这只是个模板,你还要自己修改数据,其中有些公式显示不出来。一.设计任务和设计条件某生产过程的流程如图所示,反应器的混合气体经与进料物流患热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。已知混和气体的流量为227301㎏/h,压力为 ,循环冷却水的压力为 ,循环水的入口温度为29℃,出口温度为39℃ ,试设计一台列管式换热器,完成该生产任务。物性特征:混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容 =℃热导率 =粘度循环水在34℃ 下的物性数据:密度 =㎏/m3定压比热容 =℃热导率 =℃粘度二. 确定设计方案1. 选择换热器的类型两流体温的变化情况:热流体进口温度110℃ 出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。2. 管程安排从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下贱,所以从总体考虑,应使循环水走管程,混和气体走壳程。三. 确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为T= =85℃管程流体的定性温度为t= ℃根据定性温度,分别查取壳程和管程流体的有关物性数据。对混合气体来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容 =℃热导率 =粘度 =×10-5Pas循环水在34℃ 下的物性数据:密度 =㎏/m3定压比热容 =℃热导率 =℃粘度 =×10-3Pas四. 估算传热面积1. 热流量Q1==227301××(110-60)=×107kj/h =.平均传热温差 先按照纯逆流计算,得=3.传热面积 由于壳程气体的压力较高,故可选取较大的K值。假设K=320W/(㎡k)则估算的传热面积为Ap=4.冷却水用量 m= =五. 工艺结构尺寸1.管径和管内流速 选用Φ25×较高级冷拔传热管(碳钢),取管内流速u1=。2.管程数和传热管数 可依据传热管内径和流速确定单程传热管数Ns=按单程管计算,所需的传热管长度为L=按单程管设计,传热管过长,宜采用多管程结构。根据本设计实际情况,采用非标设计,现取传热管长l=7m,则该换热器的管程数为Np=传热管总根数 Nt=612×2=12243.平均传热温差校正及壳程数 平均温差校正系数按式(3-13a)和式(3-13b)有 R=P=按单壳程,双管程结构,查图3-9得平均传热温差 ℃由于平均传热温差校正系数大于,同时壳程流体流量较大,故取单壳程合适。4.传热管排列和分程方法 采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。见图3-13。取管心距t=,则 t=×25=≈32㎜隔板中心到离其最.近一排管中心距离按式(3-16)计算S=t/2+6=32/2+6=22㎜各程相邻管的管心距为44㎜。管数的分成方法,每程各有传热管612根,其前后关乡中隔板设置和介质的流通顺序按图3-14选取。5.壳体内径 采用多管程结构,壳体内径可按式(3-19)估算。取管板利用率η= ,则壳体内径为D=按卷制壳体的进级档,可取D=1400mm6.折流板 采用弓形折流板,去弓形之流板圆缺高度为壳体内径的25%,则切去的圆缺高度为H=×1400=350m,故可 取h=350mm取折流板间距B=,则 B=×1400=420mm,可取B为450mm。折流板数目NB=折流板圆缺面水平装配,见图3-15。7.其他附件拉杆数量与直径按表3-9选取,本换热器壳体内径为1400mm,故其拉杆直径为Ф12拉杆数量不得少于10。壳程入口处,应设置防冲挡板,如图3-17所示。8.接管壳程流体进出口接管:取接管内气体流速为u1=10m/s,则接管内径为圆整后可取管内径为300mm。管程流体进出口接管:取接管内液体流速u2=,则接管内径为圆整后去管内径为360mm六. 换热器核算1. 热流量核算(1)壳程表面传热系数 用克恩法计算,见式(3-22)当量直径,依式(3-23b)得=壳程流通截面积,依式3-25 得壳程流体流速及其雷诺数分别为普朗特数粘度校正(2)管内表面传热系数 按式3-32和式3-33有管程流体流通截面积管程流体流速普朗特数(3)污垢热阻和管壁热阻 按表3-10,可取管外侧污垢热阻管内侧污垢热阻管壁热阻按式3-34计算,依表3-14,碳钢在该条件下的热导率为50w/(m•K)。所以(4) 传热系数 依式3-21有(5)传热面积裕度 依式3-35可得所计算传热面积Ac为该换热器的实际传热面积为Ap该换热器的面积裕度为传热面积裕度合适,该换热器能够完成生产任务。2. 壁温计算因为管壁很薄,而且壁热阻很小,故管壁温度可按式3-42计算。由于该换热器用循环水冷却,冬季操作时,循环水的进口温度将会降低。为确保可靠,取循环冷却水进口温度为15℃,出口温度为39℃计算传热管壁温。另外,由于传热管内侧污垢热阻较大,会使传热管壁温升高,降低了壳体和传热管壁温之差。但在操作初期,污垢热阻较小,壳体和传热管间壁温差可能较大。计算中,应该按最不利的操作条件考虑,因此,取两侧污垢热阻为零计算传热管壁温。于是,按式4-42有式中液体的平均温度 和气体的平均温度分别计算为×39+×15=℃(110+60)/2=85℃5887w/㎡•㎡•k传热管平均壁温℃壳体壁温,可近似取为壳程流体的平均温度,即T=85℃。壳体壁温和传热管壁温之差为 ℃。该温差较大,故需要设温度补偿装置。由于换热器壳程压力较大,因此,需选用浮头式换热器较为适宜。3.换热器内流体的流动阻力(1)管程流体阻力, ,由Re=35002,传热管对粗糙度,查莫狄图得 ,流速u=,,所以,管程流体阻力在允许范围之内。(2)壳程阻力 按式计算, ,流体流经管束的阻力F=×××(14+1)× =75468Pa流体流过折流板缺口的阻力, B= , D=总阻力75468+43218=× Pa由于该换热器壳程流体的操作压力较高,所以壳程流体的阻力也比较适宜。(3)换热器主要结构尺寸和计算结果见下表:参数 管程 壳程流率 898560 227301进/出口温度/℃ 29/39 110/60压力/MPa 物性 定性温度/℃ 34 85密度/(kg/m3) 90定压比热容/[kj/(kg•k)] 粘度/(Pa•s) ××热导率(W/m•k) 普朗特数 设备结构参数 形式 浮头式 壳程数 1壳体内径/㎜ 1400 台数 1管径/㎜ Φ25× 管心距/㎜ 32管长/㎜ 7000 管子排列 △管数目/根 1224 折流板数/个 14传热面积/㎡ 673 折流板间距/㎜ 450管程数 2 材质 碳钢主要计算结果管程 壳程流速/(m/s) 表面传热系数/[W/(㎡•k)] 5887 污垢热阻/(㎡•k/W) 阻力/ MPa 热流量/KW 10417传热温差/K 传热系数/[W/(㎡•K)] 400裕度/% 七. 参考文献:1. 刘积文主编,石油化工设备及制造概论,哈尔滨;哈尔滨船舶工程学院出版社,1989年。2. ——84机械制图图纸幅面及格式3. GB150——98钢制压力容器4. 机械工程学会焊接学会编,焊接手册,第3卷,焊接结构,北京;机械工业出版社 1992年。5. 杜礼辰等编,工程焊接手册,北京,原子能出版社,19806. 化工部六院编,化工设备技术图样要求,化学工业设备设计中心站,1991年。
