点是它是一种有限的资源。不仅价格昂贵,而且其年产量(技术上)有限(由于干燥过程)。考虑到对电池驱动装置尤其是电动 汽车 的需求不断增加,寻找锂的替代品的需求变得越来越迫切,锂既便宜又丰富。
由于多种原因,钠离子电池是锂离子电池的一种有吸引力的替代品。钠不是一种有限的资源——它在地壳和海水中都很丰富。此外,在适当的晶体结构设计下,钠基组分有可能产生更快的充电时间。然而,钠不能简单地与锂交换,锂用于目前的电池材料,因为它是一个较大的离子尺寸和略有不同的化学。因此,研究人员需要在大量的候选材料中,通过试错法寻找最佳的钠离子电池材料。
Nitech的科学家们已经找到了解决这个问题的合理而有效的方法。从晶体结构数据库中提取约4300种化合物,并对其进行高通量计算后,其中一种化合物获得了良好的结果,因此是钠离子电池组分的一个很有前景的候选化合物。研究人员发现,Na2V3O7具有良好的电化学性能以及晶体和电子结构。该化合物具有快速充电性能,能在6分钟内稳定充电,研究人员还证明了该化合物具有较长的电池寿命和较短的充电时间。
“我们的目标是解决大型电池在电动 汽车 等严重依赖长时间充电的应用中面临的最大障碍。我们通过一项搜索来解决这个问题,该搜索将产生足够高效的材料,以提高电池的速率性能。”
尽管Na2v3o7具有良好的特性和对钠离子电池的总体预期影响,但研究人员发现,在最后的充电阶段,Na2v3o7发生了劣化,这将实际存储容量限制在理论存储容量的一半。因此,在他们未来的实验中,研究人员致力于提高这种材料的性能,以便在整个充电阶段保持稳定。”我们的最终目标是建立一种方法,使我们能够通过计算和实验相结合的方法来有效地设计电池材料,”Tanibata博士补充道。
文献引用:
Naoto Tanibata、Yuki Kondo、Shohei Yamada、Masaki Maeda、Hayami Takeda、Masanobu Nakayama、Toru Asaka、Ayuko Kitajou、Shigeto Okada。纳米管结构的Na2V3O7作为钠离子电池的阴极材料,具有高速率和稳定的循环性能。科学报告,2018年;8(1)doi: