首页

> 论文发表知识库

首页 论文发表知识库 问题

贝叶斯公式论文答辩问题

发布时间:

贝叶斯公式论文答辩问题

全概率公式与贝叶斯公式的区别如下:全概率公式是数学专业名词。全概率公式为概率论中的重要公式,它将对一复杂事件A的概率求解问题转化为了在不同情况下发生的简单事件的概率的求和问题。内容:如果事件B1、B2、B3…Bn构成一个完备事件组,即它们两两互不相容,其和为全集;并且P(Bi)大于0,则对任一事件A有P(A)=P(A|B1)*P(B1)+P(A|B2)*P(B2)+...+P(A|Bn)*P(Bn).(或者:p(A)=P(AB1)+P(AB2)+...+P(ABn)).(其中A与Bn的关系为交)。应用举例:高射炮向敌机发射三发炮弹,每弹击中与否相互独立且每发炮弹击中的概率均为,又知敌机若中一弹,坠毁的概率为,若中两弹,坠毁的概率为,若中三弹,敌机必坠毁。求敌机坠毁的概率。贝叶斯定理也称贝叶斯推理,早在18世纪,英国学者贝叶斯(1702~1763)曾提出计算条件概率的公式用来解决如下一类问题:假设H[1],H[2]…,H[n]互斥且构成一个完全事件,已知它们的概率P(H[i]),i=1,2,…,n,现观察到某事件A与H[1],H[2]…,H[n]相伴随机出现,且已知条件概率P(A/H[i]),求P(H[i]/A)。贝叶斯公式(发表于1763年)为: P(H[i]|A)=P(H[i])*P(A│H[i])/{P(H[1])*P(A│H[1]) +P(H[2])*P(A│H[2])+…+P(H[n])*P(A│H[n])}这就是著名的“贝叶斯定理”,一些文献中把P(H[1])、P(H[2])称为基础概率,P(A│H[1])为击中率,P(A│H[2])为误报率。

设拿出白球为事件A,盒子里原来的球是黑球为事件B。 剩下为黑球的概率其实就是: P(B|A) = P(A|B)*P(B)/P(A) 而P(A) = P(A|B)*P(B)+P(A|^B)*P(^B) 其中P(B) = P(^B) = 1/2,因为原来的球不是黑的就是白的,概率相等 P(A|B)指的是盒子里原来的球是黑球的情况下,拿出白球的概率,为1/2 而P(A|^B)指的是盒子里原来的球是白球的情况下,拿出的是白球的概率,显然为1 所以P(B|A) = *(**) = 1/3 所以P(^B|A) = 1 - P(B|A) = 2/3

写作话题: 贝叶斯预测模型在矿物含量预测中的应用 贝叶斯预测模型在气温变化预测中的应用 贝叶斯学习原理及其在预测未来地震危险中的应用 基于稀疏贝叶斯分类器的汽车车型识别 讯号估计中的贝叶斯方法及应用 贝叶斯神经网路在生物序列分析中的应用 基于贝叶斯网路的海上目标识别 贝叶斯原理在发动机标定中的应用 贝叶斯法在继电器可靠性评估中的应用 相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》 Springer 《贝叶斯决策》 黄晓榕 《经济资讯价格评估以及贝叶斯方法的应用》 张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》 周丽琴 《贝叶斯均衡的应用》 王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网路结构学习》 张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》 邹林全 《贝叶斯方法在会计决策中的应用》 周丽华 《市场预测中的贝叶斯公式应用》 夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》 臧玉卫 , 王萍 , 吴育华 《贝叶斯网路在股指期货风险预警中的应用》 党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史资料有效性分析》 肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》 严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》 卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》 刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》 《Bayes方法在经营决策中的应用》 《决策有用性的资讯观》 《统计预测和决策课件》 《贝叶斯经济时间序列预测模型及其应用研究》 《贝叶斯统计推断》 《决策分析理论与实务》

P(A | B) 是B发生的条件下A发生的概率 P(AB)是A、B同时发生的概率P(AB)=P(A|B)P(B) 在盗贼入侵时狗叫的概率:盗贼的入侵使得狗叫,B是因,A是果,所以是P(A|B),当然狗叫也有其他原因B1、B2,……,即BUB1UB2U……=S(S为总空间,即P(S)=1),此时狗叫的概率为P(A)=P(A|BUB1UB2U……),B只是一个原因 在盗贼入侵的同时狗叫了的概率:盗贼入侵的时候,狗恰好叫了,可能是因为入侵引起了,也可能只是随便乱叫了,概率为P(AB) 应用中,一般因果导致出某件事的概率都为条件概率,同时发生的概率则为联合概率

这位同学首先说明一下,Bayes公式是有适用条件的。 比如设有A,B,C,3个事件,但是你不确定他们的关系 是不是相互独立的就不能确定求他们都发生的概率的 演算法。Bayes公式只适用于A,B,C是一个完备事件组的 情况. P(Ai| B)={P(Ai)P(B| Ai)}/{∑P(Ai)P(B| Ai)}, i=1,2,3……,n 此式被称为贝叶斯公式 如果你说的问题满足它的条件,那么它详细地说明了 多个条件下的概率求法,就是有几个条件,i就为几 希望对你能有帮助。

贝叶斯定理由英国数学家贝叶斯 ( Thomas Bayes 1702-1763 ) 发展,用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则:P(A∩B)=P(A)*P(B|A)=P(B)*P(A|B),可以立刻汇出。如上公式也可变形为:P(B|A)=P(A|B)*P(B)/P(A)。

P(?C)= P(?A|C)= P(A|?C)= P(C|A)=P(C)P(A|C)/[P(C)P(A|C)+P(?C)P(A|?C)] = 刚好最近在学概率 希望能帮助到你 不知为什么非的符号都变成问号了

在过去很长的时间里,频率统计论一直是概率理论研究中的主流思想。然而,随着贝叶斯理论的发展,人们发现在很多实际应用中,贝叶斯理论更具普适性,并且能得到更好的结果。统计物理学也不例外,传统的研究方法主要基于频率统计论,而贝叶斯理论能让我们从资料中发掘出更多的资讯。

贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。 其中P(A|B)是在B发生的情况下A发生的可能性。 人们根据不确定性资讯作出推理和决策需要对各种结论的概率作出估计,这类推理称为概率推理。概率推理 既是概率学和逻辑学的研究物件,也是心理学的研究物件,但研究的角度是不同的。概率学和逻辑学研究的是客观概率推算的公式或规则;而心理学研究人们主观概率估计的认知加工过程规律。贝叶斯推理的问题是条件概率推理问题,这一领域的探讨对揭示人们对概率资讯的认知加工过程与规律、指导人们进行有效的学习和判断决策都具有十分重要的理论意义和实践意义。 贝叶斯定理也称贝叶斯推理,早在18世纪,英国学者贝叶斯(1702~1763)曾提出计算条件概率的公式用来解决如下一类问题:假设H[1],H[2]…,H[n]互斥且构成一个完全事件,已知它们的概率P(H[i]),i=1,2,…,n,现观察到某事件A与H[,1],H[,2]…,H[,n]相伴随机出现,且已知条件概率P(A/H[,i]),求P(H[,i]/A)。 贝叶斯公式(发表于1763年)为: P(H[i]|A)=P(H[i])*P(A│H[i])/{P(H[1])*P(A│H[1]) +P(H[2])*P(A│H[2])+…+P(H[n])*P(A│H[n])} 这就是著名的“贝叶斯定理”,一些文献中把P(H[1])、P(H[2])称为基础概率,P(A│H[1])为击中率,P(A│H[2])为误报率[1][

贝叶斯定理由英国数学家贝叶斯 ( Thomas Bayes 1702-1761 ) 发展,用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则,可以立刻汇出:P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)。如上公式也可变形为:P(B|A) = P(A|B)*P(B) / P(A)。 例如:一座别墅在过去的 20 年里一共发生过 2 次被盗,别墅的主人有一条狗,狗平均每周晚上叫 3 次,在盗贼入侵时狗叫的概率被估计为 ,问题是:在狗叫的时候发生入侵的概率是多少? 我们假设 A 事件为狗在晚上叫,B 为盗贼入侵,则以天为单位统计,P(A) = 3/7,P(B) = 2/(20*365) = 2/7300,P(A|B) = ,按照公式很容易得出结果:P(B|A) = *(2/7300) / (3/7) = 。

贝叶斯公式论文开题报告

状态估计根据可获取的 量测 数据 估算 动态系统内部状态的方法。 贝叶斯滤波也就是在已知 观测 和可选的 控制输入 的概率分布下,估计出的 状态 概率分布。 状态随着时间变化,我们将时间设定为离散的,即 , 相对应的,我们的观测为 ,控制输入为 ,状态 ( 为初始状态)隐马尔可夫模型 (Hidden Markov Model; 缩写: HMM )的两个基本假设: 简单来说,就是当前状态仅取决于先前的状态和当前输入。 比如某个人在骑自行车,那么他 下一刻的速度 , 仅仅 取决于当前的速度和下一刻他蹬了多大力气,与他昨天骑自行车到哪条道路把车停在哪里都无关。或者说他当前的速度仅仅取决于上一刻的速度和当前他蹬了多大力气。 我们把时间分为3个点:上一刻(t-1)、现在(t)、下一刻(t+1), 那么根据马尔可夫假设,现在的状态 仅仅取决于上一刻的状态 和当前的控制输入 ,下一刻的状态 仅仅取决于现在的状态 和下一刻的控制输入 。            这里的 其实说的是条件概率,意思是 在 这一堆条件下发生的概率, 等价 于 在 条件下发生的概率。是指任一时刻的观测只依赖于该时刻的马尔科夫链的状态,与其他观测及状态无关。            同样地,这里的 指的也是条件概率,意思是 在 这一堆条件下发生的概率, 等价 于 在 条件下发生的概率。 这两个假设非常重要,其实我们可以简单 理解其为化简 ,把繁杂的公式进行了极大的简化。根据马尔科夫假设,我们才能推导出递归贝叶斯的更新公式。         顺便推导一下多条件下的贝叶斯公式,后面的推导需要使用到这一个结论,                                                                                                                                                                                                       令 为 条件下 的概率密度函数,即:          把 看成一个整体,那么 ,根据我们上面的多条件下的贝叶斯公式进行展开可得:          根据观测独立假设, , 只依赖于t时刻的马尔科夫链的状态 ,可得                                                                     根据全概率公式,或者说是 边缘概率密度函数 ,此处我们把 看成是两个二维随机变量,求 也就是求边缘概率密度函数了,可得:                                                                     根据齐次马尔可夫假设, , 仅仅取决于t-1时刻的状态 和当前t时刻控制输入 ,可得:                                                                     根据齐次马尔可夫假设,我们观察一下 中, 仅仅取决于t-2时刻的状态 和当前t-1时刻控制输入 ,与 无关,可得:                                                                     仔细观察 ,会发现这个式子就等于 ,所以原式等于:                                                                     至此,贝叶斯滤波推导完毕:          式中 为后面所有项的广义积分的倒数,即                   书本上将 定义为 后验概率(posterior) :指某件事已经发生,想要计算这件事发生的原因是由某个因素引起的概率,是 根据结果推测原因 。 定义为 先验概率(prior) :指根据以往经验和分析。在实验或采样前就可以得到的概率。 定义为 似然概率(likelihood) :是 根据原因推测该原因导致结果发生的概率 。 (evidence) :指某件事发生的概率,概率上讲就是求边缘密度。现在我们生活的地方偶尔可见一些流浪汪,它们短暂的一生中,可能会遇到好人给它们食物吃,也可能遇到普通路人,不理它没给它吃的。 假设在它们的世界中这几类人占比: 好人 ,喂吃的(占总数 20% ); 路人 ,无视(占总数 80% )。 流浪汪小白总结了一个规律,那就是: 好人里面 ,大部分会对它 微笑地招手,占90% ,只有 10%是面无表情 的。 路人里面 ,大部分都是 面无表情的,占85% ,只有 15%会对它微笑地招手 。 这一天,刚满三周岁的小白想着今天要能遇到好人的话,生日鸡腿说不定就有着落了。这时候它看到一个微笑地招手的人走过来,小白开启了超算模式进行计算这个是好人的概率:    p(好人 | 微笑地招手) = p(微笑地招手 | 好人)*p(好人) / p(微笑地招手) = p(微笑地招手 | 好人)*p(好人) / (p(微笑地招手 | 好人)*p(好人) + p(微笑地招手 | 路人)*p(路人)) = 90%*20% / (90%*20% + 15%*80%) = 60% 小白很开心,摇着尾巴屁颠屁颠地走了过去,毕竟它有六成把握对面这个人会给他鸡腿,可没想到那人竟然走开了没给他鸡腿!小白感到很失落,转身走向下一个街道,眼角余光瞄向旁边一个面无表情的人,又开启了超算模式:    p(好人 | 面无表情) = p(面无表情 | 好人)*p(好人) / p(面无表情) = p(面无表情 | 好人)*p(好人) / (p(面无表情 | 好人)*p(好人) + p(面无表情 | 路人)*p(路人)) = 10%*20% / (10%*20%+85%*80%) = 小白耸拉着耳朵,它知道这个面无表情的人是好人的概率只有,基本没什么希望了。突然间小白被一个东西砸了一下,定睛一看竟然是鸡腿,原来这个鸡腿是那个面无表情的人扔过来的,小白很开心,毕竟的概率都被它遇到了,简直是踩了自己shit运,运气真是太好了! 表达有限,希望通过简单例子解释先验、后验,说不清的地方还请见谅。

