学术论文具有四大特点:①学术性 ②科学性 ③创造性 ④理论性一、学术性学术论文的科学性,要求作者在立论上不得带有个人好恶的偏见,不得主观臆造,必须切实地从客观实际出发,从中引出符合实际的结论。在论据上,应尽可能多地占有资料,以最充分的、确凿有力的论据作为立论的依据。在论证时,必须经过周密的思考,进行严谨的论证。二、科学性科学研究是对新知识的探求。创造性是科学研究的生命。学术论文的创造性在于作者要有自己独到的见解,能提出新的观点、新的理论。这是因为科学的本性就是“革命的和非正统的”,“科学方法主要是发现新现象、制定新理论的一种手段,旧的科学理论就必然会不断地为新理论推翻。”(斯蒂芬·梅森)因此,没有创造性,学术论文就没有科学价值。三、创造性学术论文在形式上是属于议论文的,但它与一般议论文不同,它必须是有自己的理论系统的,不能只是材料的罗列,应对大量的事实、材料进行分析、研究,使感性认识上升到理性认识。一般来说,学术论文具有论证色彩,或具有论辩色彩。论文的内容必须符合历史 唯物主义和 唯物辩证法,符合“实事求是”、“有的放矢”、“既分析又综合” 的科学研究方法。四、理论性指的是要用通俗易懂的语言表述科学道理,不仅要做到文从字顺,而且要准确、鲜明、和谐、力求生动。1.表论文的过程 投稿-审稿-用稿通知-办理相关费用-出刊-邮递样刊一般作者先了解期刊,选定期刊后,找到投稿方式,部分期刊要求书面形式投稿。大部分是采用电子稿件形式。 2.发表论文审核时间一般普通刊物(省级、国家级)审核时间为一周,高质量的杂志,审核时间为14-20天。 核心期刊审核时间一般为4个月,须经过初审、复审、终审三道程序。 3.期刊的级别问题 国家没有对期刊进行级别划分。但各单位一般根据期刊的主管单位的级别来对期刊划为省级期刊和国家级期刊。省级期刊主管单位是省级单位。国家级期刊主管单位是国家部门或直属部门。
定义:经过图中每条边一次且仅一次并且行遍图中每个顶点的通路(回路),称为欧拉通路或欧拉迹(欧拉回路或欧拉闭迹),存在欧拉回路的图称为欧拉图。以下是无向图和有向图是否存在欧拉通路或回路的判别法:定理1:无向图具有欧拉通路,当且仅当G是连通图且有0个或两个奇度顶点。若无奇度顶点,则通路为回路;若有两个奇度顶点,则它们是每条欧拉通路的端点。推论1:无向图G为欧拉图(具有欧拉回路)当且仅当G是连通的,且G中无奇度顶点。定理2:一个有向图D具有欧拉通路,当且仅当D是连通的,且除了两个顶点外,其余顶点的入度均等于出度。这两个特殊的顶点中,一个顶点的入度比出度大1,另一个顶点的入度比出度小1.推论2:一个有向图D是欧拉图(具有欧拉回路),当且仅当D是连通的,且所有顶点的入度等于出度。
图论起源于18世纪,1736年瑞士数学家欧拉(Euler)发表了图论的第一篇论文“哥尼斯堡七桥问题”。在当时的哥尼斯堡城有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥连结起来,见图(1)。当时那里的居民热衷于一个难题:有游人怎样不重复地走遍七桥,最后回到出发点。 为了解决这个问题,欧拉用A,B,C,D4个字母代替陆地,作为4个顶点,将联结两块陆地的桥用相应的线段表示,如图(2),于是哥尼斯堡七桥问题就变成了图(2)中,是否存在经过每条边一次且仅一次,经过所有的顶点的回路问题了。欧拉在论文中指出,这样的回路是不存在的。 欧拉图图G的一个回路,若它恰通过G中每条边一次,则称该回路为欧拉回路。存在欧拉回路的图就是欧拉图。 只存在欧拉通路的图不能叫做欧拉图,可以叫做欧拉半图。 欧拉图是普通逻辑学中的重点之一,图论的一部分,可以直观的表示概念间的关系,刑事侦查逻辑里有实际用途。编辑本段关于欧拉图的定理 1.无向连通图G是欧拉图,当且仅当G不含奇数度结点(G的所有结点度数为偶数); 2.无向连通图G含有欧拉通路,当且仅当G有零个或两个奇数度的结点; 3.有向连通图D是欧拉图,当且仅当D中每个结点的入度=出度 4.有向连通图D含有欧拉通路,当且仅当D中除两个结点外,其余每个结点的入度=出度,且此两点满足deg-(u)-deg+(v)=±1。(起始点s的入读=出度+1,结束点t的出度=入度+1 或两个点的入读=出度)
论文集,是论文的集合,它的属性是一本书,书不是期刊,书的书号是ISBN,这是书号。期刊,是期刊,它每年都要连续出版的,它的刊号是CN,ISSN。所以,你看下这个出版物的介绍,如果上面是ISBN,就是论文集,如果是CN,就是期刊。如果你还有不明白的,你可以去淘淘论文网看下,那上面有一些论文发表知识,比较实用。。如果不明白可以继续追问
