首页

> 论文发表知识库

首页 论文发表知识库 问题

平行四边形的面积论文参考文献

发布时间:

平行四边形的面积论文参考文献

相信经过我们的努力和不断探索,数学中的一个个难题中会被我们揭开!

把自己对多边形的认识写下来。

由在同一平面且不在同一直线上的三条或三条以上的线段首尾顺次连结且不相交所组成的封闭图形叫做多边形。在不同平面上的多条线段首尾顺次连结且不相交所组成的图形也被称为多边形,是广义的多边形。

组成多边形的线段至少有3条,三角形是最简单的多边形。组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点;多边形相邻两边所组成的角叫做多边形的内角;连接多边形的两个不相邻顶点的线段叫做多边形的对角线。

多边形内角的一边与另一边反向延长线所组成的角,叫做多边形的外角。

在多边形的每一个顶点处取这个多边形的一个外角,它们的和叫做多边形的外角和。

多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

多边形分平面多边形和空间多边形。平面多边形的所有顶点全在同一个平面上,空间多边形至少有一个顶点和其它的顶点不在同一个平面上。

《多边形的面积》知识点汇总相关内容: 多边形 面积 知识点 汇总《多边形的面积》知识点汇总【平行四边形的面积】长方形长方形面积=长×宽;字母公式:s=ab正方形正方形面积=边长×边长;字母公式:s= 或者s=a×a平行四边形平行四边形面积=底×高;字母公式:s=ah平行四边形面积公式推导:剪拼、平移 平行四边形可以转化成一个长方形。【三角形的面积】三角形的面积=底×高÷2;用字母表示:S=ah÷2三角形面积公式推导:旋转【梯形的面积】梯形的面积=(上底+下底)x高÷2;用字母表示:S=(a+b)h÷2梯形面积公式推导:旋转,两个完全一样的梯形拼成一个平行四边形。

小学数学图形教学分析论文

摘要: 教学手段从过去的文字和黑板转变成幻灯片和投影之后,以计算机作为核心的教学手段逐渐显露头角,Flash作为计算机中的基础技术,能够广泛应用于教学中。基于此,本文主要对小学数学的图形教学中Flash的应用进行了分析研究,通过具体的教学实例,从图形方位变换教学、平面几何图形教学以及立体几何图形教学这三个方面阐述了Flash的具体应用,意在帮助小学数学教学找到应用Flash的正确途径。

关键词: Flash;小学数学;图形教学

一、前言

在传统的图形教学中,教师主要通过模型展示以及学生的动手裁剪开展教学,让学生从触觉和视觉两个角度进行图形的认识和理解。但是教育学家指出,对于小学生来说,他们的思维已经从表象转为抽象,并具备一定的逻辑能力。因此,在图形教学中,需要改变模型展示这种教学方法,重点进行图形变换以及辨析的展示,通过动画或者图形来引导学生进行图形的认识和理解,顺应学生的思维发展特点。

二、图形方位变换教学中的Flash应用

笔者主要将图形的平移和旋转这一课程为例,探究Flash的应用。图形的旋转主要来自于现实生活。因此,在开展教学之前,教师需要使用生活实例进行引导,比如,电风扇在运转时叶片的转动现象、汽车的雨刷器运动现象以及风力发电机的叶片旋转想象等,让学生对旋转现象有初步的认识,并激发学生的学习兴趣;然后教师就可以应用事先制作好的Flash动画进行旋转知识的进一步教学,在制作Flash动画时,教师可以在动画中指出图形的旋转点以及旋转条件,比如,直角三角形沿着长的直角边和斜边交点进行逆时针九十度的旋转或者顺时针九十度的旋转等;最后,在学生理解了旋转的本质之后,教师再使用Flash进行考察,确保学生能够熟练判断出图形的旋转过程,并要求学生在方格纸中画出旋转之后的图形,从而加深学生对于旋转知识的理解。另外,教师在制作Flash动画时,可以使用黄色作为动画界面,使用对比鲜明的深绿色作为旋转图形的颜色,通过活泼且对比鲜明的颜色调动学生的积极性。与此同时,为了更加清晰地展现出旋转的过程,教师可以应用分图层的方法将旋转过程中的不同要素安放在不同的图层中,然后通过连续的帧进行不同图层的播放,以此来展示出旋转的多个要素。通常来说,Flash的每一秒播放需要控制在12帧以内,这样才能避免出现播放过快学生理解困难或者播放过慢学生注意力不集中的现象。

三、平面几何图形教学中的Flash应用

笔者主要将平行四边形面积推导这一课程为例,探究Flash的应用。该课程的教学对象是小学五年级的学生,他们已经在之前的学习中了解了正方形、圆形、长方形以及三角形等图形的面积和周长计算公式,能够为教师进行平行四边形面积的讲解提供便利。在进行教学之前,教师可以将学生分成若干个小组,让学生在小组内进行平行四边形面积计算公式的探讨。在学生的探讨过程中,可能会得出两种推导方法,其一是将沿着平行四边形的高将直角三角形剪下,并将这一三角形平移到平行四边形的另一边,可以发现平行四边形变成了长方形,由此可以得出平行四边形的面积公式与长方形一致;其二是沿着平行四边形的高将两个梯形剪下,将这一梯形平移到平行四边形的另一边,可以发现平行四边形变成了长方形,由此得出其面积计算公式。基于学生的讨论结果,教师可以将平行四边形裁剪以及平移的过程使用Flash制作出来,这样能够使学生更加直观地看到平行四边形的变换,从而深入理解平行四边形的面积推导过程,而且学生在课后复习过程中也能够观看Flash动画,为学生巩固数学知识提供了便利。另外,在学生讨论之后,教师播放Flash动画,能够将学生的注意力从激烈的讨论中转移到多媒体屏幕上,有效缩短了学生集中注意力的时间,在很大程度上提升了数学课堂的教学效率。需要注意的.是,教师制作的Flash动画,需要采用对比鲜明的颜色,比如平行四边形可以采用深绿色描绘,剪裁的部分使用红色描绘,这种鲜明的颜色对比能够使学生明确平行四边形变换过程中的重点部分,从而帮助学生理解数学知识。