1. 收集大量的垃圾邮件和非垃圾邮件,建立垃圾邮件集和非垃圾邮件集。 2. 提取邮件主题和邮件体中的独立字符串,例如 ABC32,¥234等作为TOKEN串并统计提取出的TOKEN串出现的次数即字频。按照上述的方法分别处理垃圾邮件集和非垃圾邮件集中的所有邮件。 3. 每一个邮件集对应一个哈希表,hashtable_good对应非垃圾邮件集而hashtable_bad对应垃圾邮件集。表中存储TOKEN串到字频的映射关系。 4. 计算每个哈希表中TOKEN串出现的概率P=(某TOKEN串的字频)/(对应哈希表的长度)。 5. 综合考虑hashtable_good和hashtable_bad,推断出当新来的邮件中出现某个TOKEN串时,该新邮件为垃圾邮件的概率。数学表达式为: A 事件 ---- 邮件为垃圾邮件; t1,t2 …….tn 代表 TOKEN 串 则 P ( A|ti )表示在邮件中出现 TOKEN 串 ti 时,该邮件为垃圾邮件的概率。 设 P1 ( ti ) = ( ti 在 hashtable_good 中的值) P2 ( ti ) = ( ti 在 hashtable_ bad 中的值) 则 P ( A|ti ) =P2 ( ti ) /[ ( P1 ( ti ) +P2 ( ti ) ] ; 6. 建立新的哈希表hashtable_probability存储TOKEN串ti到P(A|ti)的映射 7. 至此,垃圾邮件集和非垃圾邮件集的学习过程结束。根据建立的哈希表 hashtable_probability可以估计一封新到的邮件为垃圾邮件的可能性。 当新到一封邮件时,按照步骤2,生成TOKEN串。查询hashtable_probability得到该TOKEN 串的键值。 假设由该邮件共得到N个TOKEN 串,t1,t2…….tn,hashtable_probability中对应的值为 P1 , P2 , ……PN , P(A|t1 ,t2, t3……tn) 表示在邮件中同时出现多个TOKEN串t1,t2……tn时,该邮件为垃圾邮件的概率。 由复合概率公式可得 P(A|t1 ,t2, t3……tn)=(P1*P2*……PN)/[P1*P2*……PN+(1-P1)*(1-P2)*……(1-PN)] 当 P(A|t1 ,t2, t3……tn) 超过预定阈值时,就可以判断邮件为垃圾邮件。

贝叶斯公式直接的应用就是学习,啥意思,就是根据经验对新发生的事物进行判断。抽象地说就是这样。应用的原因就是为了预测未来,规避风险。就和你知道很多鸟都是黑色的,但是其中乌鸦是黑色的可能性最大,于是当你再看到一只黑色的鸟的时候,你就会想着这只鸟是不是乌鸦。包括你学习贝叶斯也是这样的,别人都说贝叶斯很厉害[先验],然后你找了很多案例,最后想看看贝叶斯成功的概率是多少[后验],其本质就是这个

(以下文章部分内容来自于孤独大脑公众号的阅读体会)

贝叶斯公式想要阐述的意义是:新信息出现后, A事件的概率=A事件本身的概率 x 新信息带来的调整。简而言之, 就是 看到新的证据后, 更新想法。

"新信息"在贝叶斯公式中, 代表著"已知条件"。见下图:

公式看起来稍微有点复杂, 不过不要害怕, 以下我们将一一来做拆解:

可以再拓展一下:

以一个比较经典的例子来展示计算过程:

现在, 从人群中随机抽一个人去检测,医院给出的检测结果为阳性,那么这个人实际得病的概率是多少?

我们要算的是P(a|b)= ( *)=9%

用可视化的面积展示看起来会更直观一些:

从上图可知, 蓝色的面积/(蓝色+黄色+绿色中属于阳性)的面积, 就是我们要的答案。

贝叶斯定理本质上是一个很简单的规则:

当你收到新的论据(B)时, 它会用来改变你对某个假设的信任度。

你首先赋予某个事件一个"先验概率", 然后通过新证据来修正, 得到一个"后验概率", 然后把这个"后验概率"变成新的"先验概率", 再做一次修正, 如此循环往复......

这也就是机器学习训练模型的最朴实的基础算法。神经网络最重要的用途是分类; 分类器的输入是一个数值向量,作为类的特征。

我们把搜集到的数值向量做分区, 并且画出一条分界线, 以后新的向量进来, 可以直接区分到底是A还是A' 。而所谓的神经元, 就是一个分类器: 一个n-1维超平面把n维空间一分为二,两边分属不同的两类。

一份数据经过神经元大刀一挥, 就可把类型一分为二。即使是一个多维空间, 只要砍足够多刀, 也能够对一些复杂的函数和空间分布做出解释。

我们先选择一个判断条件, 可以是一条线/平面/超平面, 然后把样本一个个拿过来, 如果这条直线分错了, 说明这个点分错边了, 这时候我们可以动态挪一下判断的线, 让样本跑到直线正确的一侧。因此训练神经元的过程就是这条直线不断在跳舞,最终跳到两个类之间的竖直线位置。

贝叶斯统计毕业论文

贝叶斯公式直接的应用就是学习,啥意思,就是根据经验对新发生的事物进行判断。抽象地说就是这样。应用的原因就是为了预测未来,规避风险。就和你知道很多鸟都是黑色的,但是其中乌鸦是黑色的可能性最大,于是当你再看到一只黑色的鸟的时候,你就会想着这只鸟是不是乌鸦。包括你学习贝叶斯也是这样的,别人都说贝叶斯很厉害[先验],然后你找了很多案例,最后想看看贝叶斯成功的概率是多少[后验],其本质就是这个

原题:A Beginner's Guide to Variational Methods: Mean-Field Approximation 给初学者的变分法指导:平均场近似

这种 推断-优化 的二元性,赋予我们强大的能力。我们既可以使用最新、最好的优化算法来解决统计机器学习问题,也可以反过来,使用统计技术来最小化函数。

这篇文章是关于变分方法的入门教程。 我将推导出最简单的VB方法的优化目标,称为 平均场近似 。 这个目标,也称为 变分下界 ,与变分自动编码器( VAE )中使用的技术完全相同(我将在后续文章中相信介绍它,堪称入木三分)。

1.问题的前提和符号约定 2.问题的表述 3.平均场近似的变分下界 4.前传KL与反传KL 5.与深度学习的联系

本文假设读者熟悉随机变量、概率分布和数学期望等概念。如果你忘了这些概念,可以在 这里 进行复习。机器学习和统计领域的符号约定没有被严格地标准化,因此在这篇文章中,我们约定如下符号,确定的符号将对理解文意很有帮助:

