首页

> 论文发表知识库

首页 论文发表知识库 问题

小麦制粉毕业论文3000多字

发布时间:

小麦制粉毕业论文3000多字

小麦硬度及其重要意义小麦籽粒质地的软、硬是评价小麦加工品质和食用品质的一项重要指标,并与小麦育种和贸易价格等密切相关。硬度是国内外小麦市场分类和定价的重要依据之一,也是各国的育种家重要的育种目标之一[1~3]。小麦胚乳的质地(硬度)被定义为破碎籽粒时所受到的阻力,即破碎籽粒时所需要的力。硬度是由胚乳细胞中蛋白质基质和淀粉之间的结合强度决定的,这种结合强度受遗传控制。在硬麦中,细胞内含物之间结合紧密。软麦的淀粉粒表面粘附有较多的分子量为15K道尔顿的蛋白质,在物理上削弱了蛋白质与淀粉之间的结合强度,很容易破裂[3~6]。小麦硬度与小麦加工工艺和最终产品品质密切相关,硬度是表征小麦研磨品质的主要指标,其变化可使小麦制粉流程中各系统在制品数量和质量、各设备工作效率、面粉出率和面粉质量、加工动力消耗等产生很大变化。小麦制粉流程和相应的设备技术参数,通常是根据待加工的原料小麦硬度范围确定的[7~9]。因此,预先测定原料小麦的硬度,对于及时调整制粉工艺流程和相应的技术参数,确定配麦方案、保持流程的物料平衡和生产稳定、提高生产效率和经济效益等,都具有重要的指导意义。面粉加工企业经济效益的好坏,很大程度上取决于不同等级的面粉联产加工时高精度、低灰分(如灰分以下)面粉的出率。加工厂工艺设计和设备操作的指导思想就是为了制粉系统多制造麦渣和麦心,保证清粉机的来料饱满,而在同样的加工工艺和加工设备前提条件下,不同硬度的小麦在研磨和筛分后麦渣和麦心的数量差异悬殊,用硬麦获得的麦渣、麦心的数量显著高于软麦,特别是大粒度麦渣心的数量;虽然皮磨粉出率硬麦低于软麦,但总出粉率硬麦高于软麦[11]。即选择硬麦加工时,高精度、低灰分面粉的出率要高[10]。小麦硬度对高精度、低灰分面粉出率的重要影响已引起制粉业广泛的关注和高度重视。选择正确的方法评价小麦的硬度,成为促进小麦粉生产和利用的重要手段。 小麦硬度的测定方法有关小麦硬度理论的研究持续了100多年,测定小麦硬度的方法也有100多种,括起来,主要有角质率法、压力法、研磨法、近红外法等[3,12~14]。 角质率法角质率法又称玻璃质法、硬质率法,由于这类方法简便易行而首先被广泛采用,其指标迄今仍作为一些国家小麦分类的标准。在美国,角质粒率指标仅限于对硬红春麦和杜伦小麦,因为这两种小麦的角质率高,容易区分。我国与国外相同,规定角质率70%以上的小麦为硬质麦,但对角质粒的定义与国外不同。国外标准中,定义角质含量100%的小麦籽粒为角质粒,我国定义角质部分占本籽粒截面50%以上的籽粒为角质粒。故我国标准中的硬质麦,只能保证角质含量在35%以上,数值偏低,不能较好地反映小麦的真实硬度。长期以来,我国一直使用角质率的大小来反映小麦的硬度。小麦角质率的测定采用目测法,操作繁琐,在实际操作中不易准确判断,人为误差大,不能准确地反映小麦的硬度,无法满足小麦收购、贸易、加工的需要。2000年,郑州商品交易所为了减小角质率测定的误差,组织所属8个交割库的质检人员对8个不同小麦样品共同进行角质率的现场比对,测试结果差异悬殊,最大相差达22%。 压力法利用压头或刀头压碎或切割方法来测定小麦硬度,如压裂籽粒法、切割法等。