四、立体几何图形教学中的Flash应用

笔者主要将涂色大正方体的切割这一课程为例,探究Flash的应用。该课程的教学目标是培养学生的数学思维能力以及空间想象能力,使学生在探索大正方体切割的过程中,体会到数学的魅力,让学生在学习中获取成就感和喜悦感,从而提高学生的学习积极性。在实际的教学过程中,学生可以很容易地通过自己的想象得出大正方体均等分之后,三个面涂色、两个面涂色以及一个面涂色的小正方体的数量,但是对于没有涂色的小正方体数量却不确定。因为随着大正方体均等分份数的增加,学生的想象就越困难,这就需要教师应用Flash动画,通过动画展示出大正方体六个面依次被剥去的过程,从而使学生直观地看到没有涂色的小正方体的数量。Flash的应用打破了学生的思维瓶颈,使学生更容易理解相关的数学知识,从而达成课程的教学目标。另外,为了给学生营造三维空间的立体感,教师在进行Flash动画的制作时,可以将背景色设定为黑色,将大正方体设定为橘色,将没有涂色的正方体面设定为灰色,这样能够使学生更加直观地感受到正方体的涂色面和没有涂色面,从而为学生得出相关规律提供便利。

五、结论

综上所述,在图形教学中,Flash的应用打破了传统教学方法的弊端,提升了教学的效果。通过本文的分析可知,小学数学教师需要加强对计算机技术的学习,从而制作出更加适合图形教学的Flash动画,培养小学生的逻辑思维和数学素养。希望本文能够为研究学者进行Flash的应用研究提供参考。

参考文献:

[1]马乃骥.电子白板在小学数学图形教学中的应用[J].中小学电教(下半月),2017,(06):55.

[2]廖倚春.例谈几何画板在小学数学图形教学中的应用[J].中国信息技术教育,2015,(22):129.

平行四边形论文的参考文献

小学数学中的概念教学研究论文

在日常学习和工作中,说到论文,大家肯定都不陌生吧,通过论文写作可以培养我们独立思考和创新的能力。写起论文来就毫无头绪?下面是我帮大家整理的小学数学中的概念教学研究论文,欢迎阅读与收藏。

摘要:

小学数学概念数学通常分为引入概念、建立概念、巩固和运用概念三个阶段。教师在教学过程中,要正确处理这些环节之间的相互关系,就需要深钻教材,选择合理的教学方法,组织并优化教学过程,使概念教学达到教学目标,通过整理、归纳、运用,从而提高数学的教学质量。

关键词:

数学概念;数学;优化教学;整理归纳

引言:

概念的抽象性和严谨性,在一定程度上给学生带来了一定的心理负担。因此在概念教学中教师就应该秉持以人为本的理念,以激发学生的学习兴趣为方向,通过有效的措施提高学生的学习效果。小学数学概念教学主要应该从如下几个方面出发:

1、提升学生的学习兴趣

陶行知说:“唤起兴趣,学生有了兴趣,就肯用全副精神去做事情。”概念教学是重点,也是难点,难就难在它比较抽象,而小学生的数学思维尚处在初级阶段,尤其是对那些后进生,学习思维能力较差,概念是横在他们和数学学科之间的一座大山。有鉴于此,在概念教学中创新教学方法,以新颖有趣的方式带领学生去认识概念,学习概念,激发孩子们的兴趣,概念教学才能事半功倍。如在教学“克与千克”两个概念时,教师就可以借助于微课动画视频给学生详细演示他们之间的关系,动画视频形象生动,非常能够激发孩子们的学习兴趣。

对于生活中和克以及千克对应的事物,教师也可以融入微课之中,使学生一目了然。此外教师还可以把一个台秤带到讲台,让学生们把各自的笔啦,橡皮啦,铅笔盒啦等东西放上去,记下台秤上的克数,感受克的大小。此外教师还可以开展情景模拟练习,学生扮演菜农,教师扮演来菜市场买菜的顾客,教师把“菜”放到台秤上,学生需要读出“菜”的克数。教师做完示范之后,学生和学生之间也可以开展这样的练习。此外,教师还可以把吨以及微克等概念拿来和克与千克一起讲解,这样学生就能明白克与千克在重量单位中的位置了。在具体的方法上,教师可以结合学生生活中的事物,和微克,克,千克,吨这些单位对应上,加深学生对它们的理解。

2、提升学生的实践能力

在实践中认识概念,了解概念,是一种学习概念的重要方法。这种方法既可以加深学生对概念的理解,又可以提升学生的实践能力,可谓一举两得。绕过概念教学,直接在实践中让学生认识概念,学生带着从实践中获得的对概念的理解再次阅读概念,通过这种反反复复的学习,学生最终会掌握概念的内涵和外延。如在教学“面积”这个概念时,教师先不着急讲解面积,而是先让学生进行测量,如测量书桌的面积,测量黑板的'面积,测量教室的面积等,当学生熟悉了面积就是长乘以宽之后,对面积的认识自然就完成了,这远比单纯给学生讲解面积的概念要有效的多,学生印象也深。再比如在教学“平行四边形”时,教师就可以让学生自己在本子上画出一些平行四边形。有的学生画的是正方形,教师说:“对,这是特殊的平行四边形,你能画一个正常的平行四边形吗?”有的学生画的虽然是一个四边形,但是两条边不是平行关系,教师就要纠正:“平行西边形是两组对边都要平行。”通过这样的纠正教学,学生对平行四边形逐步建立了完整的认识。再比如在教学“比”这个概念时,教师可以借助于多媒体大屏幕给学生展示一些体育赛事,如乒乓球赛,篮球赛,足球赛,羽毛球赛等,在这些赛事上,画面上都会有双方的实时比分,这些比分就是一种“比”的关系,体现了双方的对战成绩。学生明白了这些之后,就会对比有一个初步的理解。

3、提升学生的归纳能力

归纳能力是学习数学的重要能力。很多数学概念都是从归纳中得来的。因此重新让学生对数学概念进行整理和归纳,可以让学生发现概念的形成过程,这样非常有利于学生熟悉概念的来龙去脉。小学生的归纳能力相对不足,但是只要教师注意引导,循循善诱,就一定可以让学生发现数学概念的规律。如在教学“倍数和因数”时,课本对倍数和因数的阐释是这样说的:“被除数是除数和商的倍数,除数和商是被除数的因数。”这两句话理解起来非常繁琐,每句话都有四个概念名词,学生理解起来有点困难。正确的做法是,教师可以给学生们几组数字,让学生观察它们之间的内在联系和特点。教师在黑板上写下:“8和24”,问学生:“谁是谁的倍数?谁是谁的因数?”又在黑板上写下:“9和72”,继续问学生。学生经过观察,发现倍数都是大数,因数都是小数,大数除以小数,小数被大数除,当学生发现了倍数和因数这样的关系之后,不用再去背诵概念就能领会倍数和因数。

4、结束语

对概念的领会,是学好数学的重要前提,因此概念教学的重要性不言而喻。作为新时代的小学数学教师,要重视概念的重要性,积极创新教学方法,使学生带着兴趣去学习概念,拉近学生和数学概念之间的距离,使概念教学变得生动有趣和事半功倍。

参考文献

[1]俞凤国.小学数学中的概念教学[J].小学教学参考,2019(23):94-95.