许多学术论文将术语“变量”、“分布”、“密度”,甚至“模型”互换使用。这种做法本身不一定导致错误,因为 、 和 都可以通过一对一的对应关系相互指代。但是,将这些术语混合在一起,容易让人感到困惑。因为它们的指代范畴各不相同(比如对函数进行 抽样 没有意义,对分布 积分 同样没有意义)。

我们将系统建模为随机变量的集合,其中一些变量( )是“可观察的”,而其他变量( )是“隐藏的”。 【译者按:后文称二者为“观察变量”和“隐变量”】我们可以通过下图绘制这种关系:

从 到 ,通过条件分布 这条边,将两个变量联系在一起。

说一个更形象的例子: 可能代表“图像的原始像素值”,而 是二值变量。如果 是猫的图像, 。

贝叶斯定理 给出了任意一对随机变量之间的一般关系: 其中的各项与如下常见名称相关联:

是后验概率:“给定图像,这是猫的概率是多少?” 如果我们可以从 进行采样,我们可以用它作一个猫分类器,告诉我们给定的图像是否是猫。

是似然概率:“给定 的值,计算出该图像 在该类别下的‘可能’程度({是猫/不是猫})” 如果我们可以从 进行采样,那么我们就可以生成猫的图像和非猫的图像,就像生成随机数一样容易。如果你想了解更多相关信息,请参阅我的关于生成模型的其他文章: [1] , [2] 。

是先验概率。它指代我们所知道的关于 的任何先前信息——例如,如果我们认为所有图像中,有1/3是猫,那么 并且 。

这部分是为了感兴趣的读者准备的。请直接跳到下一部分,继续学习本教程。

前面猫的示例提供了观察变量、隐变量和先验的理解角度,是传统的一个示例。 但是请注意,我们定义隐变量/观察变量之间的区别有些随意,你可以自由地将图形模型按需求进行分解。

我们可以通过交换等式的项来重写贝叶斯定理: 现在的“后验概率”是 。

从贝叶斯统计框架,隐变量可以解释为附加到观察变量的 先验信念 。 例如,如果我们认为 是多元高斯,则隐变量 可以表示高斯分布的均值和方差。 另外,参数 上的分布是 的先验分布。

你也可以自由选择 和 代表的值。 例如, 可以代之以“均值、方差的立方根、以及 ,其中 ”。 虽然有点突兀、奇怪,但只要相应地修改 ,结构仍然有效。

你甚至可以往系统中“添加”变量。先验本身可能通过 依赖于其他随机变量, 具有它们自己的 的先验分布,并且那些先验仍然是有先验的,依此类推。任何超参数都可以被认为是先验的。 在贝叶斯统计中, 先验是无穷递归的 。【译者按:1.英文中俗语“turtles all the way down”表示问题无限循环、递归,作者用了"priors all the way down"来诙谐地表达先验系统的递归性。2.先验的层次越深,对结果的影响越 小 】

我们感兴趣的关键问题是隐变量 的后验推断或密度函数。后验推断的一些典型例子:

我们通常假设,我们已知如何计算似然分布 和先验分布 【译者按:原文为“function”函数,应为讹误,后文类似情况以符号为准】。

然而,对于像上面的复杂任务,我们常常不知道如何从 采样或计算 。或者,我们可能知道 的形式,但相应的计算十分复杂,以至于我们无法在合理的时间内对其评估【译者按:“评估”的意思是给定似然函数,求出该函数在某一点上的值】。 我们可以尝试使用像 MCMC 这样的基于采样的方法求解,但这类方法很难收敛。

变分推断背后的想法是这样的:对简单的参数分布 (就像高斯分布)进行推断。对这个函数,我们已经知道如何做后验推断,于是任务变成了调整参数 使得 尽可能接近 。【译者按:“推断”在这里指的是从观察变量 的概率分布导出隐变量 的概率分布】

这在视觉上如下图所示:蓝色曲线是真实的后验分布,绿色分布是通过优化得到的拟合蓝色密度的变分近似(高斯分布)。

两个分布“接近”意味着什么? 平均场变分贝叶斯(最常见的类型)使用反向KL散度作为两个分布之间的距离度量。

反向KL散度测量出将 “扭曲(distort)”成 所需的信息量(以nat为单位或以2为底的对数bits为单位)。我们希望最小化这个量。【译者按:1.“扭曲”的意思是,把 和 贴合在一起,即通过某种映射引发函数图像的形变,使二者图像一致;2.许多研究产生式模型的论文会比较不同方法下的散度值。】

根据条件分布的定义, 。 让我们将这个表达式代入原来的KL表达式,然后使用分配律: 为了使 相对于变分参数 最小化,我们只需要最小化 ,因为 对于 来说是常数。 让我们重新写这个数量作为对分布 的期望。 最小化上面的式子等价于最大化负的式子: 在文献中, 被称为 变分下界 。如果我们能够估计 、 、 ,我们就可以计算它。我们可以继续调整式子里各项的顺序,使之更符合直觉: 如果说采样 是将观察变量 “编码”为隐变量 的过程,则采样 是从 重建观察变量 的“解码”过程。

由此得出 是预期的“解码”似然(即变分分布 能在多大程度上将样本 解码回样本 ),再减去变分近似的分布与先验 之间的KL散度【译者按:原文是“加上”,应该是减去】。如果我们假设 是条件高斯的,那么先验 通常被指定为平均值0、标准偏差1的对角高斯分布。

为什么 称为变分下界? 将 代入 ,我们有: 的含义,用大白话说就是,真实分布下的数据点 的对数似然 ,等于 ,加上 用来捕获在该特定值 处 和 之间距离的差。

由于 , 必大于(或等于) 。因此 是 的下界。 也被称为证据下界(ELBO),通过调整公式:

注意, 本身包含近似后验和先验之间的KL散度,因此 中总共有两个KL项。

KL散度函数不是对称距离函数,即 (当 时除外)第一个被称为“前向KL”,而后者是“反向KL””。 我们为什么要使用反向KL呢?因为推导的目标要求我们近似 ,所以【在 和 不能同时得到最优形式的情况下】我们要优先确保 的形式准确。

我很喜欢Kevin Murphy在 PML教科书 中的解释,我在这里尝试重新说明一下:

让我们首先考虑正向KL。正如上述推导,我们可以将KL写为,权重函数 加权下,“惩罚”函数 的期望。 只要 ,惩罚函数在任何地方都会给总KL带来损失。对于 , 。 这意味着前向KL将在 未能“掩盖” 时,将会很大。

因此,当我们确保前向KL最小化时 时, 。 优化的变分分布 被称为“避免零(zero-avoiding)”(密度 为零时 避免为零)。

如果 ,我们必须确保分母 的地方,加权功能的 ,否则KL会爆炸。这被称为“必设零(zero-forcing)”:

在机器学习问题中,使用平均场近似时,留意反向KL的后果很重要。 如果我们将单峰分布拟合到多模态分布,我们最终会得到更多的假阴性的样例(也就是说, 实际上存在概率,但我们依据 认为没有可能性)。

变分法对于深度学习非常重要。 我将在后面再写文章详细说明。这是“太长不看版”:

结合深度学习和变分贝叶斯方法,我们可以对 极其 复杂的后验分布进行推断。 事实证明,像变分自动编码器这样的现代技术,可以优化得到上文中形式完全相同的平均场变分下界!

