首页

> 论文发表知识库

首页 论文发表知识库 问题

简谐振动实验论文参考文献

发布时间:

简谐振动实验论文参考文献

力 速度 加速度 质量的关系

21世纪是知识爆炸的时代,大学物理也不例外。这是我为大家整理的大学物理学术论文,仅供参考!

中学物理中的物理模型

摘要:本文阐述了物理模型的概念、功能,中学物理教材中常见的六种物理模型,物理模型在中学物理教学中地位和作用,以及中学阶段在物理模型的教学过程中应该注意的若干问题。

关键词:中学物理;教学;物理模型

一、物理模型的概念及功能

物理学所分析、研究的实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题进行科学抽象化处理,保留主要因素,略去次要因素,得出一种能反映原物本质特性的理想物质(过程)或假想结构,此种理想物质(过程)或假想结构就称之为物理模型。

物理模型按其设计思想可分为理想化物理模型和探索性物理模型。前者的特点是突出研究客体的主要矛盾,忽略次要因素,将物体抽象成只具有原物体主要因素但并不客观存在的物质(过程),从而使问题简化。如质点模型、点电荷模型、理想气体模型、匀速直线运动模型等等。后者的特点是依据观察或实验的结果,假想出物质的存在形式,但其本质属性还在进一步探索之中。如原子模型、光的波粒二象性模型等等。

人们建立和研究物理模型的功能主要在于:

一是可以使问题的处理大为简化而又不会发生大的偏差,从中较为方便地得出物体运动的基本规律;

二是可以对模型讨论的结果稍加修正,即可用于对实际事物的分析和研究;

三是有助于对客观物理世界的真实认识,达到认识世界,改造世界,为人类服务之目的。

二、中学物理教材中经常碰到的几种物理模型

物理模型就它在实际问题中所扮演角色或所起作用的不同,可分为:

1.物理对象模型 即把物理问题的研究对象模型化。

例如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特性,用一个有质量的点来描述,又如点电荷、弹簧振子、单摆、理想变压器、理想电表等等,都是属于将物体本身的理想化。

另外诸如点光源、电场线、磁感线等,则属于人们根据它们的物理性质,用理想化的图形来模拟的概念。

2.物理过程模型 即把研究对象的实际运动过程进行近似处理。排除其在实际运动过程中的一些次要因素的干扰,使之成为理想的典型过程。

如研究一个铁球从高空中由静止落下的过程。首先应考虑吸引力,由公式F=GMm�r2可知,铁球越接近地面,F就越大,其次还要考虑空气阻力、风速、地球自转等影响。这样考查铁球下落运动过程就显得十分复杂,研究起来十分不便。为此,我们在研究过程上突出铁球下落的主要因素,即受重力作用,而忽略其它次要影响,并把重力视为恒力,通过如此简化,使研究问题简化,其研究结果也不致影响到基本规律的正确性。从而成为物理学中一个典型的运动过程,即自由落体运动。这种物理模型称之为过程模型。

教材中的匀速直线运动、简谐振动、弹性碰撞;理想气体的等温、等容、等压、绝热变化等等都是将物理过程模型化。

3.物理条件模型 如自由落体运动规律就是在建立了“忽略空气阻力,认为重力恒定”的条件模型之后才得出来的。力学中的光滑斜面;热学中的绝热容器;电学中的匀强电场、匀强磁场等等,也都是把物体所处的条件理想化了。

4.物理等效模型 即通过充分挖掘原有物理模型的特征去等效具有相似性质或特点的现象和相似运动形态的物质和运动。如将理想气体分子等效为弹性小球,并用弹性小球对器壁的碰撞去解释和推导气体压强公式,用单摆振动模型去等效类比电磁振荡过程等等。

5.物理实验模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,然后根据逻辑推理法则,对过程作进一步的分析,推理,找出其规律,得出实验结论。

如伽利略就是从斜槽上滚下的小球滚上另一斜槽,后者坡度越小,小球滚得越远的实验基础上提出了他的理想实验――在无摩擦力情况下,从斜槽滚下的小球将以恒定的速度在无限长的水平面上永远不停地运动下去,从而推翻了延续两千多年的“力是维持物体运动的不可缺少”的结论,为惯性定律(牛顿第一定律)的产生奠定了基础。