关于数学论文范文2000字

现如今,大家或多或少都会接触过论文吧,论文是我们对某个问题进行深入研究的文章。如何写一篇有思想、有文采的论文呢?下面是我整理的数学论文范文2000字,供大家参考借鉴,希望可以帮助到有需要的朋友。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1.以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2. 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3.以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

4.用数学问题引导学生进行自主性的学习。问题可以调动学生的积极性,让学生在带着困惑、怀疑和探索的心理,进行数学知识的自主性学习,这也是教学引入策略之一。在问题设置的数学教学中,要注意问题提出的难易程度,要根据学生的思维层次进行问题的导入,逐渐进入数学知识的学习,而不能以深奥、难解的问题来给教学设置障碍,使学生缺乏探究的动力和兴趣。

(二)师生共学———尝试自主参与的探究学习过程

教师对学生的教育,流传着一句名言:告诉的知识,容易忘记;分析出来的知识,可以记住;自主参与的知识,就会真正理解。这意味着只有让学生自己动手、动脑自主参与,才能在动手实践、自主探索、合作交流的过程中,掌握数学知识的内化,培养自主学习能力。

1.引导学生进行自主性的探索学习。在数学“认识钟表”一课中,为了让学生对其有数学性的认知,需要引导学生进行对实物钟表的观察、触摸与参与,让小学生在观察的过程中注意到长针和短针的区别,并观察相邻两个数字之间的大小相等的格,学生在对钟表的触摸、观察和实践操作的过程中,完成了对数学知识的认知。

2.根据学生层次进行小组合作式自主式学习。小组合作必须在教师的指导和辅导之下完成,要引导学生仔细观察、对比,如在“长方形”的认知中,要各小组进行分组比赛,寻找出最多的长方形者获胜,在大家踊跃参与的过程中,教师要引导学生注意观察长方形和正方形的区别,通过对比、测量等不同手段,了解对生活中“长方形”的认知,如:课本、长方形的长桌、黑板的形状等,大家在分组合作的过程中掌握了数学知识的规律,并主动性地获取了相应的知识。

(三)数学知识的应用———巩固数学知识的自主性探索

小学生在教学的过程中掌握了基本的数学概念和规律,教师还要将数学知识进行巩固和运用,要充分利用“温故而知新”的记忆特点,对数学知识进行巩固和实际应用。例如:在数学“做一做”的课后练习中,可以组织学生进行同桌互检式的巩固,还可以进行板演练习、课堂评价的方式进行巩固,这样可以激励学生自主进行数学知识的实践性的巩固和运用,将更多的数学知识转化为内在的知识。在知识的巩固过程中要灵活加以整合和运用,如小学生学习完了图形这一课,对三角形、圆形、长方形、正方形、平行四边形等进行准确的认知后,就要进行灵活多变的图形拼板练习,让学生通过对不同图形的修剪和粘贴,进行图形自由空间的想象和布局,增强数学知识的应用能力。

四、结束语

小学数学教学的重点在于培养学生的自主学习能力,根据小学生的年龄特点和思维层次,进行动手、动脑的习惯培养,在生活引入、故事引入、游戏引入、情境引入的教学策略之下,用自主性、参与性、积极性进行数学知识的感知,并在自主探索、交流合作的过程中增加对数学知识的学习和巩固,提升小学数学的课堂教学效果。

参考文献:

[1]牟瑛.营造充满探索的数学课堂环境[J].商业文化(学术版),2010,(08).

[2]张大明.引导自主探究促进主动发展[J].成功(教育),2010,(04).

[3]周波儿.数学教学中如何捕捉和利用“动态生成”[J].山西师范大学学报(自然科学版),2010,(S1).

随着科技的进步和社会的发展,数学这一基础学科已与其他学科相结合,且应用愈来愈广,已渗透到生产和生活的各个方面。我国从1992年开始举办大学生数学建模竞赛。近年来,大学生数学建模竞赛迅猛发展,为高等数学的应用型教学指引了方向,同时也激发了大学生的创新思维,锻炼了大学生的实践能力,受到了社会各界人士的关注和好评。

一、数学建模和大学生数学建模竞赛

何为数学建模?有人认为,数学模型即以现实世界为目的而做的抽象、简化的数学结构;也有人认为,数学模型就是将现实事物通过数学语言来转化为常见的数学体系。事实上,数学建模是运用数学知识从实际课题中抽象、提炼出数学模型的过程,主要方法是通过合理假设、引进自变量、借助各种数学工具实现对现实事物的数字化转变,进而描述或解决实际问题。

那么,受广大高校师生青睐的大学生数学建模竞赛又是什么呢?数学建模竞赛是全国大学生参与规模最大的课外科技活动,从一个侧面反映一个学校学生的综合能力,为学生提供了展示才华的舞台。大学生数学建模竞赛具有一定的开放性和应用性,同时兼具一定的综合性和挑战性。成果以一篇论文的形式上交,要求必须包含完整的建模步骤,包括问题的提出、模型的假设、变量的引入、建模过程、模型求解与分析、模型检验及应用。

二、大学生数学建模竞赛与课程教学培训中存在的问题

通过对山西工商学院历年来参加大学生数学建模竞赛的选手及其相关指导老师进行调查、走访,并考察其他高校的'情况,笔者发现,相比往年的成绩,各大高校在近几年的竞赛成绩上有了飞速的提高,在学校的组织和鼓励下,参赛人数逐年递增,数学建模教学每年都在不断改革,同时除了参加竞赛,还在课堂外实践了数学与生产实际的结合过程。然而,通过参阅文献和访谈笔录资料,笔者也总结了近几年来大学生数学建模竞赛及竞赛培训教学中存在的相关问题。

第一,参赛学生的学习能力和综合素质有待提高。在思想品质方面,数学建模的参赛过程极其艰苦,需要学生具备意志力、求知欲、团队意识。我们的队员往往在此三方面表现一般。同时,在数学能力方面,学生的数学基础知识储备不足,软件处理的方法单一,实际问题转化为数学结构的创新思维并不能良好地展现。

