怎么写开题报告呢?首先要把在准备工作当中搜集的资料整理出来,包括课题名称、课题内容、课题的理论依据、参加人员、组织安排和分工、大概需要的时间、经费的估算等等。第一是标题的拟定。课题在准备工作中已经确立了,所以开题报告的标题是不成问题的,把你研究的课题直接写上就行了。比如我曾指导过一组同学对伦教的文化诸如“伦教糕”、伦教木工机械、伦教文物等进行研究,拟定的标题就是“伦教文化研究”。第二就是内容的撰写。开题报告的主要内容包括以下几个部分:一、课题研究的背景。 所谓课题背景,主要指的是为什么要对这个课题进行研究,所以有的课题干脆把这一部分称为“问题的提出”,意思就是说为什么要提出这个问题,或者说提出这个课题。比如我曾指导的一个课题“伦教文化研究”,背景说明部分里就是说在改革开放的浪潮中,伦教作为珠江三角洲一角,在经济迅速发展的同时,她的文化发展怎么样,有哪些成就,对居民有什么影响,有哪些还要改进的。当然背景所叙述的内容还有很多,既可以是社会背景,也可以是自然背景。关键在于我们所确定的课题是什么。二、课题研究的内容。课题研究的内容,顾名思义,就是我们的课题要研究的是什么。比如我校黄姝老师的指导的课题“佛山新八景”,课题研究的内容就是:“以佛山新八景为重点,考察佛山历史文化沉淀的昨天、今天、明天,结合佛山经济发展的趋势,拟定开发具有新佛山、新八景、新气象的文化旅游的可行性报告及开发方案。”三、课题研究的目的和意义。课题研究的目的,应该叙述自己在这次研究中想要达到的境地或想要得到的结果。比如我校叶少珍老师指导的“重走长征路”研究课题,在其研究目标一栏中就是这样叙述的:1、通过再现长征历程,追忆红军战士的丰功伟绩,对长征概况、长征途中遇到了哪些艰难险阻、什么是长征精神,有更深刻的了解和感悟。2、通过小组同学间的分工合作、交流、展示、解说,培养合作参与精神和自我展示能力。3、通过本次活动,使同学的信息技术得到提高,进一步提高信息素养。四、课题研究的方法。在“课题研究的方法”这一部分,应该提出本课题组关于解决本课题问题的门路或者说程序等。一般来说,研究性学习的课题研究方法有:实地调查考察法(通过组织学生到所研究的处所实地调查,从而得出结论的方法)、问卷调查法(根据本课题的情况和自己要了解的内容设置一些问题,以问卷的形式向相关人员调查的方法)、人物采访法(直接向有关人员采访,以掌握第一手材料的方法)、文献法(通过查阅各类资料、图表等,分析、比较得出结论)等等。在课题研究中,应该根据自己课题的实际情况提出相关的课题研究方法,不一定面面俱到,只要实用就行。五、课题研究的步骤。课题研究的步骤,当然就是说本课题准备通过哪几步程序来达到研究的目的。所以在这一部分里应该着重思考的问题就是自己的课题大概准备分几步来完成。一般来说课题研究的基本步骤不外乎是以下几个方面:准备阶段、查阅资料阶段、实地考察阶段、问卷调查阶段、采访阶段、资料的分析整理阶段、对本课题的总结与反思阶段等。六、课题参与人员及组织分工。这属于对本课题研究的管理范畴,但也不可忽视。因为管理不到位,学生不能明确自己的职责,有时就会偷懒或者互相推诿,有时就会做重复劳动。因此课题参与人员的组织分工是不可少的。最好是把所有的参与研究的学生分成几个小组,每个小组通过民主选举的方式推选出小组长,由小组长负责本小组的任务分派和落实。然后根据本课题的情况,把相关的研究任务分割成几大部分,一个小组负责一个部分。最后由小组长组织人员汇总和整理。七、课题的经费估算。一个课题要开展,必然需要一些经费来启动,所以最后还应该大概地估算一下本课题所需要 的资金是多少,比如搜集资料需要多少钱,实地调查的外出经费,问卷调查的印刷和分发的费用,课题组所要占用的场地费,有些课题还需要购买一些相关的材料,结题报告等资料的印刷费等等。所谓“大军未动,粮草先行”,没有足够的资金作后盾,课题研究势必举步维艰,捉襟见肘,甚至于半途而废。因此,课题的经费也必须在开题之初就估算好,未雨绸缪,才能真正把本课题的研究做到最好。