再如在研究电场强度时,设想在电场中放置一个不会引起电场变化的点电荷,去考查它在各点的F�q值等等。

6.物理数学模型 即建立以物理模型为描述对象的数学模型,进行对客观实体近似的定量计算,从而使问题由繁到简。如单摆的摆线与竖直方向的夹角不得大于50,使弧线计算转化为三角计算等等。

三、物理模型在中学物理教学中的地位和作用

1.建立正确鲜明的物理模型是物理学研究的重要方法和有力手段之一

物理学所研究的各种问题,在实际上都涉及许多因素,而模型则是在抓住主要因素,忽略次要因素的基础上建立起来的。它具有具体形象、生动、深刻地反映了事物的本质和主流这一重要属性。

如“质点”模型,在物体的宏观平动运动中,描述运动的物理量位移、速度、加速度等对同一物体来说其上各点都相同,在这些问题的研究中,运动物体的大小和形状是可不考虑的,故可将运动物体质点化,即用质点模型来取代真实运动的物体。

2.正确鲜明的物理模型本身就是重要的物理内容之一,它与相应的物理概念、现象、规律相依托

人们认识原子结构的进程中,从汤姆逊模型到卢瑟福模型的飞跃就是生动的反映。

爱因斯坦光电效应方程的建立成功地解释了光电效应,而它是建立在反映光粒子性的“光子”模型之上的。

诸多的事实都在说明大凡物理现象、过程、规律都直接与之相应的物理模型关联着;一定的物理模型又是最生动最集中地反映着相应的物理概念、现象、过程和规律,二者密不可分。

3.正确鲜明的物理模型的建立,使许多抽象的物理问题变得直观化、具体化、形象化

例如,电场线对电场的描述,磁感线对磁场的描述。分子模型对理解分子动理论的基本观点,原子核式结构对a粒子散射实验现象的解释;光子模型对光的粒子性的理解等等,凡是学物理的人都会感受到物理模型所给予的无可争辩的重要作用。

四、物理模型的教学要着眼于学生掌握建立正确鲜明的物理模型这一根本方法

物理模型是物理基础知识的一部分,属物理概念的范畴。学习前人为我们创造的各种物理模型是完成教学内容的重要组成部分,培养学生掌握这一方法,即对一个具体的物理内容、现象或过程能反映出一幅鲜明的“物理图景”,是培养学生科学思维能力的一个重要方面。为此,我们在教学中应注意如下几点:

1.讲清各物理模型设计的依据。物理模型看上去是独立的,但设计物理模型的思想是相通的。

2.讲授物理模型要前后呼应,触类旁通。运动学中建立的“质点”模型,发展到质点动力学中,万有引力定律中,以至物体转动问题中,还可引伸到单摆中的摆球,弹簧振子中的振子,甚至帮助我们建立电学中的点电荷模型,光学中的点光源模型。

3.物理模型思维贯穿在物理教学的过程中,随着人们对某个物理问题认识的不断深刻和提高,物理模型也必将随之完善和准确。例如对于光本性的问题,人们从牛顿的微粒说,惠更斯的波动说、电磁说、粒子说到波粒二象性,在此发展过程中光的模型也随之一次次地得到深化。

4.在平时的例题教学中也是处处体现了物理模型的重要地位和作用。解答各类物理习题,学生能否依据题意建立起相应的物理模型,是解题成败的重要环节。如果解题者所理解的题意中的物理模型与命题者的设计模型一致,题意就必然变得清晰鲜明,习题的难点便会随之而突破,这种例子是垂手可得的。