第二,根据上述学生所表现出的问题不难发现,教师团队在数学建模培训教学过程中,教学观念滞后,创新能力有待提高,教学模式亟待突破,数学建模的教师团队应当做好学生的表率,要吃苦耐劳,要通力合作。

第三,正因为上述问题,数学建模培训也出现了弊端。培训方式单一,培训只讲求深入而不探索广度,培训时间安排不合理,培训的内容与建模竞赛不对接。

第四,经过调查发现,部分高校对组织数学建模竞赛的前期工作没有给予足够的重视,少数高校在竞赛的组织和开展中急功近利。另外,大多数高校在数学建模教学教育的过程中缺乏完整的制度和保障体系。

三、大学生数学建模课程教学培训策略

大学生建模竞赛除了能为部分大学生及其指导老师和高校获得荣誉外,更能培养大学生综合运用所学专业的意识,提升大学生的创新思维和抽象思维,以及自主学习能力和团队协作能力。因此,在数学建模课程教学培训中,应做好如下工作。

(一)教师层面

首先,数学建模课程教学培训应当以创新为起点。建模不是凭空而来的,教师要引导学生从生活实际中抽象出数学模型,真正在选题上下功夫,培养学生的创新思维。

其次,数学建模课程教学培训应当以数学知识体系为基础。教师不能仅仅将自己的专业知识传授给学生,数学博大精深,自身要不断涉猎新知识,不仅要注重数学学习的深度,更应当拓展数学学习的广度,为数学建模竞赛打下坚实的基础。

最后,数学建模课程教学培训应当回归实践。建模的目的是为了解决实际问题,无论多么复杂的数学模型,最后都要落到解决后的结果中。因此,教师既要教会学生建模,又要教会学生将建模的方法真正应用于解决实际问题,做到学以致用。

(二)学校层面

首先,制定系统的数学建模课程体系,包括合理的学时、学制,保证学生的学习,不能在竞赛前急抓一批学生现学现用。

其次,学校要做好数学建模竞赛的宣传和指导工作,尽量保证每位学生都能于在校期间参加比赛,获得锻炼。

最后,学校要时刻以学生为主,不能一味地为了获奖而出现教师代替学生的现象。

参考文献:

[1]刘建州.实用数学建模教程[M].武汉:武汉理工大学出版社,2004.

[2]李尚志.数学建模竞赛教程[M].南京:江苏教育出版社,1996.

[3]赫孝良.数学建模竞赛赛题简析与论文点评[M].西安:西安交通大学出版社,2002.

摘要:随着我国基础教育的不断改革和完善,创新形势下的课程标准已经逐渐落实,相比于以往的教育机制,新课程标准更加关注学生的发展能力,鼓励教师根据学生的特点开展教育活动,进而全面提高我国的教育质量和教学效率。新课程标准要求教师在制定教学计划时要准确定位自己和学生之间的关系,以便于开展更加高效的课堂教育。

关键词:小学数学;高效课堂;教学策略

数学是一门逻辑思维较强的学科,因此数学基础教育质量极其重要。高效的小学数学课堂不仅可以让学生的成绩得到有效提高,还能让学生在生活中体会到数学的魅力,加强学生对于理性思维的拓展和延伸,同时还能将学生对数学的兴趣调动起来。

1重视学生对数学概念的理解

学生开始接受小学教育的年龄在6周岁左右,该年龄阶段的孩子对故事的兴趣比公式的兴趣大的多,因此,教师可以在数学课程开始之前让学生先了解该节课程涉及到的历史故事,让学生不要认为数学是很难理解的课程,让学生在更加放松的心态中去完成教学任务。传统教育中,数学教师都会给学生大量的题目来巩固知识点和公式,部分学生在还没有完全理解课堂内容时就开始做题,答案准确率肯定很难得到保障。因此,教师应当重视学生对数学概念的理解程度,让学生先理解数与数之间的关系再开始做习题。同时,教师应当在课堂上为学生留出提问和解疑的时间,教师在和学生的问答互动中拉近彼此之间的距离,提高学生对数学的认知度和敏感度。

2积极开展数学情境教学模式

数学课程的开展必须要有严谨的逻辑性作为支持,如果教师只用数字的形式为学生讲解无实物情境下的运算知识,很难让学生理解这个运算在生活中的价值,而且单纯的思维计算会对小学生产生很大的困扰,小学生更倾向于涉及到生活经验的数学情境模式。教师在开展运算知识点授课的过程中,可以使用不同种类的水果来创建情境教学的条件,将水果的价格和数量制定好,让学生随意取用一部分水果来计算这些水果的总价格。学生在计算水果价格的时候会减轻对数学的抵触,把思维的重点放在水果的种类和形状上,教师可以在学生分组计算的同时查看学生对于价格结果的讨论情况,发现公式以及口诀上的问题及时提出并解决,让学生在不知不觉中牢记乘法和加法的运算规律,减轻公式记忆法的枯燥和乏味,促进小学数学高效课堂教学质量的提高。

3培养学生课前预习的好习惯

数学是一门实践性质很强的学科,解题过程中需要对课题内容及运算方式进行思考,而这个过程需要学生在课前预习环节中掌握,教师应提前告诉学生即将学习的单元和知识点,让学生在有准备的情况下,更有信心的参与到数学课堂中来。教师可以鼓励学生在陪同家长购物时关注买卖运算的方式,然后在课堂上将自己的理解和发现的问题进行阐述,教师可以在与家长互动之后将学生反馈的问题一一解答,并就超市买卖中遇到的问题和课本上的知识点有效结合,让学生了解到数学在生活中的作用,学生在预习的过程中也会加深对运算公式的印象,进而提高学生对数学的兴趣和学习效率,让小学数学教学质量更加高效。

4鼓励学生从多角度解决问题

数学并非一种固定思维的学科,很多数和图形的运算都不止一种解题方式,虽然正确的答案只有一个,但是其过程有着很灵活的多变性,因此,教师应当在数学课堂上鼓励学生以不同的形式来解决问题。教师在发现学生的答案与标准答案不同时,应该首先询问学生的解题思路,而不是直接否定学生的答案,否则很容易打消学生对于数学学习的积极性。在教学条件允许的情况下,教师应当尽量使用解题方式不唯一的例题,让学生了解到集思广益的效果,在之后的课堂小组讨论中也能更加用心,有助于活跃教学气氛和教学效果,做到高效的小学数学课堂教学。综上所述,学生对于科目的兴趣和能力都不是与生俱来的,教师的引导和鼓励会使学生在课堂上的表现更加优秀。在开展小学数学课程的过程中,教师应当注重数学概念、课堂情境、课前预习以及思维扩展带来的高效影响,为学生探索欲和求知欲的提高做出贡献。

参考文献

[1]杨小生.小学数学高效课堂教学的“三三”策略[J].现代中小学教育,2011(11):21~23.