学术期刊是正式公开出版的,论文集往往是内部交流用,很少正式出版.有些论文集也可以作为一本书或期刊的增刊正式出版.期刊按刊载内容可以分为:新闻类期刊、科普类期刊、休闲类期刊、知识类期刊、学术性期刊.学术期刊应该是以刊载学术研究性论文或学术讨论性论文为主的期刊.一般学位论文的篇幅较期刊长,而且论文的全部内容是仅仅围绕题目进行阐述、论证的,且学位论文都有固定的格式,参考文献一般都超过了25个.期刊字数相对较少,围绕某一专题开展,实质性较强,内容简短精悍.会议论文和期刊论文区别详细:1、会议论文一定是针对某个学术会议投稿,并且由学术会议的会务组决定是否录用,期刊论文肯定是针对某学术期刊投稿,而且是期刊编辑部决定是否录用,而不是审稿专家,审稿专家只是审稿并返回意见,真论文的参考文献包括:图书、新闻、报纸、期刊、学位论文、会议集要 等!!而期刊 ,只能指学术期刊!!估计你问的是论文后面的参考文献的文献类型描述符是什么含义.根据GB3469-83《文献类型与文献载体代码》规定,以单字母标识:M专著(含古籍中的史、志论著) C论文集 N报纸文章 J期刊文章 D学位论参考文献类型都有专门的符号代替的:专著[M],论文集[C],报纸文章[N],期刊文章[J],学位论文[D],报告[R],标准[S],专利[P],论文集中的析出文献[A]
学术论文具有四大特点:①学术性 ②科学性 ③创造性 ④理论性一、学术性学术论文的科学性,要求作者在立论上不得带有个人好恶的偏见,不得主观臆造,必须切实地从客观实际出发,从中引出符合实际的结论。在论据上,应尽可能多地占有资料,以最充分的、确凿有力的论据作为立论的依据。在论证时,必须经过周密的思考,进行严谨的论证。二、科学性科学研究是对新知识的探求。创造性是科学研究的生命。学术论文的创造性在于作者要有自己独到的见解,能提出新的观点、新的理论。这是因为科学的本性就是“革命的和非正统的”,“科学方法主要是发现新现象、制定新理论的一种手段,旧的科学理论就必然会不断地为新理论推翻。”(斯蒂芬·梅森)因此,没有创造性,学术论文就没有科学价值。三、创造性学术论文在形式上是属于议论文的,但它与一般议论文不同,它必须是有自己的理论系统的,不能只是材料的罗列,应对大量的事实、材料进行分析、研究,使感性认识上升到理性认识。一般来说,学术论文具有论证色彩,或具有论辩色彩。论文的内容必须符合历史 唯物主义和 唯物辩证法,符合“实事求是”、“有的放矢”、“既分析又综合” 的科学研究方法。四、理论性指的是要用通俗易懂的语言表述科学道理,不仅要做到文从字顺,而且要准确、鲜明、和谐、力求生动。1.表论文的过程 投稿-审稿-用稿通知-办理相关费用-出刊-邮递样刊一般作者先了解期刊,选定期刊后,找到投稿方式,部分期刊要求书面形式投稿。大部分是采用电子稿件形式。 2.发表论文审核时间一般普通刊物(省级、国家级)审核时间为一周,高质量的杂志,审核时间为14-20天。 核心期刊审核时间一般为4个月,须经过初审、复审、终审三道程序。 3.期刊的级别问题 国家没有对期刊进行级别划分。但各单位一般根据期刊的主管单位的级别来对期刊划为省级期刊和国家级期刊。省级期刊主管单位是省级单位。国家级期刊主管单位是国家部门或直属部门。
图论起源于18世纪,1736年瑞士数学家欧拉(Euler)发表了图论的第一篇论文“哥尼斯堡七桥问题”。在当时的哥尼斯堡城有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥连结起来。当时那里的居民热衷于一个难题:有游人怎样不重复地走遍七桥,最后回到出发点。为了解决这个问题,欧拉用A,B,C,D4个字母代替陆地,作为4个顶点,将联结两块陆地的桥用相应的线段表示,于是哥尼斯堡七桥问题就变成了图中,是否存在经过每条边一次且仅一次,经过所有的顶点的回路问题了。欧拉在论文中指出,这样的回路是不存在的。
1。欧拉图是连通图,没有孤立结点2。不一定,你可以举个例子,就像一个正方形,你把每个顶点都连起来后发现不是欧拉图,因为欧拉图的条件是每个结点都是偶数度。
两条同时加在两个顶点之间不就没有奇数点了
阶为6,最大度为4,含有3边环,是欧拉图
1、除了平凡图(只有一个节点,无边)外,欧拉图是连通图。欧拉回路经过所有边也经过所有点,看定义。2、强连通有向图不一定是欧拉图。有的边可能会需要经过两次以上。比如1←2↑ \ ↑3←41与4的之间的边是从1到4的。欧拉回路要用到边14两次。3、既然是有向图,路径自然要考虑方向了。
《Us weekly》:这本杂志证明世界上总会有人热爱关心明星名流的举动,这便是US瘾君子。US遍及娱乐的所有类别,八卦涉及绯闻与穿着,强项便是针对名人的深入剖析报道。《VOGUE》:被称为“时尚圣经《ELLE》:ELLE [1]也是一本专注于时尚、美容、生活品味的女性杂志。 法国1945年创刊,国际版本达70份的惊人扩充能力,代表着法国桦榭集团的最强实力。ELLE杂志全球36个国家发行,拥有超过2000万忠实读者。《L'OFFICIEL》:是法国高端,顶尖的时尚杂志,也是法国乃至全世界最早的时尚杂志之一。《BAZAAR》:美国《 时尚芭莎》 杂志(Harper's Bazaar)是 全球著名的时装杂志,创刊于1867年
这问题有人能解?