LZ是文科生吧
我会可以q我谈
所以你写完了吗?能不能给我参考参考
如下:
线性方程组:A(mxn)X = b ------ (1)
A是m行n列(m>n)的行列式:A'是A的转置矩阵,将(1)变成
(A'A)X = A'b - - - - (2)
(A'A)是nxn阶方阵,它的逆矩阵称为广义逆矩阵。
(A'A)行列式不为零,方程组(2)有唯一解,且与(1)的最小二乘解相对应!此结论的证明也不复杂。
思想:
广义逆的思想可追溯到1903年(E.)I.弗雷德霍姆的工作,他讨论了关于积分算子的一种广义逆(他称之为伪逆)。
1904年,D.希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。而任意矩阵的广义逆定义最早是由.穆尔在1920年提出的,他以抽象的形式发表在美国数学会会刊上。
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
线性方程组:A(mxn)X = b ------ (1)A是m行n列(m>n)的行列式:A'是A的转置矩阵,将(1)变成(A'A)X = A'b - - - - (2)(A'A)是nxn阶方阵,它的逆矩阵称为广义逆矩阵。(A'A)行列式不为零,方程组(2)有唯一解,且与(1)的最小二乘解相对应!此结论的证明也不复杂。
注:下文中^后面的内容为上标广义逆矩阵是对逆矩阵的推广。 若A为非奇异矩阵,则线性方程组Ax=b的解为x=A^(-1)b,其中A的逆矩阵A^(-1)满足A^(-1)A=AA^(-1)=I(I为单位矩阵)。若A是奇异阵或长方阵,Ax=b可能无解或有很多解。若有解,则解为x=Xb+(I-XA)у,其中у是维数与A的列数相同的任意向量,X是满足AXA=A的任何一个矩阵,通常称X为A的广义逆矩阵,用A^g、A^-或A^(1)等符号表示,有时简称广义逆。当A非奇异时,A^(-1)也满足AA^(-1)A=A,且x=A^(-1)b+(I-A^(-1)A)у=A^(-1)b。故非异阵的广义逆矩阵就是它的逆矩阵,说明广义逆矩阵确是通常逆矩阵概念的推广。存在一个唯一的矩阵M使得下面三个条件同时成立:(1) AMA=A;(2)MAM=M;(3)AM与MA均为对称矩阵。这样的矩阵M成为矩阵A的Moore-Penrose广义逆矩阵,记作M=A(^+).注:^后面的内容为上标 1955年R.彭罗斯证明了对每个m×n阶矩阵A,都存在唯一的n×m阶矩阵X,满足:①AXA=A;②XAX=X;③(AX)*=AX;④(XA)*=XA。通常称X为A的穆尔-彭罗斯广义逆矩阵,简称M-P逆,记作A^+。当A非奇异时,A^(-1)也满足①~④,因此M-P逆也是通常逆矩阵的推广。在矛盾线性方程组Ax=b的最小二乘解中,x=A^(-1)b是范数最小的一个解。若A是n阶方阵,k为满足(图1)的最小正整数(rank为矩阵秩的符号),记作k=Ind(A),则存在唯一的n阶方阵X,满足:(1) AkXA=Ak;(2) XAX=X; (3) AX=XA。 