浮头式换热器浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。新型浮头式换热器浮头端结构,它包括圆筒、外头盖侧法兰、浮头管板、钩圈、浮头盖、外头盖及丝孔、钢圈等组成,其特征是:在外头盖侧法兰内侧面设凹型或梯型密封面,并在靠近密封面外侧钻孔并套丝或焊设多个螺杆均布,浮头处取消钩圈及相关零部件,浮头管板密封槽为原凹型槽并另在同一端面开一个以该管板中心为圆心,半径稍大于管束外径的梯型凹槽,且管板分程凹槽只与梯型凹槽相连通,而不与凹型槽相连通;在凹型和梯型凹槽之间钻孔并套丝或焊设多个螺杆均布,设浮头法兰为凸型和梯型凸台双密封,分程隔板与梯型凸台相通并位于同一端面的宽面法兰,且凸型和梯型凸台及分程隔板分别与浮头管板凹型和梯型凹槽及分程凹槽相对应匹配,该浮头法兰与无折边球面封头组配焊接为浮头盖,其法兰螺孔与浮头管板的丝孔或螺杆相组配,用螺栓或螺帽紧固压紧浮头管板凹型和梯型凹槽及分程凹槽及其垫片,该结构必要时可适当加大浮头管板的厚度和直径及圆筒的内径,同时相应变更加大相关零部件的尺寸;另配置一无外力辅助钢圈,其圈体内径大于浮头管板外径,钢圈一端设法兰与外头盖侧法兰内侧面凹型或梯型密封面连接并密封,另一端设法兰或其他结构与浮头管板原凹型槽及其垫片或外圆密封。浮头换热器的特点:浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动,这个特点在现场能看出来。这种换热器壳体和管束的热膨胀是自由的,管束可以抽出,便于清洗管间和管内。其缺点是结构复杂,造价高(比固定管板高20%),在运行中浮头处发生泄漏,不易检查处理。浮头式换热器适用于壳体和管束温差较大或壳程介质易结垢的条件。
这次化工课程设计,我设计的换热器的饱和水蒸气流速有些小,壳程阻力有点大,如果用于工业生产还需加以改造与强化。在换热器的设计过程中,我感觉我的理论运用于实际的能力得到了提升,主要有以下几点: (1)掌握了查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力; (2)树立了既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力; (3)培养了迅速准确的进行工程计算的能力; (4)学会了用简洁的文字,清晰的图表来表达自己设计思想的能力。从设计结果可看出,若要保持总传热系数,温度越大、换热管数越多,折流板数越多、壳径越大,这主要是因为水的出口温度增高,总的传热温差下降,所以换热面积要增大,才能保证Q和K.因此,换热器尺寸增大,金属材料消耗量相应增大.通过这个设计,我们可以知道,为提高传热效率,降低经济投入,设计参数的选择十分重要.
浮头式换热器浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。新型浮头式换热器浮头端结构,它包括圆筒、外头盖侧法兰、浮头管板、钩圈、浮头盖、外头盖及丝孔、钢圈等组成,其特征是:在外头盖侧法兰内侧面设凹型或梯型密封面,并在靠近密封面外侧钻孔并套丝或焊设多个螺杆均布,浮头处取消钩圈及相关零部件,浮头管板密封槽为原凹型槽并另在同一端面开一个以该管板中心为圆心,半径稍大于管束外径的梯型凹槽,且管板分程凹槽只与梯型凹槽相连通,而不与凹型槽相连通;在凹型和梯型凹槽之间钻孔并套丝或焊设多个螺杆均布,设浮头法兰为凸型和梯型凸台双密封,分程隔板与梯型凸台相通并位于同一端面的宽面法兰,且凸型和梯型凸台及分程隔板分别与浮头管板凹型和梯型凹槽及分程凹槽相对应匹配,该浮头法兰与无折边球面封头组配焊接为浮头盖,其法兰螺孔与浮头管板的丝孔或螺杆相组配,用螺栓或螺帽紧固压紧浮头管板凹型和梯型凹槽及分程凹槽及其垫片,该结构必要时可适当加大浮头管板的厚度和直径及圆筒的内径,同时相应变更加大相关零部件的尺寸;另配置一无外力辅助钢圈,其圈体内径大于浮头管板外径,钢圈一端设法兰与外头盖侧法兰内侧面凹型或梯型密封面连接并密封,另一端设法兰或其他结构与浮头管板原凹型槽及其垫片或外圆密封。浮头换热器的特点:浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动,这个特点在现场能看出来。这种换热器壳体和管束的热膨胀是自由的,管束可以抽出,便于清洗管间和管内。其缺点是结构复杂,造价高(比固定管板高20%),在运行中浮头处发生泄漏,不易检查处理。浮头式换热器适用于壳体和管束温差较大或壳程介质易结垢的条件。
这只是个模板,你还要自己修改数据,其中有些公式显示不出来。一.设计任务和设计条件某生产过程的流程如图所示,反应器的混合气体经与进料物流患热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。已知混和气体的流量为227301㎏/h,压力为 ,循环冷却水的压力为 ,循环水的入口温度为29℃,出口温度为39℃ ,试设计一台列管式换热器,完成该生产任务。物性特征:混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容 =℃热导率 =粘度循环水在34℃ 下的物性数据:密度 =㎏/m3定压比热容 =℃热导率 =℃粘度二. 确定设计方案1. 选择换热器的类型两流体温的变化情况:热流体进口温度110℃ 出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。2. 管程安排从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下贱,所以从总体考虑,应使循环水走管程,混和气体走壳程。三. 确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为T= =85℃管程流体的定性温度为t= ℃根据定性温度,分别查取壳程和管程流体的有关物性数据。对混合气体来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容 =℃热导率 =粘度 =×10-5Pas循环水在34℃ 下的物性数据:密度 =㎏/m3定压比热容 =℃热导率 =℃粘度 =×10-3Pas四. 估算传热面积1. 热流量Q1==227301××(110-60)=×107kj/h =.平均传热温差 先按照纯逆流计算,得=3.传热面积 由于壳程气体的压力较高,故可选取较大的K值。假设K=320W/(㎡k)则估算的传热面积为Ap=4.冷却水用量 m= =五. 工艺结构尺寸1.管径和管内流速 选用Φ25×较高级冷拔传热管(碳钢),取管内流速u1=。2.管程数和传热管数 可依据传热管内径和流速确定单程传热管数Ns=按单程管计算,所需的传热管长度为L=按单程管设计,传热管过长,宜采用多管程结构。根据本设计实际情况,采用非标设计,现取传热管长l=7m,则该换热器的管程数为Np=传热管总根数 Nt=612×2=12243.平均传热温差校正及壳程数 平均温差校正系数按式(3-13a)和式(3-13b)有 R=P=按单壳程,双管程结构,查图3-9得平均传热温差 ℃由于平均传热温差校正系数大于,同时壳程流体流量较大,故取单壳程合适。4.传热管排列和分程方法 采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。见图3-13。取管心距t=,则 t=×25=≈32㎜隔板中心到离其最.近一排管中心距离按式(3-16)计算S=t/2+6=32/2+6=22㎜各程相邻管的管心距为44㎜。管数的分成方法,每程各有传热管612根,其前后关乡中隔板设置和介质的流通顺序按图3-14选取。5.壳体内径 采用多管程结构,壳体内径可按式(3-19)估算。取管板利用率η= ,则壳体内径为D=按卷制壳体的进级档,可取D=1400mm6.