感谢阅读,敬请期待!

鉴于标题,我们值得给出“平均场近似”这个名字背后的一些动机。

从统计物理学的观点来看,“平均场”是指忽略二阶效应,将困难的优化问题放松到更简单的问题。例如,在图模型的情境中,我们可以把估计 马尔可夫随机场 的配分函数(partition function)问题,转为最大化吉布斯自由能(对数配分函数减去相对熵)的问题。这显著地简化了全概率测量空间的全局优化的形式(参见M. Mezard和A. Montanari,Sect )。

整体分解: 平均场近似的分解:

从算法的观点来看,“平均场”是指用于计算马尔可夫随机场边缘概率的朴素平均场算法(naive mean field algorithm)。回想一下,朴素平均场算法的固定点【即最终解】是吉布斯变分问题的平均场近似的最优点。这种方法是“均值”,因为它是吉布斯采样器的平均/期望/ LLN版本,因此忽略了二阶(随机)效应(参见,和M. Jordan,()和())。

【译者按: 1.上述说明主要针对配分函数而言的。 的隐空间为标准高斯分布,协方差矩阵为对角单位阵,而不考虑非对角元素的影响。这体现了“平均场”的思想。 的实验效果显示,产生图像较为模糊或“平均”,不够锐利,也许正是平均场近似的结果】

写作话题: 贝叶斯预测模型在矿物含量预测中的应用贝叶斯预测模型在气温变化预测中的应用贝叶斯学习原理及其在预测未来地震危险中的应用基于稀疏贝叶斯分类器的汽车车型识别信号估计中的贝叶斯方法及应用贝叶斯神经网络在生物序列分析中的应用基于贝叶斯网络的海上目标识别贝叶斯原理在发动机标定中的应用贝叶斯法在继电器可靠性评估中的应用相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》Springer 《贝叶斯决策》黄晓榕 《经济信息价格评估以及贝叶斯方法的应用》张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》周丽琴 《贝叶斯均衡的应用》王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网络结构学习》张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》邹林全 《贝叶斯方法在会计决策中的应用》周丽华 《市场预测中的贝叶斯公式应用》夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》臧玉卫 , 王萍 , 吴育华 《贝叶斯网络在股指期货风险预警中的应用》党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史数据有效性分析》肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》《Bayes方法在经营决策中的应用》《决策有用性的信息观》《统计预测和决策课件》《贝叶斯经济时间序列预测模型及其应用研究》《贝叶斯统计推断》《决策分析理论与实务》

贝叶斯统计课程论文范文

贝叶斯推理研究综述_思想政治教育

写作话题: 贝叶斯预测模型在矿物含量预测中的应用贝叶斯预测模型在气温变化预测中的应用贝叶斯学习原理及其在预测未来地震危险中的应用基于稀疏贝叶斯分类器的汽车车型识别信号估计中的贝叶斯方法及应用贝叶斯神经网络在生物序列分析中的应用基于贝叶斯网络的海上目标识别贝叶斯原理在发动机标定中的应用贝叶斯法在继电器可靠性评估中的应用相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》Springer 《贝叶斯决策》黄晓榕 《经济信息价格评估以及贝叶斯方法的应用》张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》周丽琴 《贝叶斯均衡的应用》王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网络结构学习》张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》邹林全 《贝叶斯方法在会计决策中的应用》周丽华 《市场预测中的贝叶斯公式应用》夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》臧玉卫 , 王萍 , 吴育华 《贝叶斯网络在股指期货风险预警中的应用》党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史数据有效性分析》肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》《Bayes方法在经营决策中的应用》《决策有用性的信息观》《统计预测和决策课件》《贝叶斯经济时间序列预测模型及其应用研究》《贝叶斯统计推断》《决策分析理论与实务》

原题:A Beginner's Guide to Variational Methods: Mean-Field Approximation 给初学者的变分法指导:平均场近似

这种 推断-优化 的二元性,赋予我们强大的能力。我们既可以使用最新、最好的优化算法来解决统计机器学习问题,也可以反过来,使用统计技术来最小化函数。

这篇文章是关于变分方法的入门教程。 我将推导出最简单的VB方法的优化目标,称为 平均场近似 。 这个目标,也称为 变分下界 ,与变分自动编码器( VAE )中使用的技术完全相同(我将在后续文章中相信介绍它,堪称入木三分)。

1.问题的前提和符号约定 2.问题的表述 3.平均场近似的变分下界 4.前传KL与反传KL 5.与深度学习的联系

本文假设读者熟悉随机变量、概率分布和数学期望等概念。如果你忘了这些概念,可以在 这里 进行复习。机器学习和统计领域的符号约定没有被严格地标准化,因此在这篇文章中,我们约定如下符号,确定的符号将对理解文意很有帮助:

许多学术论文将术语“变量”、“分布”、“密度”,甚至“模型”互换使用。这种做法本身不一定导致错误,因为 、 和 都可以通过一对一的对应关系相互指代。但是,将这些术语混合在一起,容易让人感到困惑。因为它们的指代范畴各不相同(比如对函数进行 抽样 没有意义,对分布 积分 同样没有意义)。

我们将系统建模为随机变量的集合,其中一些变量( )是“可观察的”,而其他变量( )是“隐藏的”。 【译者按:后文称二者为“观察变量”和“隐变量”】我们可以通过下图绘制这种关系:

从 到 ,通过条件分布 这条边,将两个变量联系在一起。

说一个更形象的例子: 可能代表“图像的原始像素值”,而 是二值变量。如果 是猫的图像, 。

贝叶斯定理 给出了任意一对随机变量之间的一般关系: 其中的各项与如下常见名称相关联:

是后验概率:“给定图像,这是猫的概率是多少?” 如果我们可以从 进行采样,我们可以用它作一个猫分类器,告诉我们给定的图像是否是猫。

是似然概率:“给定 的值,计算出该图像 在该类别下的‘可能’程度({是猫/不是猫})” 如果我们可以从 进行采样,那么我们就可以生成猫的图像和非猫的图像,就像生成随机数一样容易。如果你想了解更多相关信息,请参阅我的关于生成模型的其他文章: [1] , [2] 。