[2]潘海燕.探究小学数学数与代数的高效课堂教学策略[J].中国校外教育,2015(02):72.

[3]王粉粉.新课程背景下小学数学高效课堂教学策略探究[D].延安:延安大学,2016.

小学数学图形教学分析论文

摘要: 教学手段从过去的文字和黑板转变成幻灯片和投影之后,以计算机作为核心的教学手段逐渐显露头角,Flash作为计算机中的基础技术,能够广泛应用于教学中。基于此,本文主要对小学数学的图形教学中Flash的应用进行了分析研究,通过具体的教学实例,从图形方位变换教学、平面几何图形教学以及立体几何图形教学这三个方面阐述了Flash的具体应用,意在帮助小学数学教学找到应用Flash的正确途径。

关键词: Flash;小学数学;图形教学

一、前言

在传统的图形教学中,教师主要通过模型展示以及学生的动手裁剪开展教学,让学生从触觉和视觉两个角度进行图形的认识和理解。但是教育学家指出,对于小学生来说,他们的思维已经从表象转为抽象,并具备一定的逻辑能力。因此,在图形教学中,需要改变模型展示这种教学方法,重点进行图形变换以及辨析的展示,通过动画或者图形来引导学生进行图形的认识和理解,顺应学生的思维发展特点。

二、图形方位变换教学中的Flash应用

笔者主要将图形的平移和旋转这一课程为例,探究Flash的应用。图形的旋转主要来自于现实生活。因此,在开展教学之前,教师需要使用生活实例进行引导,比如,电风扇在运转时叶片的转动现象、汽车的雨刷器运动现象以及风力发电机的叶片旋转想象等,让学生对旋转现象有初步的认识,并激发学生的学习兴趣;然后教师就可以应用事先制作好的Flash动画进行旋转知识的进一步教学,在制作Flash动画时,教师可以在动画中指出图形的旋转点以及旋转条件,比如,直角三角形沿着长的直角边和斜边交点进行逆时针九十度的旋转或者顺时针九十度的旋转等;最后,在学生理解了旋转的本质之后,教师再使用Flash进行考察,确保学生能够熟练判断出图形的旋转过程,并要求学生在方格纸中画出旋转之后的图形,从而加深学生对于旋转知识的理解。另外,教师在制作Flash动画时,可以使用黄色作为动画界面,使用对比鲜明的深绿色作为旋转图形的颜色,通过活泼且对比鲜明的颜色调动学生的积极性。与此同时,为了更加清晰地展现出旋转的过程,教师可以应用分图层的方法将旋转过程中的不同要素安放在不同的图层中,然后通过连续的帧进行不同图层的播放,以此来展示出旋转的多个要素。通常来说,Flash的每一秒播放需要控制在12帧以内,这样才能避免出现播放过快学生理解困难或者播放过慢学生注意力不集中的现象。

三、平面几何图形教学中的Flash应用

笔者主要将平行四边形面积推导这一课程为例,探究Flash的应用。该课程的教学对象是小学五年级的学生,他们已经在之前的学习中了解了正方形、圆形、长方形以及三角形等图形的面积和周长计算公式,能够为教师进行平行四边形面积的讲解提供便利。在进行教学之前,教师可以将学生分成若干个小组,让学生在小组内进行平行四边形面积计算公式的探讨。在学生的探讨过程中,可能会得出两种推导方法,其一是将沿着平行四边形的高将直角三角形剪下,并将这一三角形平移到平行四边形的另一边,可以发现平行四边形变成了长方形,由此可以得出平行四边形的面积公式与长方形一致;其二是沿着平行四边形的高将两个梯形剪下,将这一梯形平移到平行四边形的另一边,可以发现平行四边形变成了长方形,由此得出其面积计算公式。基于学生的讨论结果,教师可以将平行四边形裁剪以及平移的过程使用Flash制作出来,这样能够使学生更加直观地看到平行四边形的变换,从而深入理解平行四边形的面积推导过程,而且学生在课后复习过程中也能够观看Flash动画,为学生巩固数学知识提供了便利。另外,在学生讨论之后,教师播放Flash动画,能够将学生的注意力从激烈的讨论中转移到多媒体屏幕上,有效缩短了学生集中注意力的时间,在很大程度上提升了数学课堂的教学效率。需要注意的.是,教师制作的Flash动画,需要采用对比鲜明的颜色,比如平行四边形可以采用深绿色描绘,剪裁的部分使用红色描绘,这种鲜明的颜色对比能够使学生明确平行四边形变换过程中的重点部分,从而帮助学生理解数学知识。

四、立体几何图形教学中的Flash应用

笔者主要将涂色大正方体的切割这一课程为例,探究Flash的应用。该课程的教学目标是培养学生的数学思维能力以及空间想象能力,使学生在探索大正方体切割的过程中,体会到数学的魅力,让学生在学习中获取成就感和喜悦感,从而提高学生的学习积极性。在实际的教学过程中,学生可以很容易地通过自己的想象得出大正方体均等分之后,三个面涂色、两个面涂色以及一个面涂色的小正方体的数量,但是对于没有涂色的小正方体数量却不确定。因为随着大正方体均等分份数的增加,学生的想象就越困难,这就需要教师应用Flash动画,通过动画展示出大正方体六个面依次被剥去的过程,从而使学生直观地看到没有涂色的小正方体的数量。Flash的应用打破了学生的思维瓶颈,使学生更容易理解相关的数学知识,从而达成课程的教学目标。另外,为了给学生营造三维空间的立体感,教师在进行Flash动画的制作时,可以将背景色设定为黑色,将大正方体设定为橘色,将没有涂色的正方体面设定为灰色,这样能够使学生更加直观地感受到正方体的涂色面和没有涂色面,从而为学生得出相关规律提供便利。

五、结论

综上所述,在图形教学中,Flash的应用打破了传统教学方法的弊端,提升了教学的效果。通过本文的分析可知,小学数学教师需要加强对计算机技术的学习,从而制作出更加适合图形教学的Flash动画,培养小学生的逻辑思维和数学素养。希望本文能够为研究学者进行Flash的应用研究提供参考。

参考文献:

[1]马乃骥.电子白板在小学数学图形教学中的应用[J].中小学电教(下半月),2017,(06):55.