折流板 采用弓形折流板,去弓形之流板圆缺高度为壳体内径的25%,则切去的圆缺高度为H=×1400=350m,故可 取h=350mm取折流板间距B=,则 B=×1400=420mm,可取B为450mm。折流板数目NB=折流板圆缺面水平装配,见图3-15。7.其他附件拉杆数量与直径按表3-9选取,本换热器壳体内径为1400mm,故其拉杆直径为Ф12拉杆数量不得少于10。壳程入口处,应设置防冲挡板,如图3-17所示。8.接管壳程流体进出口接管:取接管内气体流速为u1=10m/s,则接管内径为圆整后可取管内径为300mm。管程流体进出口接管:取接管内液体流速u2=,则接管内径为圆整后去管内径为360mm六. 换热器核算1. 热流量核算(1)壳程表面传热系数 用克恩法计算,见式(3-22)当量直径,依式(3-23b)得=壳程流通截面积,依式3-25 得壳程流体流速及其雷诺数分别为普朗特数粘度校正(2)管内表面传热系数 按式3-32和式3-33有管程流体流通截面积管程流体流速普朗特数(3)污垢热阻和管壁热阻 按表3-10,可取管外侧污垢热阻管内侧污垢热阻管壁热阻按式3-34计算,依表3-14,碳钢在该条件下的热导率为50w/(m•K)。所以(4) 传热系数 依式3-21有(5)传热面积裕度 依式3-35可得所计算传热面积Ac为该换热器的实际传热面积为Ap该换热器的面积裕度为传热面积裕度合适,该换热器能够完成生产任务。2. 壁温计算因为管壁很薄,而且壁热阻很小,故管壁温度可按式3-42计算。由于该换热器用循环水冷却,冬季操作时,循环水的进口温度将会降低。为确保可靠,取循环冷却水进口温度为15℃,出口温度为39℃计算传热管壁温。另外,由于传热管内侧污垢热阻较大,会使传热管壁温升高,降低了壳体和传热管壁温之差。但在操作初期,污垢热阻较小,壳体和传热管间壁温差可能较大。计算中,应该按最不利的操作条件考虑,因此,取两侧污垢热阻为零计算传热管壁温。于是,按式4-42有式中液体的平均温度 和气体的平均温度分别计算为×39+×15=℃(110+60)/2=85℃5887w/㎡•㎡•k传热管平均壁温℃壳体壁温,可近似取为壳程流体的平均温度,即T=85℃。壳体壁温和传热管壁温之差为 ℃。该温差较大,故需要设温度补偿装置。由于换热器壳程压力较大,因此,需选用浮头式换热器较为适宜。3.换热器内流体的流动阻力(1)管程流体阻力, ,由Re=35002,传热管对粗糙度,查莫狄图得 ,流速u=,,所以,管程流体阻力在允许范围之内。(2)壳程阻力 按式计算, ,流体流经管束的阻力F=×××(14+1)× =75468Pa流体流过折流板缺口的阻力, B= , D=总阻力75468+43218=× Pa由于该换热器壳程流体的操作压力较高,所以壳程流体的阻力也比较适宜。(3)换热器主要结构尺寸和计算结果见下表:参数 管程 壳程流率 898560 227301进/出口温度/℃ 29/39 110/60压力/MPa 物性 定性温度/℃ 34 85密度/(kg/m3) 90定压比热容/[kj/(kg•k)] 粘度/(Pa•s) ××热导率(W/m•k) 普朗特数 设备结构参数 形式 浮头式 壳程数 1壳体内径/㎜ 1400 台数 1管径/㎜ Φ25× 管心距/㎜ 32管长/㎜ 7000 管子排列 △管数目/根 1224 折流板数/个 14传热面积/㎡ 673 折流板间距/㎜ 450管程数 2 材质 碳钢主要计算结果管程 壳程流速/(m/s) 表面传热系数/[W/(㎡•k)] 5887 污垢热阻/(㎡•k/W) 阻力/ MPa 热流量/KW 10417传热温差/K 传热系数/[W/(㎡•K)] 400裕度/% 七. 参考文献:1. 刘积文主编,石油化工设备及制造概论,哈尔滨;哈尔滨船舶工程学院出版社,1989年。2. ——84机械制图图纸幅面及格式3. GB150——98钢制压力容器4. 机械工程学会焊接学会编,焊接手册,第3卷,焊接结构,北京;机械工业出版社 1992年。5. 杜礼辰等编,工程焊接手册,北京,原子能出版社,19806. 化工部六院编,化工设备技术图样要求,化学工业设备设计中心站,1991年。
某生产过程中,需将6000kg/h的油从140℃冷却至40℃,压力为;冷却介质采用循环水,循环冷却水的压力为,循环水入口温度30℃,出口温度为40℃。试设计一台列管式换热器,完成该生产任务。 1.确定设计方案 (1)选择换热器的类型 两流体温度变化情况:热流体进口温度140℃,出口温度40℃冷流体(循环水)进口温度30℃,出口温度40℃。该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式式换热器。 (2)流动空间及流速的确定 由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。选用ф25×的碳钢管,管内流速取ui=。 2.确定物性数据 定性温度:可取流体进口温度的平均值。 壳程油的定性温度为(℃)管程流体的定性温度为(℃)根据定性温度,分别查取壳程和管程流体的有关物性数据。 油在90℃下的有关物性数据如下: 密度ρo=825kg/m3定压比热容cpo=(kg·℃)导热系数λo=(m·℃)粘度μo=·s循环冷却水在35℃下的物性数据: 密度ρi=994kg/m3定压比热容cpi=(kg·℃)导热系数λi=(m·℃)粘度μi=·s3.计算总传热系数 (1)热流量 Qo=WocpoΔto=6000××(140-40)=×106kJ/h=(kW)(2)平均传热温差 (℃)(3)冷却水用量 (kg/h)(4)总传热系数K 管程传热系数 W/(m·℃)壳程传热系数 假设壳程的传热系数αo=290W/(m2·℃); 污垢热阻Rsi=·℃/W,Rso=·℃/W管壁的导热系数λ=45W/(m·℃)=(m·℃)4.计算传热面积 (m2)考虑15%的面积裕度,S=×S′=×(m2)。 5.工艺结构尺寸 (1)管径和管内流速 选用ф25×传热管(碳钢),取管内流速ui=。 (2)管程数和传热管数 依据传热管内径和流速确定单程传热管数 按单程管计算,所需的传热管长度为(m)按单管程设计,传热管过长,宜采用多管程结构。现取传热管长L=6m,则该换热器管程数为(管程)传热管总根数N=58×2=116(根)(3)平均传热温差校正及壳程数 平均传热温差校正系数 第2章换热器设计按单壳程,双管程结构,温差校正系数应查有关图表。但R=10的点在图上难以读出,因而相应以1/R代替R,PR代替P,查同一图线,可得φΔt=平均传热温差Δtm=φΔtΔ′tm=×39=32(℃)(4)传热管排列和分程方法 采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。取管心距t=,则 t=×25=≈32(mm)横过管束中心线的管数(根)(5)壳体内径 采用多管程结构,取管板利用率η=,则壳体内径为 (mm)圆整可取D=450mm (6)折流板 采用弓形折流板,取弓形折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为h=×450=(mm),故可取h=110mm。 取折流板间距B=,则B=×450=135(mm),可取B为150。 折流板数NB=传热管长/折流板间距-1=6000/150-1=39(块)折流板圆缺面水平装配。 (7)接管 壳程流体进出口接管:取接管内油品流速为u=,则接管内径为 取标准管径为50mm。 管程流体进出口接管:取接管内循环水流速u=,则接管内径为 6.