广义逆的思想可追溯到1903年(E.)I.弗雷德霍姆的工作,他讨论了关于积分算子的一种广义逆(他称之为伪逆)。1904年,D.希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。而任意矩阵的广义逆定义最早是由.穆尔在1920年提出的,他以抽象的形式发表在美国数学会会刊上。当时人们对此似乎很少注意。这一概念在以后30年中没有多大发展。曾远荣在1933年,.默里和J.冯·诺伊曼在1936年对希尔伯特空间中线性算子的广义逆作过讨论。20世纪50年代围绕着某些广义逆的最小二乘性质的讨论重新引起了人们对这个课题的兴趣。1951年瑞典人A.布耶尔哈梅尔重新发现了穆尔所定义的广义逆,并注意到广义逆与线性方程组的关系。.格雷维尔、.拉奥和其他人也作出了重要的贡献。1955年,彭罗斯证明了存在唯一的X=A+满足前述性质①~④,并以此作为 A+的定义。1956年,R.拉多证明了彭罗斯定义的广义逆与穆尔定义的广义逆是等价的,因此通称A+为穆尔-彭罗斯广义逆矩阵。
告诉你拟就会写吗。不如我给你写得了
找点文献给你自己看看吧,需要就发邮件给我[1]高朝邦,祝宗山.关于矩阵的秩的等价描述[J].成都大学学报(自然科学版),2006,25(1)从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题.[2]费绍金.用矩阵的秩判断空间中平面与平面、直线与直线及直线与平面间的位置关系[J].牡丹江教育学院学报,2007,(6)利用线性方程组解的理论讨论空间中平面与平面、直线与直线及直线与平面间的位置关系,给出用矩阵的秩判定以上关系的方法及结论.[3]严坤妹.一类矩阵的秩[J].福建商业高等专科学校学报,2005,(4)矩阵的秩是矩阵的一个重要不变量,根据两个重要的矩阵的秩的不等式以及分块矩阵的初等变换的性质,本文研究了一类矩阵的秩的特征.[4]戴红霞.关于矩阵的秩的例题教学[J].南京审计学院学报,2005,2(2)本文通过三个典型例题的具体讲解,加深学生对抽象概念"矩阵的秩"的理解和掌握.[5]余航.试论分块矩阵的秩[J].桂林师范高等专科学校学报,2001,15(3)任一矩阵都可求得它的秩,而在矩阵运算中,矩阵的分块是一个很重要的技巧.本文从不同角度,从特殊到一般地探求了分块矩阵的秩.[6]徐兰.利用分块矩阵探讨矩阵的秩的有关定理[J].昌吉学院学报,2003,(4)矩阵是线性代数的主要研究对象之一,利用分块矩阵,研究高阶矩阵的秩及矩阵在运算后秩的变化,得到有关的定理.[7]邹晓光.互素多项式矩阵的秩的一个简单结论及其应用[J].金华职业技术学院学报,2006,6(1)本文给出了互素多项式在矩阵的秩讨论中的一个简单结果:定理:设f(x),g(x)∈P[x],A是n阶方阵,若(f(x),g(x))=1,则n+r[f(A)g(A)]=r(f(A))+r(g(A)).以及结果的一些简单应用,对文献[1]中的一些结论进一步讨论.[8]张丽梅,乔立山,李莹.可逆坡矩阵与坡矩阵的秩[J].山东大学学报(理学版),2007,42(9)坡是两个元素的乘积小于等于每个因子的加法幂等半环.讨论了可逆坡矩阵的若干性质,证明了可逆坡矩阵必是满秩的.讨论了坡矩阵的行秩、列秩与Schein秩.给出了坡矩阵的Schein秩的一个重要性质.
建议你去论文网上搜索下..里面很全的.什么都有..