当前,这种方法使用不多。因为,小麦籽粒之间的硬度、粒度以及粒形差异较大,需要在大量的样品测定的基础上,统计分析才能得出正确的结果;而且单籽粒硬度不能真实反映小麦整体的研磨品质,制粉行业更关心散粒体的硬度(一批小麦在研磨或粉碎时表现出的综合特性)。这种方法的使用因结果的重复性低以及籽粒的变异性而受到限制。一定质量的小麦样品,放在装有金刚砂盘和钢丝筛网的实验室用大麦碾皮机中碾削一定的时间,碾削后穿过筛网的物料质量占试样质量的百分数称为抗碾指数(Pearling Resistance Index, 简称PRI),用以表征小麦硬度。硬麦比软麦耐碾削,抗碾指数越小,小麦硬度越大。碾皮法受小麦颗粒大小分布的影响,粒度小的籽粒被碾削的程度低,抗碾指数小。由于碾皮设备和筛网孔径、碾皮时间等方面的差异,碾皮法派生出很多方法。 近红外法[20,21]近红外法(NIR)可以快速测定谷物的蛋白质、脂肪、水分含量等。其中1680nm、2230nm处的反射量NIR值与研磨时间法的GT值或研磨细度法的PSI值都有较好的相关性。用近红外反射仪测定小麦籽粒的硬度,国内外均有应用的报道。其优点是测定速度快,成本低、重现性好,样品间可比性强,用样量较小,还可同时测几个性状。NIR值越大,籽粒硬度越高。NIR法已列入美国谷物化学家协会标准方法(AACC 39-70A),有望批准列入国际谷物化学家协会标准方法(ICC方法)。AACC 39-70A方法首先要求采用美国标准化技术研究院提供的10种具有不同颗粒度指数(PSI)分布的小麦样品对仪器定标,得到定标方程以后,才能适合大批量小麦样品的测定。AACC 39-70A方法要求对样品进行粉碎,籽粒水分应控制在11%-13%之间。在法国小麦质量年度报告中,采用近红外法来表征小麦的硬度。法国根据美国AACC 39-70A方法,将小麦用指数O~100分成不同的硬度等级(特软、软、中等偏软、中等偏硬、硬、特硬六个等级)。一般,软麦的平均硬度指数为25,硬麦的平均硬度指数为75。近红外反射法测定小麦硬度克服了角质率法存在的人为观察误差大、费时、费力、不易定量等不足,具有快速、简便、准确等优点,但仪器价格昂贵,难以推广普及。 小麦硬度测定的新方法——小麦抗粉碎指数法河南工业大学(原郑州粮食学院)研究并建立了一种测定小麦硬度的新方法——抗粉碎指数法[24],在此基础上,与无锡粮食机械厂合作,共同完成了国家“十五”科技攻关课题“小麦硬度测定方法的研究与设备开发”,于2003年7 月12日在北京顺利通过了由国家粮食局组织的专家验收和鉴定。该课题开发出具有我国自主知识产权、适合现场收购的JYDB100型小麦硬度测定仪,技术创新突出,总体技术水平属国内领先,硬度测定方法的研究处于世界同类先进水平。用小麦硬度测定仪器粉碎硬度不同的小麦时,在一定的粉碎时间内,穿过筛网的粉粒质量不相同,用穿过筛网的粉粒质量占测试小麦样品质量的百分比值表征小麦的硬度,定义为“小麦抗粉碎指数(Pulverizing Resistance Index,简称PRI)”。PRI值越小,表明小麦硬度越大。与现有各种小麦硬度测定方法相比,抗粉碎指数法具有测定准确、简便、快速、仪器价格低等优点,极具普及推广的价值,解决了目前国内外已有测定仪器和方法存在的测定程序繁琐、环境要求高或价格昂贵等问题,填补了国内空白。