换热器核算 (1)热量核算 ①壳程对流传热系数对圆缺形折流板,可采用凯恩公式 当量直径,由正三角形排列得 (m) 壳程流通截面积 (m) 壳程流体流速及其雷诺数分别为 普兰特准数 粘度校正 W/(m2·℃) ②管程对流传热系数 管程流通截面积(m2) 管程流体流速 普兰特准数W/(m2·℃) ③传热系数K=(m·℃)④传热面积S(m2)该换热器的实际传热面积Sp(m2)该换热器的面积裕度为 传热面积裕度合适,该换热器能够完成生产任务。 (2)换热器内流体的流动阻力 ①管程流动阻力 ∑ΔPi=(ΔP1+ΔP2)FtNsNpNs=1,Np=2,Ft=由Re=13628,传热管相对粗糙度=,查莫狄图得λi=·℃, 流速ui=,ρ=994kg/m3,所以 管程流动阻力在允许范围之内。 ②壳程阻力 ∑ΔPo=(ΔP′1+ΔP′2)FtNsNs=l,Ft=l流体流经管束的阻力 流体流过折流板缺口的阻力 总阻力∑ΔPo=1202+=(Pa)<10kPa壳程流动阻力也比较适宜。 ③换热器主要结构尺寸和计算结果换热器主要结构尺寸和计算结果见表2-13。 表2-13换热器主要结构尺寸和计算结果 换热器形式:固定管板式管口表 换热面积(m2):48 符号 尺寸 用途 连接型式 工艺参数 a DN80 循环水入口 平面 名称 管程 壳程 b DN80 循环水出口 平面 物料名称 循环水 油 c DN50 油品入口 凹凸面 操作压力,MPa d DN50 油品出口 凹凸面 操作温度,℃ 29/39 140/40 e DN20 排气口 凹凸面 流量,kg/h 32353 6000 f DN20 放净口 凹凸面 流体密度,kg/m3 994 825 附图 流速,m/传热量,总传热系数,W/m2·传热系数,W/m2·K2721476污垢系数,m2·K/阻力降,程数21推荐使用材料碳钢碳钢管子规格ф25×管数116管长mm:6000管间距,mm32排列方式正三角形折流板型式上下间距,mm150切口高度25%壳体内径,mm450保温层厚度,mm热交换设备
我给你发过去了,剩下的自己看着画吧,你不能自己一点不动手,只能帮你到这了,不过提醒你下,你这个设计的有问题,自己看图就明白了
下列转载的文章供你参考:列管式换热器的设计和选用(1) 列管式换热器的设计和选用应考虑的问题◎ 冷、热流体流动通道的选择具体选择冷、热流体流动通道的选择在换热器中,哪一种流体流经管程,哪一种流经壳程,下列几点可作为选择的一般原则:a) 不洁净或易结垢的液体宜在管程,因管内清洗方便。b) 腐蚀性流体宜在管程,以免管束和壳体同时受到腐蚀。c) 压力高的流体宜在管内,以免壳体承受压力。d) 饱和蒸汽宜走壳程,因饱和蒸汽比较清洁,表面传热系数与流速无关,而且冷凝液容易排出。e) 流量小而粘度大( )的流体一般以壳程为宜,因在壳程Re>100即可达到湍流。但这不是绝对的,如流动阻力损失允许,将这类流体通入管内并采用多管程结构,亦可得到较高的表面传热系数。f) 若两流体温差较大,对于刚性结构的换热器,宜将表面传热系数大的流体通入壳程,以减小热应力。g) 需要被冷却物料一般选壳程,便于散热。以上各点常常不可能同时满足,应抓住主要方面,例如首先从流体的压力、防腐蚀及清洗等要求来考虑,然后再从对阻力降低或其他要求予以校核选定。◎ 流速的选择常用流速范围流速的选择流体在管程或壳程中的流速,不仅直接影响表面传热系数,而且影响污垢热阻,从而影响传热系数的大小,特别对于含有泥沙等较易沉积颗粒的流体,流速过低甚至可能导致管路堵塞,严重影响到设备的使用,但流速增大,又将使流体阻力增大。因此选择适宜的流速是十分重要的。根据经验,表及表列出一些工业上常用的流速范围,以供参考。表 列管换热器内常用的流速范围流体种类流速 m/s管程壳程一般液体宜结垢液体气 体~>15~~>~15表 液体在列管换热器中流速(在钢管中)液体粘度 最大流速 m/s>15001000~500500~100100~5335~1>◎ 流动方式的选择流动方式选择流动方式的选择除逆流和并流之外,在列管式换热器中冷、热流体还可以作各种多管程多壳程的复杂流动。当流量一定时,管程或壳程越多,表面传热系数越大,对传热过程越有利。但是,采用多管程或多壳程必导致流体阻力损失,即输送流体的动力费用增加。因此,在决定换热器的程数时,需权衡传热和流体输送两方面的损失。当采用多管程或多壳程时,列管式换热器内的流动形式复杂,对数平均值的温差要加以修正,具体修正方法见节。◎ 换热管规格和排列的选择具体选择 换热管规格和排列的选择换热管直径越小,换热器单位体积的传热面积越大。因此,对于洁净的流体管径可取小些。但对于不洁净或易结垢的流体,管径应取得大些,以免堵塞。考虑到制造和维修的方便,加热管的规格不宜过多。目前我国试行的系列标准规定采用 和 两种规格,对一般流体是适应的。此外,还有 ,φ57×的无缝钢管和φ25×2, 的耐酸不锈钢管。按选定的管径和流速确定管子数目,再根据所需传热面积,求得管子长度。实际所取管长应根据出厂的钢管长度合理截用。我国生产的钢管长度多为6m、9m,故系列标准中管长有,2,3,,6和9m六种,其中以3m和6m更为普遍。同时,管子的长度又应与管径相适应,一般管长与管径之比,即L/D约为4~6。 管子的排列方式有等边三角形和正方形两种(图,图)。与正方形相比,等边三角形排列比较紧凑,管外流体湍动程度高,表面传热系数大。正方形排列虽比较松散,传热效果也较差,但管外清洗方便,对易结垢流体更为适用。如将正方形排列的管束斜转45°安装(图),可在一定程度上提高表面传热系数。 图 管子在管板上的排列◎ 折流挡板 折流挡板间距的具体选择折流挡板安装折流挡板的目的是为提高管外表面传热系数,为取得良好的效果,挡板的形状和间距必须适当。对圆缺形挡板而言,弓形缺口的大小对壳程流体的流动情况有重要影响。由图可以看出,弓形缺口太大或太小都会产生"死区",既不利于传热,又往往增加流体阻力。 a.切除过少b.切除适当 c.切除过多图挡板切除对流动的影响挡板的间距对壳体的流动亦有重要的影响。间距太大,不能保证流体垂直流过管束,使管外表面传热系数下降;间距太小,不便于制造和检修,阻力损失亦大。一般取挡板间距为壳体内径的~倍。我国系列标准中采用的挡板间距为:固定管板式有100,150,200,300,450,600,700mm七种 浮头式有100,150,200,250,300,350,450(或480),600mm八种。(2)流体通过换热器时阻力的计算换热器管程及壳程的流动阻力,常常控制在一定允许范围内。若计算结果超过允许值时,则应修改设计参数或重新选择其他规格的换热器。按一般经验,对于液体常控制在104~105Pa范围内,对于气体则以103~104Pa为宜。此外,也可依据操作压力不同而有所差别,参考下表。换热器操作允许压降△P换热器操作压力P(Pa)允许压降△P<105 (绝对压力)0~105 (表压)>105 (表压)>5×104 Pa◎ 管程阻力管程阻力可按一般摩擦阻力计算式求得。具体计算公式管程阻力损失管程阻力损失可按一般摩擦阻力计算式求得。但管程总的阻力 应是各程直管摩擦阻力 、每程回弯阻力 以及进出口阻力 三项之和。而 相比之下常可忽略不计。因此可用下式计算管程总阻力损失 : 式中 每程直管阻力 ;每程回弯阻力 ;Ft-结构校正系数,无因次,对于 的管子,Ft=,对于 的管子Ft=;Ns-串联的壳程数,指串联的换热器数;Np-管程数;由此式可以看出,管程的阻力损失(或压降)正比于管程数Np的三次方,即 ∝ 对同一换热器,若由单管程改为两管程,阻力损失剧增为原来的8倍,而强制对流传热、湍流条件下的表面传热系数只增为原来的倍;若由单管程改为四管程,阻力损失增为原来的64倍,而表面传热系数只增为原来的3倍。由此可见,在选择换热器管程数目时,应该兼顾传热与流体压降两方面的得失。