一类特殊对称矩阵的特征值与特征向量陆全 徐仲 【摘要】:【作者单位】:西北工业大学西北工业大学【关键词】:矩阵的特征值正交特征向量特征值与特征向量对称矩阵实对称阵特征问题矩阵A正交变换《线性代数》正交阵【分类号】:O151【DOI】:CNKI:SUN:【正文快照】:同济大学《线性代数》第130页例10要求一个正交变换.把二次型化为标准形,其中需要求矩阵的特征值与单位正交特征向量。事实上,这个矩阵R是一种具有特殊对称性的矩阵。这类矩阵的特征问题有如下的一般结论。考虑如下的特殊对称矩阵其中A、B均为m阶实对称阵,u是m维列向量,
论文的目的、意义也就是要写为什么要研究、研究它有什么价值,一般可以先从现实需求方面去论述,指出现实当中存在这个问题所需要研究解决的内容,本论文的研究有什么实际作用。然后再写论文的理论和学术价值。这些都要写得具体、有针对性的,不能漫无边际地空喊口号。
★论文的目的和意义一般包含哪些方面的内容
一,研究的相关背景,我们是根据什么、受什么启发从而决定研究这个课题的;二,通过学校的教育实际,指出我们为什么会选择研究这个课题,我们要解决什么问题,解决之后会产生什么价值。
具体写作的时候,我们要抓住一点,由于论文本身的创新性和科学性,我们研究的问题一定是前人没有解决的、或是前人没有发现的问题,并且具有一定的学术价值,是值得我们花费时间和精力去研究的。我们可以将前人已经得出的结论作为论据,但必须有针对性,不是随便一个结论都可以作为论据使用的。
其次在写作的过程中,要注意使用书面语,论文是一种专业性很强的文体,不需要太多华丽的修饰,我们要尽可能的使用简洁、高度概括的语言去清晰的阐述事实,得出结论。并且涉及的方面要广泛客观。
研究现状是开题报告的关键部分,对开题报告的层次和水平起决定性作用,也是英语论文“文献综述”的基础。
撰写研究现状之前,需要查阅与论文选题有关的国内外文献,以便了解国内外在该选题上的研究现状,比如:目前已经有了哪些方面的研究;这些研究是如何实施的;它们的研究方向和深度;取得了什么成果;还有哪些问题有待解决等等。
对选题相关文献的认真查阅不但可以让我们避免进行无效重复的研究工作,而且可以开阔我们的视野、拓展我们的研究视角。通过较全面的国内外文献资料的分析就可以发现以往研究的不足或漏洞,甚至可以启迪新的研究思维和角度,为我们提供新的研究目的和切入点。
扩展资料
写论文研究现状注意事项
研究现状内容长度一般是在1000字左右。并要附上有权威性和时效性的参考文献目录。在写研究现状时,不能单纯列举,应避免繁琐和不得要领。
另外也应避免空洞和泛泛而谈。要先从大处着手,然后逐步归拢,最后集中到本选题的研究问题上。要对所搜集到的研究文献进行的归纳和整合,客观地阐述研究背景,然后对巳有研究的不足进行主观评论。
必须指出国内外文献就相关论题已经提出的观点、解决方法和阶段性成果,阐述这些研究的广度、深度和不足,从而提出有待进一步研究的问题,确定本选题研究的平台,并指出本选题的研究预期将有哪些突破。
我们在写论文或者是看别人的论文时,总容易被研究背景和研究意义等名词搞混淆; 最近查了一些资料,对以下名词做了相应解释,总结如下: 01 研究背景 02 研究目的与意义 03 研究目标 04 研究内容 05 研究对象 06 国内外研究现状 07 研究方法 正文共:2131 字 1 图 预计阅读时间:6 分钟 01 研究背景 ① 研究主题的大环境介绍 在什么样的环境下你要做这个主题的研究?? 是行业发展至此,需要考虑这个问题;还是以前存在,一直未得到解决的问题。 ② 研究主题的现实背景与理论背景 研究是为了满足某种“需求”,因此,现实背景是现实的需求,理论背景是现有理论的缺陷或者漏洞。研究背景即提出问题,阐述研究该课题的原因。 有些论文的研究背景仅是堆砌现有的研究进展,而不明确提出当前研究的不足。如此写作虽然与研究主题相关,但是与后文的衔接缺乏因果关联。 02 研究目的与意义 研究目的:做这项研究是为了解决什么问题,对成果的预期。 研究意义:做这项研究之后,能够产生什么样的价值和推动作用。 “目的”的对象更加具体一些,实实在在的做了哪些事情,解决了哪些问题。“意义”可以适当抽象一些,包含自己对研究成果的预期,成果会对该行业(或者领域)产生什么样的影响,推动什么的前进。 