1有段时间很流行一个段子,说:中国的时尚杂志是一群月薪八千的编辑,告诉一群月薪三千的读者,月收入三万的人怎么花钱。 当然这只是一般的时尚刊物,如果是顶级的时尚杂志那就另一番天地。 在国外,每逢巴黎米兰的时装周上都是欧美和日本的各大时尚杂志的主编永远坐第一排。《穿prada的恶魔》电影中主角就是以美国《VOGUE》时尚主编Anna Wintour为原型的。 在时尚圈,顶级时尚杂志的主编在时尚圈几乎拥有至高无上的权利,他们推荐的设计师和模特会迅速走红,许多会成为时尚界当红炸子鸡。 随着中国时尚产业的发展,国内五大时尚刊的主编的地位越来越高了。特别最近几年,几大时尚刊物联合演艺界举行的慈善晚会,如“时尚芭莎之夜”在国民中 影响力越来越大。 国内的明星们为了上杂志的封面都挤破头,而争取到的,一旦上这些顶级时尚杂志大大提升个人品牌、受到时尚圈和广告代言厂商的青睐,实现更大的价值。 对明星的效应如此显著,对于寻常人来说,这些杂志也是能提升个人衣着品味和审美情趣的。 时尚类型的杂志有它的特殊性,无论是杂志的编辑还是摄影师,设计师大多受过良好的专业训练,并且有较高的艺术修养,呈现出来作品依然有保障的。 记得读书时候,有个设计系的老师对我们说过,除了设计专业的课程,还要提高自己的审美和品味,还有一个很好的途径多看时尚类型的杂志。其实老师的话不无道理,套用一句广告词:越欣赏越懂得欣赏。 那么市面上时尚杂志那么多,那些才具有较高品味和审美价值,再者这些杂志都有那些特点,我们现在来了解五大时尚杂志。 2先说时装杂志最有代表的是《ELLE世界服装之苑》,是世界著名杂志《ELLE》的中文版。由上海译文出版社、法国桦榭菲力柏契出版社合办。也是第一本进入中国的国际高端女性大刊。 ELLE杂志1945年创刊于法国巴黎,全球各个地区和国家发行46个版本,是传统时尚杂志中的翘楚。一直以“时尚先锋,卓尔不群, 魅力尤物”为风格定位。 所有从它的封面设计,可以看出的风格,简洁时髦,功能性强,很国际化。期刊的内容方面,关于服饰和时尚前沿的信息量很大,每个时尚周都会出内容十分详尽的时尚资讯,而且时尚资源一直不错。 作为设计行业从业者来说:其内容实用性强,更新及时,阅读体验也不错。通过对时尚流行趋势的精确分析、传播、选择,ELLE产品形象上形成独一无二的风格。 国内媒体当中都算是最优秀的之一。3其实早年在中国,提到时尚杂志,肯定逃不开这本《VOGUE服饰与美容》,《VOGUE》成立于1892年,已经有一百多年的历史了,世界好几个国家的都有版本,其中以意大利、法国版本最为有名,而且历史悠久。 当年在校读书的时候,就非常喜欢去图书馆翻阅这个杂志的海外版,八九十年代的时尚内容品质都相当高,vogue不管是哪一个版本都是目前世界最顶尖的杂志是,也世界上历史悠久广受尊崇的时尚圣典。 可是在中国,自2005年创刊来,已经发展十多年了,并 没 有 进 步! 为什么会这样说呢?以前觉得限于国内编辑等因素和水平,生生把这本又优良传承的经典时尚杂志做成一流下的时尚杂志。说实在的,国内《VOGUE》无论是从封面到内容都不尽人意。 现在通过《ELLE》和《Harper’s BAZAAR 时尚巴莎》的对比,只能是它真的太不求上进了,依旧停留在创刊初期的审美,十周年刊的封面,生生把十位国内重量级女明星做成金色人偶,如果你看到了,就会体会到我那种恨铁不成钢失望。 看杂志封面的排版,不是金色,就是跟封面人物衣服的同一个色系,而且恨不能把杂志里面的内容所有的标题全放在封面上,没有任何留白,让人想象的空间。 有时候会觉得它比跟一些二线日韩时尚杂志高不到哪里去,这方面主编功不可没。4 《Harper's Bazaar》诞生之初是一本周刊,面向中层和上层阶级的女士们,介绍德国和巴黎的最新流行资讯。直到1901年,《Harper's Bazaar》开始变为每月一刊,首任主编梅阿丽·布斯是当时著名的历史学家、翻译家,并且确立了杂志的超前意识。它是一本服务于中国精英女性阶层的时尚杂志,传播来自时装、美和女性的力量。 BAZAAR明星慈善夜是由《时尚芭莎》杂志发起的中国最高规格的慈善晚宴,通过拍卖国际顶级品牌奢侈品的形式为中国慈善机构募集善款。算是时尚界最为人知的慈善晚宴。因为是中国纺织品进出口总公司出版社和中国时装杂志社合办的,所有在服装行业方面的资讯和专业性都非常强,这几年的发展,在国内的影响力已经超赶了《VOGUE服饰与美容》《ELLE世界服装之苑》。虽然封面的品质时好时坏,但是它国内的编辑勇于尝试,从请霍建华和胡歌拍摄封面,抛弃一直只用女明星和模特做封面的首例,第一次用纯男明星,引领了潮流,形成一种风潮。内容上讲,它更加既有专业精神。 从请洛梅笙等专门研究服装史的专业人士写专栏,到时尚周出品的资料,可以看出杂志的主编不仅仅引领中国时尚潮流,而是对服装和时尚有着深刻的理解,传承和发展起到不可忽视的作用,是其使命感和深度都十分值得赞赏的。如果说每年只订一本国内时尚杂志,我会把这个机会给《Harper’s BAZAAR 时尚巴莎》,多年来,主编苏芒的贡献功不可没。如果主编少出镜,我会更爱它。 5《Marie Claire嘉人》由Jean Prouvost 在1937年于法国创刊,2002年12月来到中国。由中国体育报业总社和法国桦榭菲力柏契出版社合办。也是世界著名高档女性期刊之一。国内从无到有,也是今年来进步最大的一本时尚杂志,特别现在已经确立的风格类型是有区别于欧美风的,更加偏向韩风,却有中国自己的特色。 无论是从封面,还是从内容上,它的风格来说比较稳定,而且在配色和构图上大胆前卫。这几年在服装设计行业,很多设计都十分喜欢这个杂志。 隐隐有种迎头超赶一线的势头,色调呈现缤纷多彩,整体风格年轻活泼,视觉差异的效果十分有趣,非常具有艺术现代的艺术特色。6《COSMOPOLITAN 时尚》该杂志创办于1886年,1905年出版业大亨威廉·赫斯特以时价四十万美金的价格(折合2006年现价约一千万美金)将其收购,其风格为高雅、精致的、和大胆、风趣。 《COSMOPOLITAN 时尚》的风格有时候不太稳定。好的时候,如果不看杂志上的文字,你会以为是超一线的杂志,虽然之前编辑的内容比较杂乱,也有失手的时候。但是如今渐渐也形成了以欧美风为主,日韩风为辅助,整体水平越来越高的发展趋势。 虽然如今《COSMOPOLITAN 时尚》与《Marie Claire嘉人》从影响力稍逊于《VOGUE》《世界时装之苑》《 时尚巴莎》,随着中国时尚产业的发展,也有了长足的进步,渐渐找到了自己的位置,并且影响力越来越大,受众群体越来越多,其实都是好事。 以上一家之言,勿掐!