◎ 壳程阻力对于壳程阻力的计算,由于流动状态比较复杂,计算公式较多,计算结果相差较大。 埃索法计算公式壳程阻力损失对于壳程阻力损失的计算,由于流动状态比较复杂,提出的计算公式较多,所得计算结果相差不少。下面为埃索法计算壳程阻力损失的公式: 式中 -壳程总阻力损失, ; -流过管束的阻力损失, ; -流过折流板缺口的阻力损失, ;Fs-壳程阻力结垢校正系数,对液体可取Fs=,对气体或可凝蒸汽取Fs=;Ns-壳程数;又管束阻力损失 折流板缺口阻力损失 式中 -折流板数目; -横过管束中心的管子数,对于三角形排列的管束, ;对于正方形排列的管束, , 为每一壳程的管子总数;B-折流板间距,m;D-壳程直径,m; -按壳程流通截面积或按其截面积 计算所得的壳程流速,m/s;F-管子排列形式对压降的校正系数,对三角形排列F=,对正方形排列F=,对正方形斜转45°,F=04; -壳程流体摩擦系数,根据 ,由图求出(图中t为管子中心距),当 亦可由下式求出: 因 , 正比于 ,由式可知,管束阻力损失 ,基本上正比于 ,即 ∝ 若挡板间距减小一半, 剧增8倍,而表面传热系数 只增加倍。因此,在选择挡板间距时,亦应兼顾传热与流体压降两方面的得失。同理,壳程数的选择也应如此。 图 壳程摩擦系数f0与Re0的关系列管式换热器的设计和选用(续)(3)列管式换热器的设计和选用的计算步骤设有流量为去qm,h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力 。根据传热速率基本方程: 当Q和 已知时,要求取传热面积A必须知K和 则是由传热面积A的大小和换热器结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。◎ 初选换热器的规格尺寸◆ 初步选定换热器的流动方式,保证温差修正系数 大于,否则应改变流动方式,重新计算。◆ 计算热流量Q及平均传热温差△tm,根据经验估计总传热系数K估,初估传热面积A估。◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。 ◎ 计算管、壳程阻力 在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数NP和折流板间距B再计算压力降是否合理。这时NP与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。◎ 核算总传热系数分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。◎ 计算传热面积并求裕度根据计算的K计值、热流量Q及平均温度差△tm,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积AP大于A020%左右为宜。即裕度为20%左右,裕度的计算式为: 换热器的传热强化途径如欲强化现有传热设备,开发新型高效的传热设备,以便在较小的设备上获得更大的生产能力和效益,成为现代工业发展的一个重要问题。依总传热速率方程: 强化方法:提高 K、A、 均可强化传热。◎提高传热系数K 热阻主要集中于 较小的一侧,提高 小的一侧有效。◆ 降低污垢热阻◆ 提高表面传热系数 提高 的方法:无相变化传热:1) 加大流速;2)人工粗造表面; 3)扰流元件。 有相变化传热:蒸汽冷凝 :1)滴状冷凝, 2)不凝气体排放,3)气液流向一致 , 4)合理布置冷凝面, 5)利用表面张力 (沟槽 ,金属丝)液体沸腾: 1)保持核状沸腾,2) 制造人工表面,增加汽化核心数。◎ 提高传热推动力 加热蒸汽P , ◎ 改变传热面积A 关于传热面积A的改变,不以增加换热器台数,改变换热器的尺寸来加大传热面积A,而是通过对传热面的改造,如开槽及加翅片、以不同异形管代替光滑圆管等措施来加大传热面积以强化传热过程。
这只是个模板,你还要自己修改数据,其中有些公式显示不出来。一.设计任务和设计条件某生产过程的流程如图所示,反应器的混合气体经与进料物流患热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。已知混和气体的流量为227301㎏/h,压力为 ,循环冷却水的压力为 ,循环水的入口温度为29℃,出口温度为39℃ ,试设计一台列管式换热器,完成该生产任务。物性特征:混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容 =℃热导率 =粘度循环水在34℃ 下的物性数据:密度 =㎏/m3定压比热容 =℃热导率 =℃粘度二. 确定设计方案1. 选择换热器的类型两流体温的变化情况:热流体进口温度110℃ 出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。2. 管程安排从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下贱,所以从总体考虑,应使循环水走管程,混和气体走壳程。三. 确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为T= =85℃管程流体的定性温度为t= ℃根据定性温度,分别查取壳程和管程流体的有关物性数据。对混合气体来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容 =℃热导率 =粘度 =×10-5Pas循环水在34℃ 下的物性数据:密度 =㎏/m3定压比热容 =℃热导率 =℃粘度 =×10-3Pas四. 估算传热面积1. 热流量Q1==227301××(110-60)=×107kj/h =.平均传热温差 先按照纯逆流计算,得=3.传热面积 由于壳程气体的压力较高,故可选取较大的K值。假设K=320W/(㎡k)则估算的传热面积为Ap=4.冷却水用量 m= =五. 工艺结构尺寸1.管径和管内流速 选用Φ25×较高级冷拔传热管(碳钢),取管内流速u1=。2.管程数和传热管数 可依据传热管内径和流速确定单程传热管数Ns=按单程管计算,所需的传热管长度为L=按单程管设计,传热管过长,宜采用多管程结构。根据本设计实际情况,采用非标设计,现取传热管长l=7m,则该换热器的管程数为Np=传热管总根数 Nt=612×2=12243.平均传热温差校正及壳程数 平均温差校正系数按式(3-13a)和式(3-13b)有 R=P=按单壳程,双管程结构,查图3-9得平均传热温差 ℃由于平均传热温差校正系数大于,同时壳程流体流量较大,故取单壳程合适。4.传热管排列和分程方法 采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。见图3-13。取管心距t=,则 t=×25=≈32㎜隔板中心到离其最.近一排管中心距离按式(3-16)计算S=t/2+6=32/2+6=22㎜各程相邻管的管心距为44㎜。管数的分成方法,每程各有传热管612根,其前后关乡中隔板设置和介质的流通顺序按图3-14选取。5.壳体内径 采用多管程结构,壳体内径可按式(3-19)估算。取管板利用率η= ,则壳体内径为D=按卷制壳体的进级档,可取D=1400mm6.折流板 采用弓形折流板,去弓形之流板圆缺高度为壳体内径的25%,则切去的圆缺高度为H=×1400=350m,故可 取h=350mm取折流板间距B=,则 B=×1400=420mm,可取B为450mm。折流板数目NB=折流板圆缺面水平装配,见图3-15。7.其他附件拉杆数量与直径按表3-9选取,本换热器壳体内径为1400mm,故其拉杆直径为Ф12拉杆数量不得少于10。