[2]廖倚春.例谈几何画板在小学数学图形教学中的应用[J].中国信息技术教育,2015,(22):129.

《我的数 学 小 论 文——探索平行四边形的奥秘》今天,老师给我们布置了一个任务,要求我们做一个图形道具,比如做一个活动的平行四边形,找找它的规律。回到家,我用剪刀把牙膏盒剪成四个长条,当成四边形的四条边(两个对边一样长),再用四个暗扣把每两个边的两头固定到一起,做成了一个活动的平行四边形。我拿着自己做的道具,左拉拉右拉拉,仔细观看它的图形变化(如下面的图1、图2)。经过观察,我从中发现了一些奥秘,这个活动的平行四边形无论怎么变换形状,都还是一个平行四边形。我感到很奇怪,心想;随着这个图形的变换,它的周长和面积会不会也发生变化呢?我仔细地思考着,想不明白。于是我又重新变化图形,一边变化着图形,一边又仔细地观察起来。我发现在变化的过程中,它的四条边长并没有变化,也就是说,图形的周长没变,可面积就不一样了,把Ab边向右移动,AE就随着图形而逐渐变化,平行四边形的面积等于bC *AE,图形的面积也就随之而变。我用尺子量了量,不管怎样变化,图2的这个平行四边形中始终是Ab>AE,于是我得出这样一个结论,无论图形怎样变,都会是这样的:⑴由于四条边长不变,图形的周长是不变的;⑵两条对边不但相等,而且始终都保持平行的状态;⑶无论怎样变化,它都是一个平行四边形。⑷由于底边不变,∠AbC的度数越接近90度,图形的高越长,它的面积也逐渐越大;当∠AbC的度数大于90度而小于180度,图形的高也越来越短,它的面积也就越来越小。当∠AbC的度数等于90度时,图形的高是最长的,此时它的面积也是最大的。通过这次数学小实验,不但锻炼了我自己的动手能力,而且让我对平行四边形的理解也越加深刻了,也使原来复杂的问题,变得更加通俗易懂了,更增添了我对数学的兴趣和学好数学的信心。

特殊的平行四边形矩形研究论文

《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情.比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样.王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对.这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果.”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲.其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点.如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米).所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米).两个答案,也就是说王星的答案加上小英的答案才是全面的.在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意.否则就容易忽略了另外的答案,犯以偏概全的错误.关于“0” 0,可以说是人类最早接触的数了.我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量.”这样说显然是不正确的.我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点.而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的.2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等.” “任何数除以0即为没有意义.”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少.一个整体无法分成0份,即“没有意义”.后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数).从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”.在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙.例如,三角形.三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形.通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度.用6个正三角形就可以铺满地面.再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度.用4个正四边形就可以铺满地面.正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度.它不能铺满地面.六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度.用3个正四边形就可以铺满地面.七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度.它不能铺满地面.由此,我们得出了.n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度.若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面.我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面.例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的.

平行四边形的定义是:有两组对边分别平行的四边形叫平行四边形。如果这种平行四边形加上邻边相等(菱形)或邻角相等(正方形)就是特殊的平行四边形。

特殊的平行四边形有矩形和菱形。

有一个角是直角的平行四边形是矩形。矩形是一种特殊的平行四边形,正方形是特殊的矩形,至少有三个内角都是直角的四边形是矩形,矩形也叫长方形。

在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形,菱形的对角线互相垂直平分且平分每一组对角,菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形是中心对称图形。

平行四边形定义

平行四边形(Parallelogram),是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。

定义:两组对边分别平行的四边形叫做平行四边形.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形

平行四边形的教学论文题目

《数学新课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”所以,在数学教学中,就要着重引导学生积极主动地参与数学教学的全过程,既给所有学生都有参与的权利,都拥有获得发展的机会,又让学生在参与中主动地发展,在发展中获得新的参与。现结合《平行四边形的认识》,谈谈如何让学生在积极参与学习活动中获得主动发展。一、创设情境,激发主体参与的动机。兴趣是最好的老师,从一定意义上说,兴趣本身就是主动性、积极性,是推动学生探究新知识的动力。但兴趣是在一定的情境中产生的。在新课伊始,教师注意创设情境,激发学生参与的动机,紧紧抓住“平行线”这一基础知识,利用多媒体特有的感染力与表现力,选择学生熟悉的生活实例:校园内的双杠、电脑房楼梯口的防盗网、学生家中电话上的“井”号键等图像,直观形象地使学生饶有兴趣地进行观察,积极寻找图像中的平行线。在此基础上,再通过平移的演示,使两组平行线相交,组成新的图形。教师引导观察,适时激疑,既创设了学生参与学习的情境,又激起了学生探求“平行四边形”这一新知识的内驱力。二、创造条件,提供主体参与的机会。皮亚杰曾指出:“传统教学的缺点,就在于往往是用口头讲解,而不是从实际操作开始数学教学。”教师就要努力激活课堂教学方式,开放学生“全脑”,引导他们动眼、动手、动脑、动口,多种感官参与,实现教学知、情、意、行的融合。在建立平行四边形概念的过程中,教师首先选取了有代表性的生活实例,楼梯扶手、自动伸缩门、轿车侧面的玻璃等让学生动眼观察,充分感知,然后让学生闭眼回想平行四边形的样子,动手试画平行四边形,帮助学生形成表象。再让学生动手验证平行线的活动,强化平行四边形的“两组对边平行”,最后通过学生动脑、动口,抽象概括形成规范化的语言。接着,在学习平行四边形的特征和特性时,教师可设计让学生动手制作平行四边形的环节,通过小组合作方式,钉一钉、量一量、拉一拉、说一说,多种感官参与实践,既巩固了平行四边形的概念,又引发出新的思考:“在制作平行四边形的过程中你有什么新的发现?”让学生自己发现平行四边形的对边分别平行且相等的特征及易变性的特性。这样就有利于学生对知识的理解和掌握,有利于获得正确的学习方法,形成学习能力,从而使学生从知识的接受者成为知识的发现者和创造者。三、发展思维,深化主体参与的效果。学生参与学习活动,不但使学生主动获取知识,促进认知发展,更能培养学生的参与意识,促进学生主动发展。要加大学生的思考空间和创造空间,以激活学生的主体思维,形成新的教学成果,我们不能认为只要学生在动口、动手(钉一钉、量一量、拉一拉),甚至动身等,就是主动参与了。主动参与是通过动的过程,让学生了解知识形成的过程,以外在的动促进思维的动,达到知识的内化;或者在思维运动的同时,通过外在动的形式,使内化更为深刻和完美。如在巩固练习时,让学生到生活中去找平行四边形,由生活实例到平行四边形特征的抽象过程,自然地把外形是平行四边形的物体与平行四边形的几何图形联系起来,增强了“平行四边形”是源于生活的认识。在发现了平行四边形的不稳定性后,让学生通过多媒体观察升降机的工作情况,以及举例说说平行四边形不稳定性的应用,了解数学知识在实际生活与生产中的作用,培养学生用数学眼光看问题,用数学头脑想问题,用数学知识解决问题的意识。美国教育家研究发现:“听,会忘记;看,能记住;做,才能会。”这个“做”字,指的就是学生的参与实践活动。我们都应积极组织学生开展实践活动,引导学生主动参与,使每位学生在学中做,做中学,从而使每一位学生在原有基础上获得适应未来社会生活和进一步发展的必要的基本技能,为学生的终生可持续发展打下良好的基础。让我们的学生在主动参与实践活动的过程中增长才干。 亲,求采纳。。学会访问度娘。