是先验概率。它指代我们所知道的关于 的任何先前信息——例如,如果我们认为所有图像中,有1/3是猫,那么 并且 。

这部分是为了感兴趣的读者准备的。请直接跳到下一部分,继续学习本教程。

前面猫的示例提供了观察变量、隐变量和先验的理解角度,是传统的一个示例。 但是请注意,我们定义隐变量/观察变量之间的区别有些随意,你可以自由地将图形模型按需求进行分解。

我们可以通过交换等式的项来重写贝叶斯定理: 现在的“后验概率”是 。

从贝叶斯统计框架,隐变量可以解释为附加到观察变量的 先验信念 。 例如,如果我们认为 是多元高斯,则隐变量 可以表示高斯分布的均值和方差。 另外,参数 上的分布是 的先验分布。

你也可以自由选择 和 代表的值。 例如, 可以代之以“均值、方差的立方根、以及 ,其中 ”。 虽然有点突兀、奇怪,但只要相应地修改 ,结构仍然有效。

你甚至可以往系统中“添加”变量。先验本身可能通过 依赖于其他随机变量, 具有它们自己的 的先验分布,并且那些先验仍然是有先验的,依此类推。任何超参数都可以被认为是先验的。 在贝叶斯统计中, 先验是无穷递归的 。【译者按:1.英文中俗语“turtles all the way down”表示问题无限循环、递归,作者用了"priors all the way down"来诙谐地表达先验系统的递归性。2.先验的层次越深,对结果的影响越 小 】

我们感兴趣的关键问题是隐变量 的后验推断或密度函数。后验推断的一些典型例子:

我们通常假设,我们已知如何计算似然分布 和先验分布 【译者按:原文为“function”函数,应为讹误,后文类似情况以符号为准】。

然而,对于像上面的复杂任务,我们常常不知道如何从 采样或计算 。或者,我们可能知道 的形式,但相应的计算十分复杂,以至于我们无法在合理的时间内对其评估【译者按:“评估”的意思是给定似然函数,求出该函数在某一点上的值】。 我们可以尝试使用像 MCMC 这样的基于采样的方法求解,但这类方法很难收敛。

变分推断背后的想法是这样的:对简单的参数分布 (就像高斯分布)进行推断。对这个函数,我们已经知道如何做后验推断,于是任务变成了调整参数 使得 尽可能接近 。【译者按:“推断”在这里指的是从观察变量 的概率分布导出隐变量 的概率分布】

这在视觉上如下图所示:蓝色曲线是真实的后验分布,绿色分布是通过优化得到的拟合蓝色密度的变分近似(高斯分布)。

两个分布“接近”意味着什么? 平均场变分贝叶斯(最常见的类型)使用反向KL散度作为两个分布之间的距离度量。

反向KL散度测量出将 “扭曲(distort)”成 所需的信息量(以nat为单位或以2为底的对数bits为单位)。我们希望最小化这个量。【译者按:1.“扭曲”的意思是,把 和 贴合在一起,即通过某种映射引发函数图像的形变,使二者图像一致;2.许多研究产生式模型的论文会比较不同方法下的散度值。】

根据条件分布的定义, 。 让我们将这个表达式代入原来的KL表达式,然后使用分配律: 为了使 相对于变分参数 最小化,我们只需要最小化 ,因为 对于 来说是常数。 让我们重新写这个数量作为对分布 的期望。 最小化上面的式子等价于最大化负的式子: 在文献中, 被称为 变分下界 。如果我们能够估计 、 、 ,我们就可以计算它。我们可以继续调整式子里各项的顺序,使之更符合直觉: 如果说采样 是将观察变量 “编码”为隐变量 的过程,则采样 是从 重建观察变量 的“解码”过程。

由此得出 是预期的“解码”似然(即变分分布 能在多大程度上将样本 解码回样本 ),再减去变分近似的分布与先验 之间的KL散度【译者按:原文是“加上”,应该是减去】。如果我们假设 是条件高斯的,那么先验 通常被指定为平均值0、标准偏差1的对角高斯分布。

为什么 称为变分下界? 将 代入 ,我们有: 的含义,用大白话说就是,真实分布下的数据点 的对数似然 ,等于 ,加上 用来捕获在该特定值 处 和 之间距离的差。

由于 , 必大于(或等于) 。因此 是 的下界。 也被称为证据下界(ELBO),通过调整公式:

注意, 本身包含近似后验和先验之间的KL散度,因此 中总共有两个KL项。

KL散度函数不是对称距离函数,即 (当 时除外)第一个被称为“前向KL”,而后者是“反向KL””。 我们为什么要使用反向KL呢?因为推导的目标要求我们近似 ,所以【在 和 不能同时得到最优形式的情况下】我们要优先确保 的形式准确。

我很喜欢Kevin Murphy在 PML教科书 中的解释,我在这里尝试重新说明一下:

让我们首先考虑正向KL。正如上述推导,我们可以将KL写为,权重函数 加权下,“惩罚”函数 的期望。 只要 ,惩罚函数在任何地方都会给总KL带来损失。对于 , 。 这意味着前向KL将在 未能“掩盖” 时,将会很大。

因此,当我们确保前向KL最小化时 时, 。 优化的变分分布 被称为“避免零(zero-avoiding)”(密度 为零时 避免为零)。

如果 ,我们必须确保分母 的地方,加权功能的 ,否则KL会爆炸。这被称为“必设零(zero-forcing)”:

在机器学习问题中,使用平均场近似时,留意反向KL的后果很重要。 如果我们将单峰分布拟合到多模态分布,我们最终会得到更多的假阴性的样例(也就是说, 实际上存在概率,但我们依据 认为没有可能性)。

变分法对于深度学习非常重要。 我将在后面再写文章详细说明。这是“太长不看版”:

结合深度学习和变分贝叶斯方法,我们可以对 极其 复杂的后验分布进行推断。 事实证明,像变分自动编码器这样的现代技术,可以优化得到上文中形式完全相同的平均场变分下界!

感谢阅读,敬请期待!

鉴于标题,我们值得给出“平均场近似”这个名字背后的一些动机。

从统计物理学的观点来看,“平均场”是指忽略二阶效应,将困难的优化问题放松到更简单的问题。例如,在图模型的情境中,我们可以把估计 马尔可夫随机场 的配分函数(partition function)问题,转为最大化吉布斯自由能(对数配分函数减去相对熵)的问题。这显著地简化了全概率测量空间的全局优化的形式(参见M. Mezard和A. Montanari,Sect )。

整体分解: 平均场近似的分解:

从算法的观点来看,“平均场”是指用于计算马尔可夫随机场边缘概率的朴素平均场算法(naive mean field algorithm)。回想一下,朴素平均场算法的固定点【即最终解】是吉布斯变分问题的平均场近似的最优点。这种方法是“均值”,因为它是吉布斯采样器的平均/期望/ LLN版本,因此忽略了二阶(随机)效应(参见,和M. Jordan,()和())。