壳程入口处,应设置防冲挡板,如图3-17所示。8.接管壳程流体进出口接管:取接管内气体流速为u1=10m/s,则接管内径为圆整后可取管内径为300mm。管程流体进出口接管:取接管内液体流速u2=,则接管内径为圆整后去管内径为360mm六. 换热器核算1. 热流量核算(1)壳程表面传热系数 用克恩法计算,见式(3-22)当量直径,依式(3-23b)得=壳程流通截面积,依式3-25 得壳程流体流速及其雷诺数分别为普朗特数粘度校正(2)管内表面传热系数 按式3-32和式3-33有管程流体流通截面积管程流体流速普朗特数(3)污垢热阻和管壁热阻 按表3-10,可取管外侧污垢热阻管内侧污垢热阻管壁热阻按式3-34计算,依表3-14,碳钢在该条件下的热导率为50w/(m•K)。所以(4) 传热系数 依式3-21有(5)传热面积裕度 依式3-35可得所计算传热面积Ac为该换热器的实际传热面积为Ap该换热器的面积裕度为传热面积裕度合适,该换热器能够完成生产任务。2. 壁温计算因为管壁很薄,而且壁热阻很小,故管壁温度可按式3-42计算。由于该换热器用循环水冷却,冬季操作时,循环水的进口温度将会降低。为确保可靠,取循环冷却水进口温度为15℃,出口温度为39℃计算传热管壁温。另外,由于传热管内侧污垢热阻较大,会使传热管壁温升高,降低了壳体和传热管壁温之差。但在操作初期,污垢热阻较小,壳体和传热管间壁温差可能较大。计算中,应该按最不利的操作条件考虑,因此,取两侧污垢热阻为零计算传热管壁温。于是,按式4-42有式中液体的平均温度 和气体的平均温度分别计算为×39+×15=℃(110+60)/2=85℃5887w/㎡•㎡•k传热管平均壁温℃壳体壁温,可近似取为壳程流体的平均温度,即T=85℃。壳体壁温和传热管壁温之差为 ℃。该温差较大,故需要设温度补偿装置。由于换热器壳程压力较大,因此,需选用浮头式换热器较为适宜。3.换热器内流体的流动阻力(1)管程流体阻力, ,由Re=35002,传热管对粗糙度,查莫狄图得 ,流速u=,,所以,管程流体阻力在允许范围之内。(2)壳程阻力 按式计算, ,流体流经管束的阻力F=×××(14+1)× =75468Pa流体流过折流板缺口的阻力, B= , D=总阻力75468+43218=× Pa由于该换热器壳程流体的操作压力较高,所以壳程流体的阻力也比较适宜。(3)换热器主要结构尺寸和计算结果见下表:参数 管程 壳程流率 898560 227301进/出口温度/℃ 29/39 110/60压力/MPa 物性 定性温度/℃ 34 85密度/(kg/m3) 90定压比热容/[kj/(kg•k)] 粘度/(Pa•s) ××热导率(W/m•k) 普朗特数 设备结构参数 形式 浮头式 壳程数 1壳体内径/㎜ 1400 台数 1管径/㎜ Φ25× 管心距/㎜ 32管长/㎜ 7000 管子排列 △管数目/根 1224 折流板数/个 14传热面积/㎡ 673 折流板间距/㎜ 450管程数 2 材质 碳钢主要计算结果管程 壳程流速/(m/s) 表面传热系数/[W/(㎡•k)] 5887 污垢热阻/(㎡•k/W) 阻力/ MPa 热流量/KW 10417传热温差/K 传热系数/[W/(㎡•K)] 400裕度/% 七. 参考文献:1. 刘积文主编,石油化工设备及制造概论,哈尔滨;哈尔滨船舶工程学院出版社,1989年。2. ——84机械制图图纸幅面及格式3. GB150——98钢制压力容器4. 机械工程学会焊接学会编,焊接手册,第3卷,焊接结构,北京;机械工业出版社 1992年。5. 杜礼辰等编,工程焊接手册,北京,原子能出版社,19806. 化工部六院编,化工设备技术图样要求,化学工业设备设计中心站,1991年。
参考文献
[1] 崔衍立.城市污水处理常用方法比较研究[J].内江科技,2010.
[2] 殷实.浅谈活性污泥在废水处理中的应用[J].环境研究与监测,2010,(2) :23-24.
[3] 孙惠修.排水工程.第四版.北京:中国建筑工业出版社,1999:105-107.
[4] 苏振中.CODcr与BOD5的相关性研究[J].黑龙江环境通报,2010,34 (2):75-78.
[5] 顾凤妹.李秀霞.重铬酸钾法测定COD影响因素分析[J].小氮肥,2009,37 (3):18-20.
[6] 李国刚,王德龙.生化需氧量BOD测定方法综述[J].中国环境监测,2004,20 (2):54-57.
[7] 肖肖,陈英姿.BOD5测定的影响因素分析[J].化学工程与装备,2009,9:176-177.
[8] 王锐刚.活性污泥法除磷动力学研究[D].中国矿业大学环测学院,2009:9-11.
[9] 徐航.COD重铬酸钾分析法相关问题的探讨[J].化学工程与装备,2010,6: 171-172.
25万吨/年二甲醚精馏系统及二甲醚精馏塔设计
一、课题的目的与意义
二甲醚又称甲醚,简称DME,分 子 式:CH3OCH3 ,结 构 式:CH3—O—CH3 。二甲醚在常温常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃),熔点℃,沸点℃,室温下蒸气压约为,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为 1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。
二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,却具有神经毒性;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。
二甲醚作为一种基本化工原料,由于其良好的易压缩、冷凝、汽化特性,使得二甲醚在制药、燃料、农药等化学工业中有许多独特的用途。如高纯度的二甲醚可代替氟里昂用作气溶胶喷射剂和致冷剂,减少对大气环境的污染和臭氧层的破坏。由于其良好的水溶性、油溶性,使得其应用范围大大优于丙烷、丁烷等石油化学品。代替甲醇用作甲醛生产的新原料,可以明显降低甲醛生产成本,在大型甲醛装置中更显示出其优越性。作为民用燃料气其储运、燃烧安全性,预混气热值和理论燃烧温度等性能指标均优于石油液化气,可作为城市管道煤气的调峰气、液化气掺混气。也是柴油发动机的理想燃料,与甲醇燃料汽车相比,不存在汽车冷启动问题。它还是未来制取低碳烯烃的主要原料之一。由于石油资源短缺 、煤炭资源丰富及人们环保意识的增强,二甲醚作为从煤转化成的清洁燃料而日益受到重视,成为2010年来国内外竞相开发的性能优越的碳一化工产品。作为 LPG和石油类的替代燃料,二甲醚是具有与LPG的物理性质相类似的化学品,在燃烧时不会产生破坏环境的气体,能便宜而大量地生产。与甲烷一样,被期望成为21世纪的能源之一。
二、研究现状和前景展望
1.研究现状
目前DME的制取工艺有合成气一步法以及甲醇两步法,其中两步法包括甲醇液相法以及气相法。甲醇液相硫酸催化法和甲醇气相法制取二甲醚的生产技术较为成熟,两种方法均有工业装置运转。
甲醇脱水法以精甲醇为原料,脱水反应副产物少,二甲醚纯度高达99%,使用于有较高要求的气雾产品,也可以用作制冷剂或医用气雾剂的抛射剂5,且三废排放少。该工艺比较成熟,可以依托老企业建设新装置,也可单独建厂生产。但该方法要经过甲醇合成、甲醇精馏、甲醇脱水和二甲醚精馏等工艺,流程较长,因而设备投资大,产品成本高,受甲醇市场波动的影响也比较大。