03 研究目标 研究目标是指具体的要达到的“目的”,如通过研究构建某种教学模式、教学策略、方法,获得某某规律,揭示某某机理等等。 目标是过程,目的是结果。 研究目标是对“研究内容”的高度概括,“研究内容”是通过做许多事情达到研究目标。 04 研究内容 研究内容是为了达到“研究目标”所做的具体操作步骤。 在研究目标的基础上,细化达到这个目标具体要做的事情。要事无巨细的列出来,明确每一步的内容该怎么开展下去。该节内容要注意与“可行性与创新性”相关。 研究目的、研究目标和研究内容的关系 05 研究对象 研究对象是我们“研究内容”的主体,一般是较为具体事物或理论; 针对该主体使用各类方式进行研究,从而得出研究的结论。 06 国内外研究现状 我们通过了解国内外研究现状可以得到: 人家在研究什么、研究到什么程度? 你想研究而别人还没有做的问题。 别人已做过,你认为做得不够(或有缺陷),从而提出完善的想法或措施。 别人已做过,你要重新做实验来验证。 该节注意事项: 不要把研究现状写成事物本身发展现状。 例如,写股指期货研究现状,应该写有哪些专著或论文、哪位作者、有什么观点,而不是写股指期货本身何时产生、有哪些交易品种、如何演变。 要反映最新研究成果。 不要写得太少。如果只写一小段,那就说明你没有看多少同类材料。 如果没有与选题直接相关的文献,可以选择一些与选题比较靠近的内容来写。 07 研究方法 研究方法有很多种,均是经过时间检验的方法,整理部分如下: ① 归纳方法与演绎方法 归纳就是从个别事实中概括出一般性的结论原理;演绎则是从一般性原理、概念引出个别结论。归纳是从个别到一般的方法;演绎是从一般到个别的方法。 门捷列夫使用归纳法,在人们认识大量个别元素的基础上,概括出了化学元素周期律。后来他又从元素周期律预言当时尚未发现的若干个元素的化学性质,使用的就是演绎法。 ② 分析方法与综合方法 分析就是把客观对象的整体分为各个部分、方面、特征和因素而加以认识。它是把整体分为部分,把复杂的事物分解为简单的要素分别加以研究的一种思维方法。 分析是达到对事物本质认识的一个必经步骤和必要手段。分析的任务不仅仅是把整体分解为它的组成部分,而且更重要的是透过现象,抓住本质,通过偶然性把握必然性。 ③ 因果分析法 就是分析现象之间的因果关系,认识问题的产生原因和引起结果的辩证思维方法。使用这种方法一定要注意到真正的内因与结果,而不是似是而非的因果关系。 要注意结果与原因的逆关系,一方面包括“用原因来证明结果”,同时也包括“用结果来推论原因”。不同的事物,一般都一身二任,既是原因,又是结果,而且一个结果往往有不同层次的几个原因。因此,在研究过程中,对所分析的问题必须寻根究底。 ④ 比较分析法 比较分析法又称类推或类比法。它是对事物或者问题进行区分,以认识其差别、特点和本质的一种辩证逻辑方法。在资料不多,还不足以进行归纳和演绎推理时,比较分析法更具有价值。康德说:“每当理智缺乏可靠论证的思路时,类比这个方法往往能指引我们前进。” ⑤ 定性分析法与定量分析法 就是通过确定事物的质的关系和数量关系以认识问题和分析问题的辩证思维方法。任何事物或任何问题都是质和量的统一,事物的质量。表现为一定的量,又表现为一定的质。 因此,在研究中,只有弄清质的方面,又弄清量的方面,才能找出其中规律性的问题。在研究中,定性分析就是据事论理,划清事物质的界限。定量分析就是对问题的规模、范围、数目等数量关系的情况及变化,进行精确的统计,计算、分析、对比,就是弄清事物发展中量的变化关系。 ⑥ 观察法 观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。 ⑦ 文献研究法 文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被广泛用于各种学科研究中。
告诉你拟就会写吗。不如我给你写得了
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。
我们曾在线性代数里学过向量空间,它是由向量做成的集合。在这个集合里向量可以相加,向量可以乘以一个倍数,由此我们可以讨论向量的线性组合、向量的线性相关等概念。
如果上述运算满足以下规则,则称 为数域 上的 线性空间 。 中的元素也称为向量。
解:
令其对应项相等即可。
一般来说,一个元素在不同的基底下有不同的坐标,它们的坐标有什么关系呢?