【译者按: 1.上述说明主要针对配分函数而言的。 的隐空间为标准高斯分布,协方差矩阵为对角单位阵,而不考虑非对角元素的影响。这体现了“平均场”的思想。 的实验效果显示,产生图像较为模糊或“平均”,不够锐利,也许正是平均场近似的结果】

贝叶斯公式直接的应用就是学习,啥意思,就是根据经验对新发生的事物进行判断。抽象地说就是这样。应用的原因就是为了预测未来,规避风险。就和你知道很多鸟都是黑色的,但是其中乌鸦是黑色的可能性最大,于是当你再看到一只黑色的鸟的时候,你就会想着这只鸟是不是乌鸦。包括你学习贝叶斯也是这样的,别人都说贝叶斯很厉害[先验],然后你找了很多案例,最后想看看贝叶斯成功的概率是多少[后验],其本质就是这个

朴素贝叶斯的研究毕业论文

和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。解决这个问题的方法一般是建立一个属性模型,对于不相互独立的属性,把他们单独处理。例如中文文本分类识别的时候,我们可以建立一个字典来处理一些词组。如果发现特定的问题中存在特殊的模式属性,那么就单独处理。这样做也符合贝叶斯概率原理,因为我们把一个词组看作一个单独的模式,例如英文文本处理一些长度不等的单词,也都作为单独独立的模式进行处理,这是自然语言与其他分类识别问题的不同点。实际计算先验概率时候,因为这些模式都是作为概率被程序计算,而不是自然语言被人来理解,所以结果是一样的。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。但这点有待验证,因为具体的问题不同,算法得出的结果不同,同一个算法对于同一个问题,只要模式发生变化,也存在不同的识别性能。这点在很多国外论文中已经得到公认,在机器学习一书中也提到过算法对于属性的识别情况决定于很多因素,例如训练样本和测试样本的比例影响算法的性能。决策树对于文本分类识别,要看具体情况。在属性相关性较小时,NBC模型的性能稍微良好。属性相关性较小的时候,其他的算法性能也很好,这是由于信息熵理论决定的。

因为naïve天真啊啊啊啊啊啊。贝叶斯很天真吖回答完毕

朴素贝叶斯分类器是一种应用基于独立假设的贝叶斯定理的简单概率分类器,之所以成为朴素,应该是Naive的直译,意思为简单,朴素,天真。

1、贝叶斯方法

贝叶斯方法是以贝叶斯原理为基础,使用概率统计的知识对样本数据集进行分类。由于其有着坚实的数学基础,贝叶斯分类算法的误判率是很低的。

贝叶斯方法的特点是结合先验概率和后验概率,即避免了只使用先验概率的主观偏见,也避免了单独使用样本信息的过拟合现象。贝叶斯分类算法在数据集较大的情况下表现出较高的准确率,同时算法本身也比较简单。

2、朴素贝叶斯算法

朴素贝叶斯算法(Naive Bayesian algorithm) 是应用最为广泛的分类算法之一。

朴素贝叶斯方法是在贝叶斯算法的基础上进行了相应的简化,即假定给定目标值时属性之间相互条件独立。也就是说没有哪个属性变量对于决策结果来说占有着较大的比重,也没有哪个属性变量对于决策结果占有着较小的比重。

虽然这个简化方式在一定程度上降低了贝叶斯分类算法的分类效果,但是在实际的应用场景中,极大地简化了贝叶斯方法的复杂性。

扩展资料

研究意义

人们根据不确定性信息作出推理和决策需要对各种结论的概率作出估计,这类推理称为概率推理。概率推理既是概率学和逻辑学的研究对象,也是心理学的研究对象,但研究的角度是不同的。概率学和逻辑学研究的是客观概率推算的公式或规则。

而心理学研究人们主观概率估计的认知加工过程规律。贝叶斯推理的问题是条件概率推理问题,这一领域的探讨对揭示人们对概率信息的认知加工过程与规律、指导人们进行有效的学习和判断决策都具有十分重要的理论意义和实践意义。

概率图模型是用图来表示变量概率依赖关系的理论,结合概率论与图论的知识,利用图来表示与模型有关的变量的联合概率分布。由图灵奖获得者Pearl开发出来。

如果用一个词来形容概率图模型(Probabilistic Graphical Model)的话,那就是“优雅”。对于一个实际问题,我们希望能够挖掘隐含在数据中的知识。概率图模型构建了这样一幅图,用观测结点表示观测到的数据,用隐含结点表示潜在的知识,用边来描述知识与数据的相互关系, 最后基于这样的关系图获得一个概率分布 ,非常“优雅”地解决了问题。

概率图中的节点分为隐含节点和观测节点,边分为有向边和无向边。从概率论的角度,节点对应于随机变量,边对应于随机变量的依赖或相关关系,其中 有向边表示单向的依赖,无向边表示相互依赖关系 。

概率图模型分为 贝叶斯网络(Bayesian Network)和马尔可夫网络(Markov Network) 两大类。贝叶斯网络可以用一个有向图结构表示,马尔可夫网络可以表 示成一个无向图的网络结构。更详细地说,概率图模型包括了朴素贝叶斯模型、最大熵模型、隐马尔可夫模型、条件随机场、主题模型等,在机器学习的诸多场景中都有着广泛的应用。

长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大。而且概率虽然未知,但最起码是一个确定的值。比如如果问那时的人们一个问题:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?”他们会想都不用想,会立马告诉你,取出白球的概率就是1/2,要么取到白球,要么取不到白球,即θ只能有一个值,而且不论你取了多少次,取得白球的 概率θ始终都是1/2 ,即不随观察结果X 的变化而变化。

这种 频率派 的观点长期统治着人们的观念,直到后来一个名叫Thomas Bayes的人物出现。

托马斯·贝叶斯Thomas Bayes(1702-1763)在世时,并不为当时的人们所熟知,很少发表论文或出版著作,与当时学术界的人沟通交流也很少,用现在的话来说,贝叶斯就是活生生一民间学术“屌丝”,可这个“屌丝”最终发表了一篇名为“An essay towards solving a problem in the doctrine of chances”,翻译过来则是:机遇理论中一个问题的解。你可能觉得我要说:这篇论文的发表随机产生轰动效应,从而奠定贝叶斯在学术史上的地位。

这篇论文可以用上面的例子来说明,“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率θ是多少?”贝叶斯认为取得白球的概率是个不确定的值,因为其中含有机遇的成分。比如,一个朋友创业,你明明知道创业的结果就两种,即要么成功要么失败,但你依然会忍不住去估计他创业成功的几率有多大?你如果对他为人比较了解,而且有方法、思路清晰、有毅力、且能团结周围的人,你会不由自主的估计他创业成功的几率可能在80%以上。这种不同于最开始的“非黑即白、非0即1”的思考方式,便是 贝叶斯式的思考方式。

先简单总结下频率派与贝叶斯派各自不同的思考方式:

贝叶斯派既然把看做是一个随机变量,所以要计算的分布,便得事先知道的无条件分布,即在有样本之前(或观察到X之前),有着怎样的分布呢?