5000——8000字。一般来说,一篇本科毕业论文的字数要求就在5000—8000字之间,当然不同的学校可能要求有所出入。1、封面字数应在20以内;2、中文论文题目字数应在20以内;3、中文摘要一般为150-300字;4、正文:文理科毕业论文字数一般不少于4000字,工科、艺术类专业毕业设计字数一般不少于3000字。

微生物的发酵作用对传统酿造食品安全性的影响摘要:对我国酿造食品的工艺特点和生物转化作用机制进行了阐述,分析了发酵过程中微生物的发酵作用对食品酿造过程中的生物性污染、化学性污染和物理性污染等食品安全性因素的影响,得出我国传统酿造食品由于微生物的发酵作用经过分解、消除和滤过等过程使其更具有安全性特征。关键词:传统酿造食品;发酵作用;食品安全食品为人类提供营养要素,同时也是微生物生长的天然培养基。我国传统酿造食品(酱油、酱类、食醋、腐乳、白酒、酸菜、泡菜等)多以谷类、豆类、蔬菜等为原料,将自然界的群体微生物引入发酵过程共同作用形成风味独特的食品。通过微生物发酵作用引起的生物转化食品具有良好的品质、感官特性、可消化性和营养价值。随着现代工业发展,工业“三废”中的有毒有害物质(如重金属毒物、N-亚硝基化合物、多环芳烃化合物等)在环境中污染逐渐增多,这些有毒有害物质通过土壤、水体、空气等环境污染酿造食品原料、食品容器和包装材料等。化学农药、化肥和仓储药剂(如杀虫剂、杀菌剂、除草剂、植物生长调节剂、粮食熏蒸剂、防护剂等)通过各种渠道污染食品酿造原料,作为发酵原料的粮食在生产、加工、贮藏等环节受到霉菌、细菌、寄生虫等生物污染。本文从我国传统食品酿造的工艺特点、微生物的生物转化机制对食品污染的作用进行分析,探究传统酿造食品在发酵过程中的安全性问题。1传统酿造食品的工艺特点我国传统酿造食品历史悠久,经过千百年的实践形成独特的酿造工艺特点。敞口固态发酵传统酿造一般采用固态发酵技术,在添加谷糠或稻壳等辅料之后进行边糖化边发酵的“双边发酵”工艺,具有发酵时间长、产品风味浓厚、管理粗放等特点。整个过程采用敞口式工艺,充分利用物产资源与自然资源,制曲时富集各种功能性微生物,驯化和培育了特定的微生物群落结构体系,将主体微生物与环境微生物融为一体。同时摸索出一套完整的温度、湿度、酸碱度、通气量、发酵时间等酿造工艺条件,创立了产品增香与各种加工技术,对创造我国独特的酿造食品风味和保证产品质量具有十分重要的作用。多种微生物共同作用酿造过程是一个复杂的生物化学反应过程,产品品质主要取决于多种微生物的协同作用。微生物主要来自于曲种和环境,包括霉菌、酵母菌、细菌等,各种微生物共栖生长,赋予醅料复杂而完整的酶系,具有较强的糖化、液化和蛋白分解能力。各种微生物在发酵过程中盛衰交替,此消彼长,协同作用,产生单一菌种所不能比拟的作用。在发酵过程中水解与发酵交替进行,避免过高浓度底物对有益微生物和生化反应的负面影响。发酵时间长,酶促反应深入而完善,代谢产物丰富多彩,产品风味醇厚、浓郁[1-2]。多样的产品防腐措施传统酿造食品采取灵活多样的产品安全措施,一是依靠代谢产物本身的防腐作用(如白酒是依赖酒精的杀菌作用,食醋是靠醋酸的抑菌作用);二是利用高浓度的食盐抑制微生物的生长繁殖(如酱油、酱、腐乳等)。2传统酿造食品的生物转化机制传统酿造过程是多种微生物将原料中的淀粉、蛋白质和脂类等大分子物质转化为产品的各种小分子风味物质,构成产品的主要成分。酱油的风味物质按其化合物性质可分为醇类、酯类、酸类、醛类及缩醛类、酚类、呋喃酮类和含硫化合物等[3-4];食醋中除含有主要成分醋酸外,还含有糖分、氨基酸、酯、醛、醇、酚、酮类等化学成分[5-6]。酱油和食醋等酿造食品的风味物质构成产品特有的色、香、味,其来源主要是2方面,一是植物原料的“主生物质”(如蛋白质、淀粉等“,次生物质”如丹宁、芳香族化合物、异黄酮);二是微生物及其酶对植物原料作用后的代谢产物。此外,白酒、酱油、食醋等在贮藏过程中各种代谢产物相互作用形成各种风味物质,据分析酱油含有300多种风味物质[4]。多糖的转化传统酿造食品原料的主要成分为淀粉,它在曲霉菌分泌淀粉酶的作用下分解为葡萄糖。这些单糖一部分作为霉菌、酵母菌和细菌生长繁殖的碳源和能源,一部分在微生物的作用下形成发酵产品的各种代谢产物。由淀粉转化来的代谢产物包括各种酸类、醇类、酚类以及低聚糖等[7]。酱油的糖分包括由大豆转化的低聚糖(如水苏糖、棉子糖等)和由小麦淀粉转化的蔗果三糖、低聚果糖、低聚半乳糖、低聚异麦芽糖以及低聚木糖等,而酿造食品的酸类、醇类、酚类等小分子产物是构成产品风味的物质基础。蛋白质的转化