去邮局问问看
欧拉,全名是莱昂哈德·欧拉(Leonhard Euler,1707-1783),1707年出生在瑞士的巴塞尔城。18世纪最优秀的数学家,也是历史上最伟大的数学家之一,被称为“分析的化身”。失明前莱昂哈德·欧拉小时候他就特别喜欢数学,不满10岁就开始自学《代数学》。这本书连他的几位老师都没读过,可小欧拉却读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教。13岁就进巴塞尔大学读书,这在当时是个奇迹,曾轰动了数学界。小欧拉是这所大学,也是整个瑞士大学校园里年龄最小的学生。在大学里得到当时最有名的数学家微积分权威约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导,并逐渐与其 莱昂哈德·欧拉建立了深厚的友谊。约翰·伯努利后来曾这样称赞青出于蓝而胜于蓝的学生:“我介绍高等分析时,他还是个孩子,而你将他带大成人。”两年后的夏天,欧拉获得巴塞尔大学的学士学位,次年,欧拉又获得巴塞尔大学的哲学硕士学位。1725年,欧拉开始了他的数学生涯。欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点数学。由于小欧拉的才能和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖金后,他的父亲就不再反对他攻读数学了。1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡。1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授。1735年,欧拉解决了一个天文学的难题(计算彗星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了。 失明后过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。欧拉完全失明以后,虽然生活在黑暗中,但仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。1783年9月18日,在不久前才刚计算完气球上升定律的欧拉,在兴奋中突然停止了呼吸,享年76岁。欧拉生活、工作过的三个国家:瑞士、俄国、德国,都把欧拉作为自己的数学家,为有他而感到骄傲。超人的记忆和心算能力欧拉的记忆力和心算能力是罕见的.比如,他能背诵前一百位质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容;心算并不限于简单的运算,高等数学里的计算一样可以用心算去完成。有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题。 高尚的风格欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉。他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:“读读欧拉、读读欧拉,它是我们大家的老师!” 当欧拉64岁高龄之时,一场突如其来的大火烧掉了他几乎全部的著述,而神奇的欧拉用了一年的时间口述了所有这些论文并作了修订。一年以后,1783年9月18日的下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我要死了",欧拉终于"停止了生命和计算"。 渊博的知识欧拉是18世纪科学界的代表人物,是那个时代的巨人。他是历来最有才华、最博学的人物之一,也是历史上最多产的一位数学家。欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文。据统计他那不倦的一生,共写下了856篇论文,专著32部,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等数不胜数。欧拉的兴趣十分广泛,他研究过天文学、物理学、航海学、建筑学、地质学、化学等等,在这些领域,欧拉也留下了大量的论文、著作。 著作量惊人欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗。他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后, 也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文。19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。"欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得人们学习的。欧拉在数学、物理、天文、建筑以至音乐、哲学方面都取得了辉煌的成就。在数学的各个领域,常常见到以欧来命名的公式、定理、和重要常数。课本上常见的如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),Σ(1755年),f(x)(1734年)等,都是他创立并推广的。歌德巴赫猜想也是在他与歌德巴赫的通信中提出来的。欧拉还首先完成了月球绕地球运动的精确理论,创立了分析力学、刚体力学等力学学科,深化了望远镜、显微镜的设计计算理论。欧拉一生能取得伟大的成就原因在于:惊人的记忆力;聚精会神,从不受嘈杂和喧闹的干扰;镇静自若,孜孜不倦。1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金。这标志着欧拉的羽毛已丰满,从此可以展翅飞翔。欧拉的成长与他这段历史是分不开的。