总之,物理模型的教学确实需要我们予以足够的重视,这个问题对提高我们的物理教学水平关系甚大。

物理猜想与中学物理教学

【摘 要】阐述物理猜想在中学物理教学中的意义及教师在物理课堂教学中引导学生进行物理猜想的方法。

【关键词】中学 物理猜想 物理教学

【中图分类号】 G 【文献标识码】 A

【文章编号】0450-9889(2014)11B-0076-02

随着基础教育课程改革的逐步深入,在新课程标准中,对高中生在学习物理过程中的学习能力提出了更高的要求,由此教会学生运用物理猜想方法可以让学生更有效地学好物理。为了促进中学生学会运用物理猜想方法,新课程的物理教材刻意设计了许多研究物理现象的活动。以此增进学生对物理知识的理解,提高学生学习物理知识的能力,例如提出问题、猜想与假设、合作与交流等能力。这些基本能力是确保科学研究各种物理现象得以顺利进行的前提和基础。只有通过猜想、假设,并经过许多的研究活动,才能使研究物理现象过程顺利完成。根据笔者这十多年的教学经验,总结出物理猜想对高中物理教学的作用以及如何通过物理猜想提高物理教学的经验,现浅谈自己的看法。

一、物理猜想对中学物理教学有着重要的意义

新课标义务教育阶段的物理课程中,提出要鼓励学生积极大胆地进行科学研究,使学生从基本的科学研究过程中学到科学研究的方法,最终达到提高他们的科学研究能力的目的。使学生养成尊重事实、大胆想象的科学习惯,发扬研究真理的科学精神;培养学生敢于质疑、勇于创新、战胜困难的信心和决心。在中学物理教学中教师的作用是引导学生进行科学猜想,引导学生进行科学探索活动,提升他们的科学探索创新能力。鼓励他们在研究活动过程中,根据已经了解的物理知识和物理现象,进行猜想与假设,然后设计实验,通过亲自动手做实验来验证自己的猜想与假设。因此,要达到新课标中的要求,笔者认为猜想在新课程标准的教学过程中的运用起到了关键的作用。物理猜想的运用是教育教学发展的要求,也是促进物理教育教学改革和发展的需要。笔者认为运用物理猜想法在中学物理教学中有以下几个重要的意义。

1.提高学生学习兴趣和增进学生学习主动性

学生往往对新生事物比较好奇,都希望能够尽快了解其中的知识、规律和奥秘。如果在中学物理教学过程中多鼓励学生对所要学习的物理现象猜想出其可能出现的某些现象或规律,那么不但能增强学生的新奇心,而且还能激发学生的探究意识和能力,使他们更能积极地深入到学习新知识当中。锻炼和培养中学生的物理猜想能力,能提高学生对研究物理问题的兴趣和欲望。兴趣和欲望正是学生学习物理知识的动力。因此,物理猜想是提高学生学习兴趣和增进学生主动学习的好方法。

2.提高学生的思维能力

在中学物理教学过程中,教师要经常通过提出问题并引导学生根据他们现有知识和理解问题的能力进行猜想,经过观察、实验、归纳、总结等进行严格推理和验证,使学生在学习物理知识的过程中逐渐提高他们的发散思维能力,也使他们思想更加灵活。因此通过猜想法不仅使学生容易理解和掌握物理知识,而且有利于提高学生的思维能力。

3.有利于学生巩固所学的物理知识

物理猜想是学生根据自己的思维意识进行推测,是开放性的思维方式。经过对事物仔细观察和辩别认识,提高了学生对事物整体性的研究,促进学生的思维进程,使学生迅速地理解和掌握新知识。如果这些新知识是由学生自己主动猜想后经过验证推理得来的,那么学生就比较容易接受。因此,这些物理现象及规律就会深深刻印在学生的心里,巩固这些新的物理知识。

4.培养学生创新能力

在新课程标准中,特别着重对中学生创新能力培养。科学的物理猜想是培养中学生创新能力的主要方法之一。科学的物理猜想对中学生创新能力的培养起着积极的作用,它能提高学生的反应能力和灵活解题能力。因此,科学的物理猜想能够非常有效地提高中学生的创新能力。

二、教师在物理课堂教学中引导学生进行物理猜想的方法

教师在教学过程中为了尽可能地发挥学生的想象能力,要根据学生现已掌握的物理知识、兴趣爱好和想象能力等引导学生提出猜想。教师如何更好地引导学生运用已掌握的物理知识和技能来构建出新的物理猜想呢?笔者认为,教师在实际教学过程中需要讲究提出猜想一些方法。