根据客户所需的面粉品质,选择小麦品种。小麦--清理--着水---润麦----入磨---研磨筛理----配粉----包装清理:主要是清理小麦的中的秸秆,石头,破损麦等影响面粉出率的杂质。主要设备有:打麦机,去石机,风选,精选等,根据小麦的品质及制粉要求,各种面粉厂会有些区别着水:小麦清理好后需要着水,使小麦的水分达到一定含量,可以提高麦皮的韧性,降低小麦胚乳的机械强度,这样在研磨时,使麦皮不宜磨得很碎而影响面粉品质,而调质的胚乳使得磨粉机的磨辊磨损降低,同时降低能耗。一般高筋麦着水要多一些,低筋麦相对少一些。润麦:着水的小麦在麦仓里要存放一定时间,一般在8~24小时,根据小麦品种,温度而异。高筋麦一般时间要长一些,冬天润麦时间也长一些。着水和润麦后的小麦称为入磨麦,入磨小麦的水分控制在14~16%。如果太高,会影响后道筛理。研磨筛理:分心磨系统和皮磨系统,磨粉机将小麦破碎成大麸皮,小麸皮,大胚乳,小胚乳,粗粉细粉,然后不同的料又进入不同的磨粉机研磨,同时配合筛理和清粉。这是个很复杂的过程,需要通过有经验的粉师调整,达到最优的效果。最后得到面粉(1~3种),粗麸,细麸配粉:由于专用粉的需求,一种小麦磨制的面粉往往达不到客户的要求,通过不同小麦粉按照一定比例的混合,可以调整成品面粉的各种粉质特性,达到客户要求。最后是包装。

小麦中淀粉酶酶学性质研究论文

β-淀粉酶;β-amylase 性质:能将直链淀粉分解成麦芽糖的淀粉酶。广布于植物界如未发芽的大麦、小麦、燕麦、大豆、甘薯等中。可耐酸。将麦芽汁调节pH值为,在0℃下可使α-淀粉酶失去活力,而余下β-淀粉酶。β-淀粉酶的唯一产物是麦芽糖,不是葡萄糖。β-淀粉酶水解淀粉产生麦芽糖。长期以来,β-淀粉酶主要来源于大麦等粮食作物,应用受到限制微生物产的β-淀粉酶可全部或部分代替植物来源的β-淀粉酶,用来生产高麦芽糖浆、高纯度麦芽糖,医用针剂麦芽糖,麦芽糖醇,麦芽糊精,啤酒等。此项技术共包括以下三项成果。 1、高产β-淀粉酶菌种及食品级β-淀粉酶制剂生产新工艺菌种为腊状芽孢杆菌,经物理、化学方法处理,得诱变株M-153,产β-淀粉酶活力提高了近300倍,产酶活力(45℃测定)高达2万单位/毫升左右。 2、用微生物β-淀粉酶生产高麦芽糖浆新工艺含麦芽糖55%-60%的试产品曾用于生产糖果、果脯、饼干、面包等代替饴糖和蔗糖,应用效果良好,提高了各类食品的质量,改善了风味。 3、用微生物β-淀粉酶代替部分大麦芽生产啤酒新工艺 生产啤酒常规原料配比为70%大麦芽,30%大米为辅料。新工艺将大麦芽与大米的比例由7:3改为5:5,补加微生物β-淀粉酶,在北京啤酒厂的20-100吨发酵罐的生产线上试生产成功。