当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容。高等数学的计算他可以用心算来完成。尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象。由于约翰·伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路。这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才华的数学工作者,其中包括后来成为大数学家的拉格朗日()。欧拉本人虽不是教师,但他对教学的影响超过任何人。他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视"名流"的非议,热心于数学的普及工作。他编写的《无穷小分析引论》、《微分法》和《积分法》产生了深远的影响。有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书。欧拉在这方面与其它数学家如卡尔·弗里德里希·高斯()、艾萨克·牛顿()等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂。而欧拉的文字既轻松易懂,堪称这方面的典范。他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色。他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书。他编写的初等代数和算术的教科书考虑细致,叙述有条有理。他用许多新的思想的叙述方法,使得这些书既严密又易于理解。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式,又把三角函数与指数函联结起来。在普及教育和科研中,欧拉意识到符号的简化和规则化既有有助于学生的学习,又有助于数学的发展,所以欧拉创立了许多新的符号。如用sin 、cos 等表示三角函数,用 e 表示自然对数的底,用f(x) 表示函数,用 ∑表示求和,用 i表示虚数等。圆周率π虽然不是欧拉首创,但却是经过欧拉的倡导才得以广泛流行。而且,欧拉还把e 、π 、i 统一在一个令人叫绝的关系式中。 重视教育,重视人才欧拉不但重视教育,而且重视人才。当时法国的拉格朗日只有19岁,而欧拉已48岁。拉格朗日与欧拉通信讨论"等周问题",欧拉也在研究这个问题。后来拉格朗日获得成果,欧拉就压下自己的论文,让拉格朗日首先发表,使他一举成名。欧拉19岁大学毕业时,在瑞士没有找到合适的工作。1727年春,在巴塞尔他试图担任空缺的教研室主任职务,但没有成功。这时候,俄国的圣彼得堡科院刚建立不久,正在全国各地招聘科学家,广泛地搜罗人才。已经应聘在彼得堡工作的丹尔·伯努利深知欧拉的才能,因此,他竭力聘请欧拉去俄罗斯。在这种情况下,欧拉离开了自己的祖国。由于丹尼尔的推荐,1727年,欧拉应邀到圣彼得堡做丹尼尔·伯努利的助手。在圣彼得堡科学院,他顺利地获得了高等数学副教授的职位。1731年,又被委任领导理论物理和实验物理教研室的工作。1733年,年仅26岁的欧拉接替回瑞士的丹尼尔,成为数学教授及彼得堡科学院数学部的领导人。在这期间,欧拉勤奋地工作,发表了大量优秀的数学论文,以及其它方面的论文、著作。古典力学的基础是牛顿奠定的,而欧拉则是其主要建筑师。1736年,欧拉出版了《力学,或解析地叙述运动的理论》,在这里他最早明确地提出质点或粒子的概念,最早研究质点沿任意一曲线运动时的速度,并在有关速度与加速度问题上应用矢量的概念。同时,他创立了分析力学、刚体力学,研究和发展了弹性理论、振动理论以及材料力学。并且他把振动理论应用到音乐的理论中去,1739年,出版了一部音乐理论的著作。1738年,法国科学院设立了回答热本质问题征文的奖金,欧拉的《论火》一文获奖。在这篇文章中,欧拉把热本质看成是分子的振动。 应用数学大师欧拉研究问题最鲜明的特点是:他把数学研究之手深入到自然与社会的深层。他不仅是位杰出的数学家,而且也是位理论联系实际的巨匠,应用数学大师。他喜欢搞特定的具体问题,而不象现代某些数学家那样,热衷于搞一般理论。正因为欧拉所研究的问题都是与当时的生产实际、社会需要和军事需要等紧密相连,所以欧拉的创造才能才得到了充分发挥,取得了惊人的成就。欧拉在搞科学研究的同时,还把数学应用到实际之中,为俄国政府解决了很多科学难题,为社会作出了重要的贡献。如菲诺运河的改造方案,宫延排水设施的设计审定,为学校编写教材,帮助政府测绘地图;在度量衡委员会工作时,参加研究了各种衡器的准确度。另外,他还为科学院机关刊物写评论并长期主持委员会工作。他不但为科学院做大量工作,而且挤出时间在大学里讲课,作公开演讲,编写科普文章,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析。1735年,欧拉着手解决一个天文学难题──计算彗星的轨迹(这个问题需经几个著名的数学家几个月的努力才能完成)。由于欧拉使用了自己发明的新方法,只用了三天的时间。但三天持续不断的劳累也使欧拉积劳成疾,疾病使年仅28岁的欧拉右眼失明。这样的灾难并没有使欧拉屈服,他仍然醉心于科学事业,忘我地工作。但由于俄国的统治集团长期的权力之争,日益影响到了欧拉的工作,使欧拉很苦闷。事也凑巧,普鲁士国王腓特烈大帝(Frederick the Great,1740-1786在位)得知欧拉的处境后,便邀请欧拉去柏林。尽管欧拉十分热爱自己的第二故乡(在这里他已经工作生活了14年),但为了科学事业,他还是在1741年暂时离开了圣彼得堡科学院,到柏林科学院任职,任数学物理所所长。1759年成为柏林科学院的领导人。在柏林工作期间,他并没有忘记俄罗斯,他通过书信来指导他在俄罗斯的学生,并把自己的科学著作寄到俄罗斯,对俄罗斯科学事业的发展起了很大作用。他在柏林工作期间,将数学成功地应用于其它科学技术领域,写出了几百篇论文,他一生中许多重大的成果都是这期间得到的。如:有巨大影响的《无穷小分析引论》、《微分学原理》,既是这期间出版的。