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。关于数学方面的论文我们可以写哪些呢?下面我给大家带来关于数学方向的优秀论文题目有哪些,希望能帮助到大家!

最全组合数学论文题目

1、并行组合数学模型方式研究及初步应用

2、数学规划在非系统风险投资组合中的应用

3、金融经济学中的组合数学问题

4、竞赛数学中的组合恒等式

5、概率 方法 在组合数学中的应用

6、组合数学中的代数方法

7、组合电器局部放电超高频信号数学模型构建和模式识别研究

8、概率方法在组合数学中的某些应用

9、组合投资数学模型发展的研究

10、高炉炉温组合预报和十字测温数学建模

11、证券组合的风险度量及其数学模型

12、组合数学中的Hopf方法

13、PAR方法在组合数学问题中的应用研究

14、概率方法在组合数学及混合超图染色理论中的应用

15、一些算子在组合数学中的应用

16、陀螺/磁强计组合定姿方法的相关数学问题研究

17、高中数学人教版新旧教材排列组合内容的比较研究

18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究

19、基于数学形态学-小波分析组合算法的牵引网故障判定方法

20、证券组合投资的灰色优化数学模型的研究

21、一些算子在组合数学中的应用

22、概率方法在组合数学中的应用

23、组合数学中的Hopf方法

24、概率方法在组合数学中的某些应用

25、概率方法在组合数学及混合超图染色理论中的应用

26、竞赛数学中的组合恒等式

27、Stern-Lov醩z定理及在组合结构中的应用

28、几类特殊图形的渐近估计及数值解

29、Fine格路和有禁错排

30、基于DFL的Agent自主学习模型及其应用研究

31、基于DFL的多Agent自动推理平台设计

32、预应力混凝土斜拉桥施工监控概率方法研究

33、最大概率方法与最近邻准则下的图像标注

34、亚式期权定价的偏微分方程方法和概率方法

35、编目空间碎片的碰撞概率方法研究及应用

36、基于概率方法的机器人定位

37、民用建筑内部给水设计秒流量的概率方法研究

38、图论中的组合方法和概率方法

39、物理概率方法预估贮存寿命研究

40、静载下结构参数识别的误差分析和概率方法

41、概率方法在组合计数证明中的应用

42、基于非概率方法的结构全寿命总费用评估

43、概率方法在组合数学中的应用

44、概率方法与邻点可区别全染色的色数上界

45、既有钢筋混凝土结构耐久性评定的概率方法

46、概率方法在多任务EEG脑机接口中的应用研究

47、应用概率方法对居住小区给水设计秒流量的推求

48、概率方法与图的染色问题

49、概率方法对居住小区设计秒流量的推求

50、概率方法在组合数学中的某些应用

51、概率方法在组合恒等式证明中的应用

52、遗传算法的研究与应用

53、基于空间算子代数理论的链式多体系统递推动力学研究

54、关于Weidmann猜想及具有转移条件微分算子的研究

55、实数编码遗传算法杂交算子组合研究

56、基于OWA算子理论的混合型多属性群决策研究

57、序列算子与灰色预测模型研究

58、具有转移条件的Sturm-Liouville算子和具有点作用的Schrodinger算子谱分析的研究

59、高精度径向基函数拟插值算子的构造及其应用

60、多线性算子加权Hardy算子与次线性算子的相关研究

数学建模论文题目

1、高中数学核心素养之数学建模能力培养的研究

2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例

3、培养低年段学生数学建模意识的微课教学

4、信息化背景下数学建模教学策略研究

5、数学建模思想融入解析几何的实际应用探讨

6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例

7、基于高等数学建模思维的经济学应用

8、以数学建模促进应用型本科院校数学专业的发展

9、高等代数在数学建模中的应用探讨

10、融入数学建模思想的线性代数案例教学研究

11、以“勾股定理的应用”为例谈初中数学的建模教学

12、经管概率统计中的数学建模思想研究——评《经管与 财税 基础》

13、数学建模实例——河西学院校内充电站最佳选址问题

14、基于数学建模探讨高职数学的改革途径

15、大数据时代大学生数学建模应用能力的提升研究

16、“数学写作之初见建模”教学设计及思考

17、大学数学教学过程中数学建模意识与方法的培养简析

18、基于建模思想的高等数学应用研究

19、小学数学建模教学实践

20、依托对口支援平台培养大学生的数学建模能力

21、跨界研究在数学建模教与学中的应用

22、基于结构参数的机织物等效导热率数学建模

23、数学建模对大学生综合素质影响的调查研究

24、计算机数学建模中改进遗传算法与最小二乘法应用

25、数学建模在高中数学课堂的教学策略分析

26、发动机特性数字化处理与数学建模

27、数学建模中的数据处理——以大型百货商场会员画像描绘为例

28、数学建模竞赛对医学生 学习态度 和自学能力的影响

29、数学建模思想与高等数学教学的融会贯通

30、试论数学建模思想在小学数学教学中的应用

31、浅析飞机地面空调车风量测控系统数学建模及工程实施

32、高中数学教学中数学建模能力的培养——基于核心素养的视角

33、注重数学建模 提炼解题思路——对中考最值问题的探究

34、在数学建模教学中培养思维的洞察力

35、刍议数学建模思想如何渗透于大学数学教学中

36、数学建模竞赛背景下对高校数学教学的思考

37、数学建模课程对高职学生创新能力的培养探究

38、高等数学教学中数学建模思想方法探究

39、初中数学教学中数学建模思想的渗透

40、无线激光通信网络海量信息快速调度数学建模

41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析

42、中学数学建模教学行为探究