萌发的种子a淀粉酶活性高,产生更多的葡萄糖为萌发提供能量,干种子b淀粉酶活性高,有利于防止细菌感染

萌发的种子a淀粉酶活性高,产生更多的葡萄糖为萌发提供能量,干种子b淀粉酶活性高,有利于防止细菌感染。

淀粉酶活性随萌发时间的延长而增高,这种变化有助于小麦种子的萌发。

淀粉酶是水解淀粉(1→4)糖苷键的一类酶的总称。实验证明,在某些植物如小麦和大麦的休眠种子中只含有β-淀粉酶,α-淀粉酶是在发芽过程中形成的,所以在禾谷类萌发的种子和幼苗中,这两类淀粉酶都存在。

扩展资料:

淀粉酶是水解淀粉和糖原的酶类总称,通常通过淀粉酶催化水解织物上的淀粉浆料,由于淀粉酶的高效性及专一性,酶退浆的退浆率高,退浆快,污染少,产品比酸法、碱法更柔软,且不损伤纤维。淀粉酶的种类很多,根据织物不同,设备组合不同,工艺流程也不同,目前所用的退浆方法有浸渍法、堆置法、卷染法、连续洗等,由于淀粉酶退浆机械作用小,水的用量少,可以在低温条件下达到退浆效果,具有鲜明的环保特色。

参考资料来源:百度百科-淀粉酶

α-淀粉酶以Ca2+为必需因子并作为稳定因子和激活因子,也有部分淀粉酶为非Ca2+依赖型。淀粉酶既作用于直链淀粉,亦作用于支链淀粉,无差别地随机切断糖链内部的α-1,4-葡聚糖链。β-淀粉酶从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链。

全麦粉馒头学位论文

全麦馒头的做法简单,加入少量的白糖,可以让馒头更松软,味道也会更好一些。

1、准备黑全麦粉400克、酵母4克、温水210毫升。2、用筷子搅拌成絮状,下手揉成面团,把面团放在案板上反复揉搓,揉成光滑的面团,再搓成长条,切成一样大剂子。在蒸笼里铺上一层笼布,把馒头生胚摆放在里面,醒发30分钟左右。馒头醒发好后,就变得很膨胀,凉水上锅蒸,水开蒸15分钟,关火焖5分钟出锅。

准备一些麦粉加入酵母水,然后揉成光滑的面团开始发酵,发酵完成以后,揉成光滑的一个小面团,然后再盖上保鲜膜醒发半个小时,然后放到蒸笼里面蒸半个小时左右,这样全麦馒头就做出来了。

全麦面粉的好处有:膳食纤维含量多,B族维生素含量丰富,全麦面粉做的馒头更香,全麦面粉的营养价值高。

1、膳食纤维含量多

颜值跟不上,但是营养却很全。与精白面粉相比,全麦粉更好地保存了小麦中的全部营养成分。麸皮的主要成分就是膳食纤维,全麦粉中的膳食纤维含量高达,与燕麦差不多。而精制小麦粉的膳食纤维含量只有,少得可怜。

2、B族维生素含量丰富

最易缺乏的B族维生素它能补,B族维生素与人体能量代谢有密切关系,尤其维生素B1、B2,是人们最容易缺乏的。全麦粉的维生素B1含量是精制小麦粉的6倍还多,维生素B2含量是精制小麦粉的4倍。全麦粉是补充维生素B1、B2的主要粗粮之一。

3、全麦面粉做的馒头更香

用全麦粉代替普通面粉做馒头、面包、面条等,都是很不错的吃法,而且全麦粉做的主食更香。小麦的脂类中,约有80%的脂类分布在谷胚和糊粉层中,只有20%左右存在于胚乳中,所以全麦粉比精白面粉的脂类含量更高。脂类正是赋予食物特有香味的重要物质。

不过,也是由于全麦粉保留了更多的脂肪,便不如精白面粉好贮存。在空气中、光照下,脂肪都容易发生氧化变质,甚至产生一些有害物质,所以全麦粉需要在干燥环境下,密封避光保存。