合成气法生产二甲醚的生产工艺在淤浆床中,反应温度分布均匀,热平衡较易控制,操作简单且稳定性好,生产成本低。合成气法所用的合成气可由煤、重油、渣油气化以及天然气转化制得,原料经济易得,因而该工艺可用于化肥厂和甲醇厂。这些工厂可将甲醇装置适当改造用于生产二甲醚,形成规模生产。目前一步法生产二甲醚面临的关键问题是:需要高效低价的煤制气工艺及设备;需要能满足大型化二甲醚生产的反应器;解决以煤为原料制二甲醚生产过程中CO2的利用问题; 相关催化剂的开发与生产;成熟而经济的二甲醚分离提纯技术。
2.前景展望
目前,尽管二甲醚产品供大于求,二甲醚在推广应用上遇到一定的困难,但从以下几方面分析,总体上对二甲醚行业来讲是机遇大于挑战。
( 1) 在2009 年5 月18 日国务院办公厅下发的石化行业调整和振兴规划中,已将煤制二甲醚列为重点抓好的五类示范工程之一,说明利用煤炭高效清洁转化生产二甲醚已引起国家的高度重视。国家发改委发布的《关于加强煤化工项目建设管理,促进产业健康发展的通知》中要求一般不应批准规模在1 000 kt /a 以下的二甲醚项目,这对于遏制盲目扩张二甲醚产能、引导二甲醚产业有序发展、保持二甲醚市场的相对稳定将起到积极的作用。
( 2) 2010 年9 月2 日,中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理
委员会2010 年第4 号( 总第159 号) 文( 中华人民共和国国家标准批准发布公告) 联合批准发布了编号为GB 25035—2010 的《城镇燃气用二甲醚》国家标准,标准对二甲醚作为城镇燃气使用的质量要求、试验方法、检验规则、标志、包装、运输和储存提出了严格的规定,已于2011 年7 月1 日起实施。这使得二甲醚作为城镇燃气使用有法可循,二甲醚大规模进入民用燃气市场有了合法的身份。
( 3) 经国务院批准,财政部、税务总局联合发布通知,为支持和促进二甲醚的推广使用,自2008 年7 月1 日起,二甲醚按13% 的增值税税率征收增值税,税收上对二甲醚生产企业给予了一定的优惠。这意味着政府已加大对替代能源———二甲醚的扶持力度。
( 4) 随着二甲醚在城市公交车、出租车上的成功推广使用和相应配套设施的建立和完善,二甲醚需求量会大幅增加,将为二甲醚提供一个稳定的大市场。
( 5) 中国城市燃气协会二甲醚专业委员会的成立,对促进二甲醚作为城镇民用燃气的进程将发挥积极的作用。
( 6) 随着国际原油价格的疯涨,我国作为一个石油进口大国,无疑会带来较大的能源安全风险。在此情况下,国家发展和改革委办公厅[2006] 1404 号文已将发展二甲醚煤基醇醚燃料列为缓解石油供应短缺、高油价矛盾替代工作的重点,这无疑为二甲醚行业带来了良好的发展商机。
三、课题主要内容、拟解决的问题、研究特色和创新之处
1.主要内容
如图所示,甲醇经过处理后进入二甲醚合成塔中反应,得到的产物中主要含有二甲醚、甲醇以及水分,将产物送入二甲醚精馏塔中进行精馏分离。由于分离体系中的泡点的不同,二甲醚泡点最低,故得到的轻组分为二甲醚,从塔顶分离出来,而甲醇和水分则从塔底从来。重组分中含有大量的未被反应的甲醇,再送进甲醇回收塔中进行分离,得到较纯的甲醇再次循环利用。
本次毕业设计中应用的物料衡算是工艺设计的基础,根据所需设计项目的年产量,通过对全过程或单元过程的物料衡算,可以计算出原料的消耗量、副产品量及输出过程物料的损耗量等;并在此基础上作能量衡算,计算出蒸汽、水、电、煤或者其他燃料的消耗定额;最终可以根据这些计算确定所生成产品的技术经济指标。同时根据物料衡算所得的各单元设备的物流量及其组成、能量负荷及其等级,对生产设备和辅助设备进行选型或者设计,从而对过程所需设备的投资及其项目可行性进行估价。
2.需解决的问题
本次设计的流程有多种,根据对三废排放、节能节源的比较,选择工艺流程,并通过对精馏塔的比较以及对于经济效益的比较,选择本次精馏塔的类型,并且根据自己对整个流程的了解画出本设计的物料流程图,最后通过计算机绘制精馏工段的物料流程图、精馏设备的控制流程图、精馏塔的设备图、±平面的设备布置图;用A2图纸手工绘制二甲醚精馏工段的物料流程图、预塔冷却器的控制流程图、预塔冷却器的设备图、±平面的设备布置图。
3.特色和创新
本设计考虑到原料的充分利用,即将未被反应的甲醇通过回收循环利用,这样,既能减少原料的损耗,同时也符合经济效益。同时,被设计中二甲醚采用的是甲醇气相法,其优点:
生产二甲醚的原料可为精甲醇或粗甲醇, 蒸汽消耗和生产成本较低。
二甲醚反应器是列管式反应器,反应温度易控制,且催化剂在反应器中分布较均匀。
采用先进塔器内件和分离工艺, 回收效果好, 流程简化, 醇耗低。
四、研究方法、步骤和措施
查阅并收集与毕业设计内容相关的资料,认真总结,完成文献综述;同时根据文献综述的详细内容进行总结归纳,完成开题报告。
尝试通过ASPEN PLUS,对甲醇精馏流程进行全流程模拟;对单个设备预塔冷却器进行设计和模拟,并分析其操作影响因素从而得到一个较为可行性的优化方案。
对全流程进行物料衡算、能量衡算,并对所使用的换热器的设备尺寸进行计算,从而绘制工艺流程图。
五、参考文献
魏文德. 有机化工原料大全(第二卷)[M]. 北京:化学工业出版社. 1989:177
张正国. 二甲醚(DME)生产技术及传统工艺优化改造(J).气雾剂通讯,(3):1-3.
费金华,王一兆. 二甲醚的生产工艺及其特点(J). 小氮肥设计技术,2003,24(1):57-59
郭俊旺,牛玉琴. 浆态床合成气制二甲醚双功能催化剂的性能(J). 材料化学学报. 1998,26(4):321-325
Fu Yuchuan , Hong Tao , Chen Jieping .Surfaee Acidity and the Dehydration of Methanolto Dimethyl Ether .Thermochimiea Aeta .2005 , 434 ): 22 一2 6
朱炳辰, 化学反应工程.第四版. 北京: 化学工业出版社,
Lide D R. CRC Handbook of Chemistry and Physies .88thed. New York : CRC Press ,2007
Yaws C L. Chemical Properties Hand York : MeGraw 一HillBook Co ,
Deanjohn A. 兰氏化学手册. 魏俊发, 杨安运. 杨祖培等译.第二版. 北京: 科学出版社,2003 .1- 6
刘光启,马连湘,刘杰. 化学化工物性数据手册(有机卷) . 北京: 化学工业出版社, 一613
王守国, 邵允, 王元鸿等. 加压条件下负载型杂多酸复合催化剂催化甲醇脱水制备二甲醚.分子催化, 2001 ,15 (3) : 201 一2 05
慈志敏,储伟,谢在库等. 气相催化法甲醇脱水合成二甲醚的工艺和催化剂研究. 四川大学学报(工程科学版) , 2004 ,36 (1) : 28 一31
朱志渊, 李淑芳. 工业装置精馏高纯二甲醚最佳条件[ J ] . 天然气化工, 2000.
高占笙. 甲醇脱水制二甲醚及其分离精制[ J ] . 化肥工业,1993, ( 5) : 58- 61.
郑丹星, 金红光, 曹文等. 二甲醚分离工艺. CN 1513825 A,2004.
Voss Bodil , Joen sen F, Boegild J H . Preparation of fuel grade dimethyl ether. WO9623755, 1996.
Peng X D, Diamond B W, Robert T T , Lajjaram B B. Separationprocess f or one- step production of dimethyl ether from US6458856, 2002.