1.启发学生根据自己各种经历、各种经验和已学的知识提出猜想

科学发展的经验告诉我们,科学的猜想并非胡乱猜测,它需要有科学依据,要根据学生的经历、经验、生活常识等提出猜想。爱因斯坦创立的“相对论”起初就是根据前人的经验、自己的经历以及自己掌握的科学知识提出的猜想,然后通过观察、推理、推导、证明,才提出了理论依据,最后才建立了举世闻名的“相对论”。例如,在学习“自由落体运动”时,先让学生观察羽毛和铁片在有空气的玻璃管中同时下落的情况,再启发他们猜想如果将玻璃管中的空气抽出后,再让羽毛和铁片同时下落会出现什么情况。让学生猜想并记下这些猜想,然后通过演示实验让学生观察,最后得出结论。这种通过启发学生猜想和实验演示相结合的教学方法,更能加深学生理解所学的物理知识。

2.激励学生讨论,诱发物理猜想

在教学过程中学生引导学生进行猜想时,应该将学生分成几个组,让各组提出各自不同的猜想,并由他们各自陈述自己猜想的理由和依据。激励他们讨论、争辩,经过讨论和争辩提高他们对物理猜想的兴趣和对物理猜想的积极性。例如,在学习“牛顿第二定律”时,将同学们分成两个小组,一组猜想物体的加速度与力的关系,另一组猜想物体的加速度与质量的关系,然后让他们分别做实验,得出结论。教师在课堂中认真听取各组学生的观点后,引导诱发他们讨论并猜想加速度与力及质量的关系,最后总结出牛顿第二定律。这样能更好地完成教学任务,取得更好的教学效果。

3.鼓励学生大胆猜想

在教学过程中许多学生由于害怕自己提出的猜想被其他同学取笑或者自己提出的猜想不正确被老师责怪而羞以启齿,这时教师应该鼓励、引导学生大胆猜想,消除他们的顾虑。例如,研究玻璃的折射率时,可以猜想单色光通过平行玻璃砖后传播方向是否发生改变。先鼓励学生大胆进行猜想其出射的方向,并记下来。不管他们的猜测是否合理、准确,教师都要持平和的态度,让实验验证结果。只有这样才能提高学生的学习积极性,增强学生科学猜想的意识。

4.创造良好的猜想条件

在教学过程中,当教学到有利于培养学生猜想能力的内容时,教师应该积极引导鼓励学生进行猜想。例如,在“楞次定律”教学中,教师在课堂演示让磁体的N极靠近闭合的铝环的实验之前,先启发学生猜想让磁体的N极靠近闭合的铝环时会看到什么现象,让磁体的N极去靠近有缺口的铝环时又会看到什么现象。然后通过实验引导学生注意观察实验现象。同样,让磁体的S极去靠近闭合的铝环时又会出现什么情况。总之,教师要尽最大可能为学生进行猜想创造条件。

物理猜想既是一种自由尝试,也是一种严谨的创造,因此,在教学过锃中,教师要善于抓住每一个有利于提高学生猜想能力的机会,鼓励学生大胆猜想,从而提高他们的思维能力,增加他们学习物理的兴趣,进而提高物理教学的效率。

【参考文献】

[1]王较过,孟蓓.物理探究教学中培养“猜想与假设”能力的策略[J].当代教师教育,2008(6)

[2]付红周.新课程下全方位认识猜想及其在物理教学中的培养・高中物理[M].北京:人民教育出版社,2012

[3]林东槟.物理探究教学中培养猜想与假设能力的策略[J].实验教学与仪器.2013(4)

[4]蔡严娟.新课改物理探究教学中猜想与假设能力的培养[J].现代教育科研论坛.2011(5)