4、全麦面粉的营养价值高

包含小麦籽粒全部的营养物质。 由于全麦粉中麸皮含有更丰富的营养成分如微量元素、维生素、矿物质、必需氨基酸等。全麦粉保留了谷物中的蛋白质、碳水化合物、钙、维生素等各种营养成分,而且人体很容易吸收。

扩展资料:

全麦面粉的适宜人群

1、老年人:可降低胆固醇,有效地预防动脉硬化、脂肪肝、脑梗塞、心肌梗塞等病症。

2、儿童:补充各种微量元素,健全消化系统。

3、肥胖人群:脂肪低,富含纤维素,促进消化。

参考资料来源:百度百科-全麦面粉

毕业论文麦冬炮制

麦冬用少许水打湿,抽取中间的芯

1、清洗去皮:将麦冬放入洗涤槽,用流水洗净,捞出,沥干。用擦皮法或化学法去皮,洗净,放入浓度2%的食盐水中,浸泡8~12小时,捞起。 2、热烫:将麦冬放入沸水中热烫5~10分钟,捞起,用冷水冷却。 3、糖制:采用多次糖煮法。第一次糖煮时,医|学教育网搜集整理取水20千克,放入锅中加热至80℃时,加入白砂糖20千克,同时加入柠檬酸40克,煮沸5分钟。取已处理好的麦冬50千克,投入糖液中,煮沸10~15分钟,连同糖液带麦冬一起放入大缸中浸泡24小时。第二次糖煮时,把缸中的糖液及麦冬放入锅中,加热至沸后分两次加入白糖10千克,煮沸至糖液浓度达55%时,加入浓度为60%的冷糖液20千克,立即起锅,放入缸中浸泡3~5天。 4、烘烤温度:将糖制好的麦冬块,沥净糖液后,均匀地摆入烘盘中,推入烤房在60~65℃条件下烘烤。烘烤至用手摸产品表面不粘手即可。 通风、排潮:当烘烤房内空气相对湿度高出70%时,通风排潮3~5次,每次15分钟。 5、倒盘:在烘烤中,除了通风排潮外,还要注意调换烘盘位置及翻动盘内脯块。在烘烤过程中倒盘1~2次,可在烘烤的中前期和后期进行。

制粉系统毕业论文

中间储仓式制粉系统储仓式制粉系统的特点:①磨煤机运行只与煤粉仓的粉位有关,可始终保持经济出力运行;②系统与直吹式制粉系统相比较,增加了存储煤粉的煤粉仓及相应的设备,即细粉分离器,螺旋输粉机,换向阀,吸潮管,锁气器等;③燃烧所需要的煤粉量由送粉机提供和控制;④经细粉分离器分离后的干燥剂称为"乏气",乏气含有少量的煤粉(10%~15%),较多的水分,并且温度较低;为了保护环境,乏气不允许排入大气,在储仓式制粉系统中有两种处理方法,即用来输送煤粉,称为干燥剂送粉,见图4-18(a),或直接送入炉膛燃烧,称为"三次风",见图4-18(b);⑤经排粉风机升压后的乏气一部分送入磨煤机作为"再循环风",用来协调通风量和磨煤出力.该系统在磨煤机停止运行时怎样运行

煤粉炉排烟温度高的原因分析及运行中可采取的措施论文

【摘要】在锅炉的各项热损失中,排烟热损失是对锅炉效率影响最大的一项损失,约为5%~8%。况且,随着排烟温度的不断升高,排烟热损失会进一步增加(一般情况下,排烟温度每升高10℃,排烟损失增加~)。所以降低排烟损失对提高锅炉效率及全厂的经济运行有着非常重要的意义。

【关键词】锅炉 排烟热损失 节能减排

目前,抓好节能减排工作,进一步提高锅炉机组效率越来越被国内各电力企业所重视。而锅炉效率则与其各项热损失密切相关。锅炉的各项热损失由排烟热损失、机械不完全燃烧热损失、灰渣物理热损失、化学不完全燃烧热损失、散热损失组成,而在这五项损失中,排烟热损失是对锅炉效率影响最大的一项损失,约为5%~8%。况且,随着排烟温度的不断升高,排烟热损失会进一步增加(一般情况下,排烟温度每升高10℃,排烟损失增加~)。所以降低排烟损失对提高锅炉效率及全厂的经济运行有着非常重要的意义。笔者对排烟温度高的原因进行了分析,并提出了解决措施。