首先你要 把“新型换热器”到底指的什么类型的换热器做成一个“标的”,然后再来搜索相关的资料。新型换热器的类型多了,你“论”得过来吗?
什 么 要 求 呢 具 体 说.
这只是个模板,你还要自己修改数据,其中有些公式显示不出来。一.设计任务和设计条件某生产过程的流程如图所示,反应器的混合气体经与进料物流患热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。已知混和气体的流量为227301㎏/h,压力为 ,循环冷却水的压力为 ,循环水的入口温度为29℃,出口温度为39℃ ,试设计一台列管式换热器,完成该生产任务。物性特征:混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容 =℃热导率 =粘度循环水在34℃ 下的物性数据:密度 =㎏/m3定压比热容 =℃热导率 =℃粘度二. 确定设计方案1. 选择换热器的类型两流体温的变化情况:热流体进口温度110℃ 出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。2. 管程安排从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下贱,所以从总体考虑,应使循环水走管程,混和气体走壳程。三. 确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为T= =85℃管程流体的定性温度为t= ℃根据定性温度,分别查取壳程和管程流体的有关物性数据。对混合气体来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容 =℃热导率 =粘度 =×10-5Pas循环水在34℃ 下的物性数据:密度 =㎏/m3定压比热容 =℃热导率 =℃粘度 =×10-3Pas四. 估算传热面积1. 热流量Q1==227301××(110-60)=×107kj/h =.平均传热温差 先按照纯逆流计算,得=3.传热面积 由于壳程气体的压力较高,故可选取较大的K值。假设K=320W/(㎡k)则估算的传热面积为Ap=4.冷却水用量 m= =五. 工艺结构尺寸1.管径和管内流速 选用Φ25×较高级冷拔传热管(碳钢),取管内流速u1=。2.管程数和传热管数 可依据传热管内径和流速确定单程传热管数Ns=按单程管计算,所需的传热管长度为L=按单程管设计,传热管过长,宜采用多管程结构。根据本设计实际情况,采用非标设计,现取传热管长l=7m,则该换热器的管程数为Np=传热管总根数 Nt=612×2=12243.平均传热温差校正及壳程数 平均温差校正系数按式(3-13a)和式(3-13b)有 R=P=按单壳程,双管程结构,查图3-9得平均传热温差 ℃由于平均传热温差校正系数大于,同时壳程流体流量较大,故取单壳程合适。4.传热管排列和分程方法 采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。见图3-13。取管心距t=,则 t=×25=≈32㎜隔板中心到离其最.近一排管中心距离按式(3-16)计算S=t/2+6=32/2+6=22㎜各程相邻管的管心距为44㎜。管数的分成方法,每程各有传热管612根,其前后关乡中隔板设置和介质的流通顺序按图3-14选取。5.壳体内径 采用多管程结构,壳体内径可按式(3-19)估算。取管板利用率η= ,则壳体内径为D=按卷制壳体的进级档,可取D=1400mm6.折流板 采用弓形折流板,去弓形之流板圆缺高度为壳体内径的25%,则切去的圆缺高度为H=×1400=350m,故可 取h=350mm取折流板间距B=,则 B=×1400=420mm,可取B为450mm。折流板数目NB=折流板圆缺面水平装配,见图3-15。7.其他附件拉杆数量与直径按表3-9选取,本换热器壳体内径为1400mm,故其拉杆直径为Ф12拉杆数量不得少于10。壳程入口处,应设置防冲挡板,如图3-17所示。8.接管壳程流体进出口接管:取接管内气体流速为u1=10m/s,则接管内径为圆整后可取管内径为300mm。管程流体进出口接管:取接管内液体流速u2=,则接管内径为圆整后去管内径为360mm六. 换热器核算1. 热流量核算(1)壳程表面传热系数 用克恩法计算,见式(3-22)当量直径,依式(3-23b)得=壳程流通截面积,依式3-25 得壳程流体流速及其雷诺数分别为普朗特数粘度校正(2)管内表面传热系数 按式3-32和式3-33有管程流体流通截面积管程流体流速普朗特数(3)污垢热阻和管壁热阻 按表3-10,可取管外侧污垢热阻管内侧污垢热阻管壁热阻按式3-34计算,依表3-14,碳钢在该条件下的热导率为50w/(m•K)。所以(4) 传热系数 依式3-21有(5)传热面积裕度 依式3-35可得所计算传热面积Ac为该换热器的实际传热面积为Ap该换热器的面积裕度为传热面积裕度合适,该换热器能够完成生产任务。2. 壁温计算因为管壁很薄,而且壁热阻很小,故管壁温度可按式3-42计算。由于该换热器用循环水冷却,冬季操作时,循环水的进口温度将会降低。为确保可靠,取循环冷却水进口温度为15℃,出口温度为39℃计算传热管壁温。另外,由于传热管内侧污垢热阻较大,会使传热管壁温升高,降低了壳体和传热管壁温之差。但在操作初期,污垢热阻较小,壳体和传热管间壁温差可能较大。计算中,应该按最不利的操作条件考虑,因此,取两侧污垢热阻为零计算传热管壁温。于是,按式4-42有式中液体的平均温度 和气体的平均温度分别计算为×39+×15=℃(110+60)/2=85℃5887w/㎡•㎡•k传热管平均壁温℃壳体壁温,可近似取为壳程流体的平均温度,即T=85℃。壳体壁温和传热管壁温之差为 ℃。该温差较大,故需要设温度补偿装置。由于换热器壳程压力较大,因此,需选用浮头式换热器较为适宜。3.换热器内流体的流动阻力(1)管程流体阻力, ,由Re=35002,传热管对粗糙度,查莫狄图得 ,流速u=,,所以,管程流体阻力在允许范围之内。(2)壳程阻力 按式计算, ,流体流经管束的阻力F=×××(14+1)× =75468Pa流体流过折流板缺口的阻力, B= , D=总阻力75468+43218=× Pa由于该换热器壳程流体的操作压力较高,所以壳程流体的阻力也比较适宜。(3)换热器主要结构尺寸和计算结果见下表:参数 管程 壳程流率 898560 227301进/出口温度/℃ 29/39 110/60压力/MPa 物性 定性温度/℃ 34 85密度/(kg/m3) 90定压比热容/[kj/(kg•k)] 粘度/(Pa•s) ××热导率(W/m•k) 普朗特数 设备结构参数 形式 浮头式 壳程数 1壳体内径/㎜ 1400 台数 1管径/㎜ Φ25× 管心距/㎜ 32管长/㎜ 7000 管子排列 △管数目/根 1224 折流板数/个 14传热面积/㎡ 673 折流板间距/㎜ 450管程数 2 材质 碳钢主要计算结果管程 壳程流速/(m/s) 表面传热系数/[W/(㎡•k)] 5887 污垢热阻/(㎡•k/W) 阻力/ MPa 热流量/KW 10417传热温差/K 传热系数/[W/(㎡•K)] 400裕度/% 七. 参考文献:1. 刘积文主编,石油化工设备及制造概论,哈尔滨;哈尔滨船舶工程学院出版社,1989年。2. ——84机械制图图纸幅面及格式3. GB150——98钢制压力容器4. 机械工程学会焊接学会编,焊接手册,第3卷,焊接结构,北京;机械工业出版社 1992年。5. 杜礼辰等编,工程焊接手册,北京,原子能出版社,19806. 化工部六院编,化工设备技术图样要求,化学工业设备设计中心站,1991年。
详细的看GB151-1999 中节A -- 前端盖 是平盖管箱E -- 单体壳程T -- 可抽式浮头500 -- 壳体圆筒内直径 500mm
你这是平盖型的单壳程浮头式换热器(U型管)它的公称直径是500mm
好的,我 。做,。 来。 做。