此外,他研究了天文学,并与达朗贝尔('Alembert,)、拉格朗日一起成为天体力学的创立者,发表了《行星和彗星的运动理论》、《月球运动理论》、《日蚀的计算》等著作。在欧拉时代还不分什么纯粹数学和应用数学,对他来说,整个物理世界正是他数学方法的用武之地。他研究了流体的运动性质,建立了理想流体运动的基本微分方程,发表了《流体运动原理》和《流体运动的一般原理》等论文,成为流体力学的创始人。他不但把数学应用于自然科学,而且还把某一学科所得到的成果应用于另一学科。比如,他把自己所建立的理想流体运动的基本方程用于人体血液的流动,从而在生物学上添上了他的贡献,又以流体力学、潮汐理论为基础,丰富和发展了船舶设计制造及航海理论,出版了《航海科学》一书,并以一篇《论船舶的左右及前后摇晃》的论文,荣获巴黎科学院奖金。不仅如此,他还为普鲁士王国解决了大量社会实际问题。1760年到1762年间,欧拉应亲王的邀请为夏洛特公主函授哲学、物理学、宇宙学、神学、化理学、音乐等,这些通信充分体现了欧拉渊博的知识、极高的文学修养、哲学修养。后来这些通信整理成《致一位德国公主的信》,1768年分三卷出版,世界各国译本风靡,一时传为佳话。自从1741年欧拉离开彼得堡以后,俄国的政局一直不好,政权几次更迭,最后落入叶卡捷林娜二世的手中,她吸取了以往的教训,开始致力于文治武功。她一面与伏尔泰、狄德罗等法国启蒙学者通信,一面又四方招聘有影响的科学家去彼得堡科学院任职。欧拉自然成了她主要聘请的对象。1766年,年已花甲的欧拉应邀回到彼得堡,这次俄国为他准备了优越的工作条件。这时欧拉的科学研究工作已经是硕果累累,思想也已经成熟。除了一些专题还需继续研究外,他希望能在晚年对过去的成就作系统的总结,出版几部高质量的著作。然而,厄运再次向他袭来。由于俄罗斯气候严寒,以及他工作的劳累,欧拉的左眼又失明了,从此欧拉陷入伸手不见五指的黑暗之中。但欧拉是坚强的,他用口授、别人记录的方法坚持写作。他先集中精力撰写了《微积分原理》一书,在这部三卷本巨著中,欧拉系统地阐述了微积分发明以来的所有积分学的成就,其中充满了欧拉精辟的见解。1768年,《积分学原理》第一卷在圣彼得堡出版。1770年第三卷出版。同年,他又口述写成《代数学完整引论》,有俄文、德文、法文版,成为欧洲几代人的教科书,正当欧拉在黑暗中搏斗时,厄运又一次向他袭来。1771年,圣彼得堡一场大火,秧及欧拉的住宅,把欧拉包围在大火中。在这危急的时刻,是一位仆人冒着生命危险把欧拉从大火中背出来。欧拉虽然幸免于难,可他的藏书及大量的研究成果都化为灰烬。种种磨难,并没有把欧拉搞垮。大火以后他立即投入到新的创作之中。资料被焚,他又双目失明,在这种情况下,他完全凭着坚强的意志和惊人的毅力,回忆所作过的研究。欧拉的记忆力也确实罕见,他能够完整地背诵出几十年前的笔记内容,数学公式当然更能背诵如流。欧拉总是把推理过程想得很细,然后口授,由他的长子记录。他用这种方法又发表了论文400多篇以及多部专著,这几乎占他全部著作的半数以上。1774年,他把自己多年来研究变分问题所取得的成果集中发表一本书《寻求具有某种极大或极小性质的曲线的技巧》中。从而创立了一个新的分支──变分法。另外,欧拉对天文学中的"三体问题"月球运动及摄运问题进行了研究。后来,他解决了艾萨克·牛顿没有解决的月球运动问题,首创了月球绕地球运动地精确理论。为了更好地进行天文观测,他曾研究了光学,天文望远镜和显微镜。研究了光通过各种介质的现象和有关的分色效应,提出了复杂的物镜原理,发表过有关光学仪器的专著,对望远镜和显微镜的设计计算理论做出过开创性的贡献,在1771年他又发表了总结性著作《屈光学》。欧拉从19岁开始写作,直到逝世,留下了浩如烟海的论文、著作,甚至在他死后,他留下的许多手稿还丰富了后47年的圣彼得堡科学院学报。就科研成果方面来说,欧拉是数学史上或者说是自然科学史上首屈一指的。 平凡而伟大的人生作为这样一位科学巨人,在生活中他并不是一个呆板的人。他性情温和,性格开朗,也喜欢交际。欧拉结过两次婚,有13个孩子。他热爱家庭的生活,常常和孩子们一起做科学游戏,讲故事。欧拉旺盛的精力和钻研精神一直坚持到生命的最后一刻。1783年9月18日下午,欧拉一边和小孙女逗着玩,一边思考着计算天王星的轨迹,突然,他从椅子上滑下来,嘴里轻声说:“我死了。”一位科学巨匠就这样停止了生命。历史上,能跟欧拉相比的人的确不多,也有的历史学家把欧拉和阿基米德、艾萨克·牛顿、卡尔·弗里德里希·高斯列为有史以来贡献最大的四位数学家,依据是他们都有一个共同点,就是在创建纯粹理论的同时,还应用这些数学工具去解决大量天文、物理和力学等方面的实际问题,他们的工作是跨学科的,他们不断地从实践中吸取丰富的营养,但又不满足于具体问题的解决,而是把宇宙看作是一个有机的整体,力图揭示它的奥秘和内在规律。卡尔·弗里德里希·高斯说过:"对于欧拉工作的研究,将仍旧是对于数学的不同范围的最好的学校,并且没有别的可以替代它"。贡献欧拉是18世纪数学巨星,在微积分、微分方程、几何、数论、变分学等领域均做出了巨大贡献。在微积分方面。他整理了由伯努利家族继承、发扬的莱布尼兹学派的微积分学的内容。他先后发表了《无穷小分析引论》(1748)、《微分学》(1755)、《积分学》(1768)等著作。首先,他对函数概念进行了系统的探讨。给出了函数的新定义,定义了多元函数概念,引入了超越函数概念。其次,1770年前后,欧拉对由弧围成的有界区域上的二重定积分已有清楚的概念,并给出了用累次积分计算这种积分的程序。第三,欧拉研究了数列{(1+1/n)n}极限的存在性,并把这个极限记为e,后来又用e作为底数,建立了自然对数。第四,欧拉把实函数的许多结果形式地推广到复数域。推动了复变函数理论的发展。在微分方程方面。1727年,欧拉将一类二阶方程通过变量替换化为一阶方程,这是对二阶方程系统研究的开始。1739年他又研究了谐振子方程、谐振子的强迫振动方程,并得到了解答。1760年他将特殊的黎卡提方程化为线性方程。欧拉对偏微分方程的研究是开拓性的。1748年他指出弦的运动是周期性的,还用三角级数表出了解。在数论方面。二次互反律是欧拉首先发现的。欧拉还引入了以他名字命名的数论中的欧拉函数。在几何方面。他引入了曲线的参数表示,并提出了通过变换将曲面方程化成标准型的方法。1760年欧拉发表了题为《关于曲面上曲线的研究》的论文。文中得到许多重要结果。这些成果为曲面理论奠定了基础。在变分学方面。欧拉通过对函数极值问题的研究,解决了一般函数的极值问题之后,他于1734年研究了“最速降线”问题,并成功地找到了极值函数必须满足的常微分方程,即欧拉方程。1756年他把这个新学科命名为变分学。在初等数学方面。欧拉抛弃了陈旧的概念,采用新的思想方法去叙述、处理问题,建立了新的初等数学体系。