一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=。注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。2)自由落体运动1.初速度Vo=0 2.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。(3)竖直上抛运动1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=≈10m/s2)3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。二、质点的运动(2)----曲线运动、万有引力1)平抛运动1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/25.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V07.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo8.水平方向加速度:ax=0;竖直方向加速度:ay=g注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;(2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)θ与β的关系为tgβ=2tgα;(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。2)匀速圆周运动1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。3)万有引力1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G=×10-11N?m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=;V2=;V3=.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为。三、力(常见的力、力的合成与分解)1)常见的力1.重力G=mg (方向竖直向下,g=≈10m/s2,作用点在重心,适用于地球表面附近)2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)5.万有引力F=Gm1m2/r2 (G=×10-11N?m2/kg2,方向在它们的连线上)6.静电力F=kQ1Q2/r2 (k=×109N?m2/C2,方向在它们的连线上)7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)注:(1)劲度系数k由弹簧自身决定;(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;(3)fm略大于μFN,一般视为fm≈μFN;(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);(6)安培力与洛仑兹力方向均用左手定则判定。2)力的合成与分解1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/23.合力大小范围:|F1-F2|≤F≤|F1+F2|4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)注:(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。四、动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}5.超重:FN>G,失重:FN>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕5.机械波、横波、纵波〔见第二册P2〕6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}注:(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;(4)干涉与衍射是波特有的;(5)振动图象与波动图象;(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。六、冲量与动量(物体的受力与动量的变化)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}这是资料 你是万杰的吧

【实验题目】 气垫导轨研究简谐运动的规律【实验目的】 1.通过实验方法验证滑块运动是简谐运动。 2.通过实验方法求两弹簧的等效弹性系数和等效质量。实验装置如图所示。说明:什么是两弹簧的等效弹性系数?说明:什么是两弹簧的等效质量?3.测定弹簧振动的振动周期。4.验证简谐振动的振幅与周期无关。5.验证简谐振动的周期与振子的质量的平方根成正比。【实验仪器】气垫导轨,滑块,配重,光电计时器,挡光板,天平,两根长弹簧,固定弹簧的支架。【实验要求】1.设计方案(1)写出实验原理(推导周期公式及如何计算k和m0 )。 由滑块所受合力表达式证明滑块运动是谐振动。 给出不计弹簧质量时的T。 给出考虑弹簧质量对运动周期的影响,引入等效质量时的T。 实验中,改变滑块质量5次,测相应周期。由此,如何计算k和m0 ?(2)列出实验步骤。(3)画出数据表格。2.测量3.进行数据处理并以小论文形式写出实验报告(1)在报告中,要求有完整的实验原理,实验步骤,实验数据,数据 处理和计算过程。(2)明确给出实验结论。两弹簧质量之和M= 10-3㎏ = N/m = 10-3㎏i m10-3㎏ 30Ts T2s2 m010-3㎏ i m10-3㎏ 20Ts T2s2 m010-3㎏ KN/m1   4        2     5     3       6       4.数据处理时,可利用计算法或作图法计算k和m0的数值,并将m0与其理论值 M0=(1/3)M( M为两弹簧质量之和)比较, 计算其相对误差 。 究竟选取哪种数据处理方法自定.书中提示了用计算法求k和 m0的方法。若采用,应理解并具体化. 【注意事项】计算中注意使用国际单位制。严禁随意拉长弹簧,以免损坏!在气轨没有通气时,严禁将滑块拿上或拿下,更不能在轨道上滑动!【参考资料】1.马文蔚等《物理学》,高等教育出版社,19992.林抒、龚镇雄,《普通物理实验》,人民教育出版社,19823.华中工学院等编《物理实验》(基础部分),高等教育出版社,1981

物理实验简谐运动论文答辩

实验报告要点

一、扉页

并非所有的实验报告都有标题页,但是如果讲师想要标题页,那么它应该是一个单独的页面,包括:实验的题目、自己的名字和实验室伙伴的名字、导师的名字、进行实验或提交报告的日期。