1.外部漏风

漏风是排烟温度升高的主要原因之一,主要包括指制粉系统漏风、炉膛漏风、水封及烟道漏风。在炉膛出口过量空气系数不变的情况下,炉膛及制粉系统漏风将使送风量下降,空气预热器的传热系数下降。此外送风量下降也使得空气预热器出口热风温度升高,空气预热器的传热温压下降,而及传热温压的下降使空气预热器的吸热量降低,最终使排烟温度升高。

降低漏风的方法是炉本体及制粉系统的查漏及堵漏工作,在运行时随时关闭炉本体各看火孔,检查孔以及制粉系统木块分离器、木屑分离器清理口,关闭给煤机手孔,在运行中经常检查捞渣机内水位等。

2.制粉系统对排烟温度的影响

制粉系统是否运行、调整方式及出力大小也会对排烟温度造成影响。

制粉系统运行中的调整会造成三次风的波动,三次风的喷入会推迟燃烧继而抬高火焰中心,增加不完全燃烧,造成排烟温度升高。同时煤粉细度变粗也会造成排烟温度升高。对于在运行中的制粉系统,在保证安全的情况下,尽量少用冷风,多用热风,尽可能保持较高的磨煤机出口温度,磨煤机出口温度控制的越低,则冷三次风的比例越大,即流过空预器的风量降低,引起排烟温度升高,并尽量减少三次风的含粉量,这样可有效降低排烟温度。

3. 送风对排烟温度的影响

(1)风量对排烟温度的影响。在一定范围内送风量增加锅炉效率将增加,这是因为过量空气系数增加将使未燃尽损失Q3和 Q4减小,所以送风量存在一个最佳值,该值称为最佳过量空气系数,在该值处,排烟损失与未燃尽损失之和为最小。当负荷变化时,要及时调整过量空气系数,调整燃烧工况,控制排烟温度在经济排烟温度下运行,提高锅炉效率从而提高整个火电发电厂的经济性。 (2)风温对排烟温度的影响 。夏季冷风温度高于设计值,致使空气预热器热交换温差减小,而传热温差的下降使空气预热器的吸热量降低,最终使排烟温度升高。

4.锅炉受热面的结渣、积灰

锅炉受热面的结渣、积灰是导致锅炉排烟温度升高的另外一个主要原因。其对排烟温度的影响主要体现在传热方面。从烟气侧到汽水侧的传热过程中,受热面表面沉积物的导热系数较其它介质要小得多,因而其所引起的附加热阻在总传热热阻中占主导地位。较为轻度的结渣和积灰便会使传热量大幅度下降。

造成结焦的原因是多方面的,有设计的因素,煤质、灰熔点的因素,运行调整的因素等等,运行值班员燃烧调整时应注意以下几点:

(1)若因喷燃器磨损,使炉内煤粉气流紊乱、贴壁燃烧、着火点提前等造成喷燃器、水冷壁结焦,运行中又无法消除时,应提高相应喷燃器的

一、二次风速,以达到减弱或消除结焦的目的。

(2)锅炉正常运行时,应加强制粉系统各参数的监视及调整,加强监视各段受热面壁温及烟温的变化,控制各参数在规定的范围内。

(3)加强燃烧的就地检查,若发现结焦、积灰等异常情况,则应及时联系清除,并对燃烧进行相应调整。制粉系统启动期间应严密监视燃烧器端部温度的变化情况。若发现燃烧器端部温度异常升高时,应及时就地检查燃烧器着火情况,判断燃烧器端部结焦时,应立即启动备用系统,并联系检修配合除焦。

(4)坚持做好锅炉吹灰、除焦等定期维护工作,并保证其效果,也可视情况适当增加吹灰、除焦次数。保持合理的制粉系统运行方式,尽可能不使热负荷局部集中。正常运行时,可适当增加下层燃烧器的出力,减少上层燃烧器的出力,降低火焰中心,以降低炉膛出口温度,减轻结焦。