可以与RSA联系着写
欧拉生平欧拉(Euler,1707~1783),瑞士数学家及自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国的彼得堡去逝。欧拉出生于一个牧师家庭,自幼受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一·伯努利的特别指导,专心研究数学。18岁时,他彻底的放弃了当牧师的想法而专攻数学,并开始发表文章。1727年,在丹尼尔·伯努利的推荐下,欧拉到俄国的彼得堡科学院从事研究工作,并在1731年接替丹尼尔第一·伯努利,成为物理学教授。在俄国的14年中,他努力不懈地投入研究工作,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府的要求,解决了不少如地图学、造船业等的实际问题。1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士腓特烈大帝的邀请到德国科学院担任物理数学所所长一职,长达25年。他在柏林期间的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学等等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何及其他数学领域均有开创性的发现。1766年,他应俄国沙皇喀德林二世的礼聘重回彼得堡。在1771年,一场重病使他的左眼亦完全失明,但他以其惊人的记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学著作,直至生命的最后一刻。欧拉是18世纪数学界最杰出的人物之一,他不但为数学界做出贡献,更把数学推至几乎整个物理的领域。此外,他是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》,《微分学原理》,以及《积分学原理》都成为数学中的经典著作。除了教科书外,欧拉平均以每年800页的速度写出创造性论文。他去世后,人们整理出他的研究成果多达74卷。欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支,如无穷级数、微分方程等的产生与发展奠定了基础。欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出了ξ函数在偶数点的值,他证明了a2k是有理数,而且可以伯努利数来表示。此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,其值近似为……在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程这门学科。其中在常微分方程方面,他完整地解决了n阶常系数线性齐次方程的问题,对于非齐次方程,他提出了一种降低方程阶的解法;在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是偏微分方程在纯数学研究中的第一篇论文。在微分几何方面,欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关于曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为z=f(x,y),并引入一系列标准符号以表示z对x,y的偏导数,这些符号至今仍通用。此外,在该著作中,他亦得到了曲面在任意截面上截线的曲率公式。欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B函数,这证明了椭圆积分的加法定理,以及最早引入二重积分等等。在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果使得数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了著名的哥尼斯堡七桥问题,创立了拓扑学。欧拉对数学的研究如此广泛,因此在许多数学的分支中都能经常见到以他的名字命名的重要常数、公式和定理。
数学研究性学习报告 (妙趣横生的数学)一:数学史上的三次危机。毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。 第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。 罗素悖论与第三次数学危机。 十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……” 可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。 罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。 其实,在罗素之前集合论中就已经发现了悖论。如1897年,布拉利和福尔蒂提出了最大序数悖论。1899年,康托尔自己发现了最大基数悖论。但是,由于这两个悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。罗素悖论则不同。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。如G.弗雷格在收到罗素介绍这一悖论的信后伤心地说:“一个科学家所遇到的最不合心意的事莫过于是在他的工作即将结束时,其基础崩溃了。罗素先生的一封信正好把我置于这个境地。”