比如往台球桌上扔一个球,这个球落会落在何处呢?如果是不偏不倚的把球抛出去,那么此球落在台球桌上的任一位置都有着相同的机会,即球落在台球桌上某一位置的概率服从均匀分布。这种在实验之前定下的属于基本前提性质的分布称为 先验分布,或着无条件分布 。

其中,先验信息一般来源于经验跟历史资料。比如林丹跟某选手对决,解说一般会根据林丹历次比赛的成绩对此次比赛的胜负做个大致的判断。再比如,某工厂每天都要对产品进行质检,以评估产品的不合格率θ,经过一段时间后便会积累大量的历史资料,这些历史资料便是先验知识,有了这些先验知识,便在决定对一个产品是否需要每天质检时便有了依据,如果以往的历史资料显示,某产品的不合格率只有,便可视为信得过产品或免检产品,只每月抽检一两次,从而省去大量的人力物力。

而 后验分布 π(θ|X)一般也认为是在给定样本X的情况下的θ条件分布,而使π(θ|X)达到最大的值θMD称为 最大后验估计 ,类似于经典统计学中的 极大似然估计 。

综合起来看,则好比是人类刚开始时对大自然只有少得可怜的先验知识,但随着不断观察、实验获得更多的样本、结果,使得人们对自然界的规律摸得越来越透彻。所以,贝叶斯方法既符合人们日常生活的思考方式,也符合人们认识自然的规律,经过不断的发展,最终占据统计学领域的半壁江山,与经典统计学分庭抗礼。

条件概率 (又称后验概率)就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。

比如上图,在同一个样本空间Ω中的事件或者子集A与B,如果随机从Ω中选出的一个元素属于B,那么这个随机选择的元素还属于A的概率就定义为在B的前提下A的条件概率:

联合概率:

边缘概率(先验概率):P(A)或者P(B)

贝叶斯网络(Bayesian network),又称信念网络(Belief Network),或有向无环图模型(directed acyclic graphical model),是一种概率图模型,于1985年由Judea Pearl首先提出。它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。

贝叶斯网络的有向无环图中的节点表示随机变量

它们可以是可观察到的变量,或隐变量、未知参数等。认为有因果关系(或非条件独立)的变量或命题则用箭头来连接。若两个节点间以一个单箭头连接在一起,表示其中一个节点是“因(parents)”,另一个是“果(children)”,两节点就会产生一个条件概率值。

例如,假设节点E直接影响到节点H,即E→H,则用从E指向H的箭头建立结点E到结点H的有向弧(E,H),权值(即连接强度)用条件概率P(H|E)来表示,如下图所示:

简言之,把某个研究系统中涉及的随机变量,根据是否条件独立绘制在一个有向图中,就形成了贝叶斯网络。其主要用来描述随机变量之间的条件依赖,用圈表示随机变量(random variables),用箭头表示条件依赖(conditional dependencies)。

此外,对于任意的随机变量,其联合概率可由各自的局部条件概率分布相乘而得出:

1. head-to-head

依上图,所以有:P(a,b,c) = P(a) P(b) P(c|a,b)成立,即在c未知的条件下,a、b被阻断(blocked),是独立的,称之为head-to-head条件独立。

2. tail-to-tail

考虑c未知,跟c已知这两种情况:

3. head-to-tail

还是分c未知跟c已知这两种情况:

wikipedia上是这样定义因子图的:将一个具有多变量的全局函数因子分解,得到几个局部函数的乘积,以此为基础得到的一个双向图叫做因子图(Factor Graph)。

通俗来讲,所谓因子图就是对函数进行因子分解得到的 一种概率图 。一般内含两种节点:变量节点和函数节点。我们知道,一个全局函数通过因式分解能够分解为多个局部函数的乘积,这些局部函数和对应的变量关系就体现在因子图上。

举个例子,现在有一个全局函数,其因式分解方程为:

其中fA,fB,fC,fD,fE为各函数,表示变量之间的关系,可以是条件概率也可以是其他关系。其对应的因子图为:

在概率图中,求某个变量的边缘分布是常见的问题。这问题有很多求解方法,其中之一就是把贝叶斯网络或马尔科夫随机场转换成因子图,然后用sum-product算法求解。换言之,基于因子图可以用 sum-product 算法 高效的求各个变量的边缘分布。

详细的sum-product算法过程,请查看博文: 从贝叶斯方法谈到贝叶斯网络

朴素贝叶斯(Naive Bayesian)是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。朴素贝叶斯原理简单,也很容易实现,多用于文本分类,比如垃圾邮件过滤。**朴素贝叶斯可以看做是贝叶斯网络的特殊情况:即该网络中无边,各个节点都是独立的。 **

朴素贝叶斯朴素在哪里呢? —— 两个假设 :

贝叶斯公式如下:

下面以一个例子来解释朴素贝叶斯,给定数据如下:

现在给我们的问题是,如果一对男女朋友,男生想女生求婚,男生的四个特点分别是不帅,性格不好,身高矮,不上进,请你判断一下女生是嫁还是不嫁?

这是一个典型的分类问题,转为数学问题就是比较p(嫁|(不帅、性格不好、身高矮、不上进))与p(不嫁|(不帅、性格不好、身高矮、不上进))的概率,谁的概率大,我就能给出嫁或者不嫁的答案!这里我们联系到朴素贝叶斯公式:

我们需要求p(嫁|(不帅、性格不好、身高矮、不上进),这是我们不知道的,但是通过朴素贝叶斯公式可以转化为好求的三个量,这三个变量都能通过统计的方法求得。

等等,为什么这个成立呢?学过概率论的同学可能有感觉了,这个等式成立的条件需要特征之间相互独立吧!对的!这也就是为什么朴素贝叶斯分类有朴素一词的来源,朴素贝叶斯算法是假设各个特征之间相互独立,那么这个等式就成立了!

但是为什么需要假设特征之间相互独立呢?

根据上面俩个原因,朴素贝叶斯法对条件概率分布做了条件独立性的假设,由于这是一个较强的假设,朴素贝叶斯也由此得名!这一假设使得朴素贝叶斯法变得简单,但有时会牺牲一定的分类准确率。

朴素贝叶斯优点 :

朴素贝叶斯缺点 :

理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。

朴素贝叶斯模型(Naive Bayesian Model)的 朴素(Naive)的含义是"很简单很天真" 地假设样本特征彼此独立. 这个假设现实中基本上不存在, 但特征相关性很小的实际情况还是很多的, 所以这个模型仍然能够工作得很好。

新闻分类 GitHub: 点击进入

【 机器学习通俗易懂系列文章 】

从贝叶斯方法谈到贝叶斯网络

相关百科

热门百科

首页
发表服务