设 是 上的 维线性空间, , , , 和 , , , 是 的两个 不同的基底 ,因为 , , , 是基底,所以 , , , 可以被这个基底线性表达,这两个基底的关系是:
利用 过渡矩阵 就可以得到这个元素的两个坐标之间的关系:
我们知道三维线性空间 的二维平面 也是一个线性空间,这种类型的空间叫作 子空间 。
这个子空间叫做 和 的 和子空间 。
由两个子空间 , 生成的子空间的维数 , 与原来的子空间的维数之间有一个关系,称之为 维数定理 ,即:
这个几个概念比较重要,需要记住。
则称 为 上的 线性变换 。线性变换保持 上的运算。
上面这个线性变换的公式需要记住,经常会考这个改变以及以下变种。比如下文的线性变换的矩阵的公式:
由:
能得到:
这时如果知道:
即可求出:
等于:
等于:
可以证明,线性空间中的所有线性变换也做成一个线性空间,记作
像子空间 是由 中所有元素的像构成的,即任取 ,则一定存在 ,使得 。
核子空间 是由所有 中的一些元素构成的,这些元素在线性变换的作用下是零。
上的所有线性变换构成的子空间是一个比较抽象的空间,我们知道一些具体的线性变换,但是任意一个线性变换是什么样子的,怎么表达呢?
设 ,
可以看出,决定线性变换结果的是:
即基底在这个线性变换之下变成了什么形式。
因为 ,仍然是 中的元素,当然可以被 的基底表达:
为线性变换 在基底 下的矩阵。
可见每一个 线性变换实际上与一个矩阵相对应 ,反过来,每一个矩阵也对应一个线性变换,即给定一个矩阵 ,只要定义: 则这个矩阵对应一个线性变换。
计算矩阵的除法,其实就是将被除的矩阵先转化为它的逆矩阵,它的逆矩阵相当于被除的矩阵分之一,那么矩阵的除法就相当于前面的矩阵和后面的矩阵的逆矩阵相乘的乘积。1、计算矩阵的除法,先将被除的矩阵先转化为它的逆矩阵,再将前面的矩阵和后面的矩阵的逆矩阵相乘。2、那么,一个矩阵的逆矩阵的求解方法是:先把一个单位矩阵放在目的矩阵的右边,然后把左边的矩阵通过初等行变换转换为单位矩阵,此时右边的矩阵就是我们要求的逆矩阵。3、我们再通过举一个实例来说明矩阵的除法的具体计算方法。4、先把单位矩阵放在矩阵A的右边并放在同一个矩阵里边。现用第二行和第三行分别减去第一行的3倍和-1倍。5、先用第一行和第三行分别加上第二行的2/5倍。再用第一行和第二行分别加上第三行的1/9倍和-1/5倍。6、最后用矩阵B与矩阵A的逆矩阵相乘即可得出最后的结果,即矩阵B除以矩阵A得出的商。拓展资料:在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。