戴德金也因此推迟了他的《什么是数的本质和作用》一文的再版。可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。 危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自已这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。二:经典数学问题:七桥问题 著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。 有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。 当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。 Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。 后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成. 欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。 接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案! 1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。 数学的世界奥妙无穷,大家尽情驰骋吧!附录:永远的大师—欧拉欧拉(Euler,1707-1783),瑞士数学家及自然科学家。在1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国的彼得堡去逝。 欧拉出生於牧师家庭,自幼已受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。 欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一.伯努利的特别指导,专心 研究数学,直至18岁,他彻底的放弃当牧师的想法而专攻数学,於19岁时(1726年)开始创作文章,并获得巴黎科学院奖金。1727年,在丹尼尔.伯努利的推荐下,到俄国的彼得堡科学院从事研究工作。并在1731年接替丹尼尔第一.伯努利 ,成为物理学教授。在俄国的14年中,他努力不懈地投入研究,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府 的要求,解决了不少如地图学、造船业等的实际问题。1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士 腓特烈大帝的邀请到德国科学院担任物理数学所所长一职。他在柏林期间,大大的扩展了研究的内容,如行星运动、刚体运动、热力学、弹道学、人口学等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何 及其他数学领域均有开创性的发现。 1766年,他应俄国沙皇喀德林二世敦聘重回彼得堡。在 1771年,一场重病使他的左眼亦完全失明。但他以其惊人的 记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学着作,直至生命的最后一刻。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。此外,他 是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》(1748),《微分学原理》(1755),以及《积分学原理》(1768-1770)都成为数学中的经典着作。 欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支(如无穷级数、微分方程等)的产生 与发展奠定了基础。 欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出ξ函数在偶数点的值: 。他证明了a2k是有理数,而且可以伯努利数来表示。 此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,,其值近似为 ... 在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程学。当中,在常微分方程方面,他 完整地解决了n阶常系数线性齐次方程的问题,对於非齐次方程,他提出了一种降低方程阶的解法;而在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是 偏微分方程在纯数学研究中的第一篇论文。 在微分几何方面(微分几何是研究曲线、曲面逐点变化性质的数学分支),欧拉引入了空间曲线的参数方程,给 出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关於曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为 z=f(x,y),并引入一系列标准符号以表示z对x,y的偏导数 ,这些符号至今仍通用。此外,在该着作中,他亦得到了曲面在任意截面上截线的曲率公式。 欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B 函数,这证明了椭圆积分的加法定理,以及最早引入二重积 分等等。在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定 理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果奠定了数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了着名的柯尼斯 堡七桥问题。欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。