43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究

44、基于数学建模活动的高校数学教学改革

45、数学建模与应用数学的结合研究

46、谈初中数学建模能力的培养

47、数学建模在初中数学应用题解答中的运用

48、基于数学建模思想的高等数学 教学方法 研究

49、数学建模融入高等数学翻转课堂模式研究

50、数学软件融入数学建模课程教学的探讨

最新小学数学教学论文题目

小学数学教材问题探析

小学数学生活化教学研究

小学数学___教学方法有效性分析

小学数学多媒体课件设计研究

小学生数学思维培养探究

小学数学中创新意识的培养

数学作业批改中巧用评语

新课标下小学数学教学改革研究

数学游戏在小学数学教学中的应用

《9和几的进位加法》教学设计

小学数学教学中素质 教育 研究

小学数学学困生的转化策略

小学数学教学中的情感教育

《六的乘法口诀》教学 反思

浅谈数学课堂中学生问题意识的培养

问答式学习课堂教学怎样转向小组合作学习

浅谈农村课堂的有效交流

浅谈在实践活动中提高学生解决实际问题的能力

浅谈小学应用题教学

浅谈学生合作意识的培养

“层次性体验”在数学课堂中的应用

数学课堂教学中学生探索能力的培养

小学数学低段学生阅读能力培养点滴

“观察、 品味、 顿悟” 我谈小学数学空间与图形教学

浅谈小学数学课堂教学中的“留白”

润物细无声--小班化数学作业面批有效策略的尝试

“我的妈妈体重 50 千克” 对培养良好数感的思考

“圆的面积” 教学一得

利用图解法解决逆推题

我教《24 时计时法》

《解简易方程》 教学反思

“可能性” 的反思

折线统计图折射出的“光芒”

《平均数》 教学反思

数学课堂上的“失误“也是一种资源

幽默语言在教学中的应用

“圆的认识” 教学片断与反思

计算机多媒体与小学数学教学的整

充分发挥学生的主体作用

“圆柱的体积” 教学反思

“平行四边形的面积” 听课反思

听“逆向求和应用题” 有感

小学低年级教学策略的实践与反思

“相遇问题” 建立“数学模型”

如何提高课堂语言评价的有效性

“20 以内退位减法” 教学反思

关于数学方向的优秀论文题目相关 文章 :

★ 关于数学专业毕业论文题

★ 数学方面毕业论文题目参考大全

★ 关于数学专业毕业论文题目参考

★ 数学的优秀论文

★ 数学优秀论文范文

★ 数学学术论文的题目

★ 数学教育论文题目

★ 数学教育方向的论文范文

★ 数学教育方向相关论文(2)

平行四边形的对角线将其分割成4个面积相等的三角形.(可以根据"等底同高"得出面积相等)所以S△AOB=S◇ABCD的四分之一=8的四分之一=2

多边形面积推导研究论文

正六边形面积公式:S=(3x√3/2)x(a²)。其中a为正六边形的边长。

公式说明:因为是正六边形,正六边形就可以分成过中心6个全等的正三角形,作正三角形的高,利用勾股定理可求高为√3/2×a,每个三角形的面积都是√3/4×a²,所以正六边形的面积为(3/2)×√3a²。

六边形特征:各内角相等,6边相等。由外角和等于360度,推出一个内角为180-(360/6)=120度,所以一个内角为120度,内角和为720度。

扩展资料:

六边形,多边形的一种,指所有有六条边和六个角的多边形。根据正多边形内角和公式S=180°·(n-2),所有的正六边形的内角和都是720°,外角和为360°。

如果六边形中有至少一个优角,我们就说该六边形是凹六边形。如果六边形中六个角都是劣角,那么这样的六边形就是凸六边形。例如,三角星是凹六边形。

自然界中,苯与石墨的分子结构、龟壳、蜂巢等都呈现正六边形形状。

nsqrt(3)a^2/4a是边长,n是边数sqrt(3)表示根号3证明设正n边形的面积为s,则,s=(1/2)nr^2*sinα=nr^2tan(α/2)式中,n--边数,r--三角形的外接圆的半径,r--三角形的内切圆的半径,α--一边所对的圆心角(以度计)证明也很简单。正n边形可分割成n割等腰三角形,按上述参数计数三角形的面积加起来就是正n边形的面积,当然有点技巧。现证明如下。(1)设正n边形的边长为ab,o为三角形外接圆心(内切圆与之同心),连接oa、ob,得一三角形aob,其面积为:s'aob则,s'△aob=(1/2)*ab*rcos(α/2)且,ab/2=rsin(α/2),即ab=2rsin(α/2)故,s'△aob=(1/2)*2r^2sin(α/2)cos(α/2)s'△aob=(1/2)r^2sinα正n边形的面积s=n*s△aob故,s=(1/2)nr^2sinα(2)再证以内切圆半径r和圆心角α表示的正多边形的面积s证:因r是圆o的外切正多边形的边心距,也是△aob的ab上的高(r)s''△aob=(1/2)*ab*r此时,ab/2=rtan(α/2),故ab=2rtan(α/2)s''△aob=(1/2)*2r^2tan(α/2)=r^2*tan(α/2)故,正n边形的面积s=n*s''△aob=nr^2*tan(α/2)

把自己对多边形的认识写下来。

由在同一平面且不在同一直线上的三条或三条以上的线段首尾顺次连结且不相交所组成的封闭图形叫做多边形。在不同平面上的多条线段首尾顺次连结且不相交所组成的图形也被称为多边形,是广义的多边形。

组成多边形的线段至少有3条,三角形是最简单的多边形。组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点;多边形相邻两边所组成的角叫做多边形的内角;连接多边形的两个不相邻顶点的线段叫做多边形的对角线。

多边形内角的一边与另一边反向延长线所组成的角,叫做多边形的外角。

在多边形的每一个顶点处取这个多边形的一个外角,它们的和叫做多边形的外角和。

多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

多边形分平面多边形和空间多边形。平面多边形的所有顶点全在同一个平面上,空间多边形至少有一个顶点和其它的顶点不在同一个平面上。

相关百科

热门百科

首页
发表服务