5煤质变化

(1)水分对排烟温度的影响。煤中的水分变成水蒸汽,增加了烟气量;水分高,提高了烟气的`酸露点,易产生低温腐蚀,为防止或轻减对低温受热面的腐蚀,最有效的方法就是提高空预器受热面的壁温。而要提高壁温就要提高排烟温度和入口空气温度。实际运行中提高壁温最常用的方法是提高空气入口温度。但进风温度升高会使排烟温度也升高,因而排烟热损失将增大,而使锅炉经济性降低。

燃料中的水分增加也使烟气量和烟气比热增加,烟气在对流区中温降减小,排烟温度上升。

(2)灰份对排烟温度的影响

灰份增加使排烟温度上升。这是因为这些变化将使烟气量和烟气比热增加,烟气在对流区中温降减小,排烟温度上升。针对此种情况,应适当降低一次风速。

因此,为了保证锅炉经济运行,必须经常保持受热面清洁。吹灰器的正常运行能有效的清除受热面上的结渣和积灰,维持受热面清洁。在锅炉停炉后,应及时检查各部吹灰器,保证其处于完好状态。详细记录锅炉炉膛及烟道内的积灰和结焦情况,以便在以后运行中有针对性地进行吹灰。

(3)挥发份对排烟温度的影响。燃料挥发份降低时,煤粉着火推迟,燃烧的时间也会增加,造成炉膛出口温度增加,导致排烟温度升高,降低锅炉效率。

挥发份过大时,煤粉着火提前,过于贴近喷口,极易造成喷口结焦从而造成一次风速下降、出力降低,而其它一次风速必然上升,对锅炉炉膛燃烧造成扰动,也可能造成排烟温度升高。因此应及时检查及排除一次风口结焦。

(4)燃料发热量对排烟温度的影响。燃料的性质影响着锅炉的排烟温度。燃料低位发热量降低,在锅炉出力维持不变时.将直接导致燃料量的增加,烟气量和流速升高,结果使排烟温度升高。同时,煤的灰分增加,导致机械不完全燃烧热损失升高,从而降低锅炉效率。

综上所述,当燃烧高灰份,高挥发份,低发热量的劣质煤时,应适当增加一次风量,控制一次风温,降低火焰中心,降低炉膛出口温度及排烟温度,提高锅炉效率。

根据客户所需的面粉品质,选择小麦品种。小麦--清理--着水---润麦----入磨---研磨筛理----配粉----包装清理:主要是清理小麦的中的秸秆,石头,破损麦等影响面粉出率的杂质。主要设备有:打麦机,去石机,风选,精选等,根据小麦的品质及制粉要求,各种面粉厂会有些区别着水:小麦清理好后需要着水,使小麦的水分达到一定含量,可以提高麦皮的韧性,降低小麦胚乳的机械强度,这样在研磨时,使麦皮不宜磨得很碎而影响面粉品质,而调质的胚乳使得磨粉机的磨辊磨损降低,同时降低能耗。一般高筋麦着水要多一些,低筋麦相对少一些。润麦:着水的小麦在麦仓里要存放一定时间,一般在8~24小时,根据小麦品种,温度而异。高筋麦一般时间要长一些,冬天润麦时间也长一些。着水和润麦后的小麦称为入磨麦,入磨小麦的水分控制在14~16%。如果太高,会影响后道筛理。研磨筛理:分心磨系统和皮磨系统,磨粉机将小麦破碎成大麸皮,小麸皮,大胚乳,小胚乳,粗粉细粉,然后不同的料又进入不同的磨粉机研磨,同时配合筛理和清粉。这是个很复杂的过程,需要通过有经验的粉师调整,达到最优的效果。最后得到面粉(1~3种),粗麸,细麸配粉:由于专用粉的需求,一种小麦磨制的面粉往往达不到客户的要求,通过不同小麦粉按照一定比例的混合,可以调整成品面粉的各种粉质特性,达到客户要求。最后是包装。

相关百科

热门百科

首页
发表服务