二、标题

标题写着做了什么。它应该简短,并描述实验或调查的要点。

三、介绍

通常情况下介绍是解释实验室目标或目的的一个段落。用一句话陈述假设。有时介绍可能包含背景信息,简要总结实验是如何进行的,陈述实验的发现,并列出调查的结论。

四、步骤

描述在调查过程中完成的步骤。要足够详细,任何人都可以阅读这一部分并复制实验。提供一个图表来描述实验设置可能会有所帮助。

五、数据

从过程中获得的数字数据通常以表格的形式呈现。数据包括进行实验时记录的内容。

六、结果

用语言描述数据的含义。有时“结果”部分会与“讨论”部分结合在一起。

七、讨论或分析

数据部分包含数字,“分析”部分包含根据这些数字进行的任何计算。这是解释数据和确定假设是否被接受的地方,也是讨论在进行调查时可能犯的任何错误的地方。

八、结论

大多数情况下,结论是一个段落,总结了实验中发生的事情,假设是被接受还是被拒绝,以及这意味着什么。

九、图形和图表

图表和图形都必须标有描述性的标题。在图表上标注轴,确保包含测量单位。一定要参考报告正文中的图和图表。

十、参考

如果研究是基于别人的文献,或者引用了需要文档的事实,那么应该列出这些参考文献。

实验题目】 气垫导轨研究简谐运动的规律【实验目的】 1.通过实验方法验证滑块运动是简谐运动。 2.通过实验方法求两弹簧的等效弹性系数和等效质量。实验装置如图所示。说明:什么是两弹簧的等效弹性系数?说明:什么是两弹簧的等效质量?3.测定弹簧振动的振动周期。4.验证简谐振动的振幅与周期无关。5.验证简谐振动的周期与振子的质量的平方根成正比。【实验仪器】气垫导轨,滑块,配重,光电计时器,挡光板,天平,两根长弹簧,固定弹簧的支架。【实验要求】1.设计方案(1)写出实验原理(推导周期公式及如何计算k和m0 )。 由滑块所受合力表达式证明滑块运动是谐振动。 给出不计弹簧质量时的T。 给出考虑弹簧质量对运动周期的影响,引入等效质量时的T。 实验中,改变滑块质量5次,测相应周期。由此,如何计算k和m0 ?(2)列出实验步骤。(3)画出数据表格。2.测量3.进行数据处理并以小论文形式写出实验报告(1)在报告中,要求有完整的实验原理,实验步骤,实验数据,数据 处理和计算过程。(2)明确给出实验结论。两弹簧质量之和M= 10-3㎏ = N/m = 10-3㎏i m10-3㎏ 30Ts T2s2 m010-3㎏ i m10-3㎏ 20Ts T2s2 m010-3㎏ KN/m1 4 2 5 3 6 4.数据处理时,可利用计算法或作图法计算k和m0的数值,并将m0与其理论值 M0=(1/3)M( M为两弹簧质量之和)比较, 计算其相对误差 。 究竟选取哪种数据处理方法自定.书中提示了用计算法求k和 m0的方法。若采用,应理解并具体化. 【注意事项】计算中注意使用国际单位制。严禁随意拉长弹簧,以免损坏!在气轨没有通气时,严禁将滑块拿上或拿下,更不能在轨道上滑动!【参考资料】1.马文蔚等《物理学》,高等教育出版社,19992.林抒、龚镇雄,《普通物理实验》,人民教育出版社,19823.华中工学院等编《物理实验》(基础部分),高等教育出版社,1981

21世纪是知识爆炸的时代,大学物理也不例外。这是我为大家整理的大学物理学术论文,仅供参考!

中学物理中的物理模型

摘要:本文阐述了物理模型的概念、功能,中学物理教材中常见的六种物理模型,物理模型在中学物理教学中地位和作用,以及中学阶段在物理模型的教学过程中应该注意的若干问题。

关键词:中学物理;教学;物理模型

一、物理模型的概念及功能

物理学所分析、研究的实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题进行科学抽象化处理,保留主要因素,略去次要因素,得出一种能反映原物本质特性的理想物质(过程)或假想结构,此种理想物质(过程)或假想结构就称之为物理模型。

物理模型按其设计思想可分为理想化物理模型和探索性物理模型。前者的特点是突出研究客体的主要矛盾,忽略次要因素,将物体抽象成只具有原物体主要因素但并不客观存在的物质(过程),从而使问题简化。如质点模型、点电荷模型、理想气体模型、匀速直线运动模型等等。后者的特点是依据观察或实验的结果,假想出物质的存在形式,但其本质属性还在进一步探索之中。如原子模型、光的波粒二象性模型等等。

人们建立和研究物理模型的功能主要在于:

一是可以使问题的处理大为简化而又不会发生大的偏差,从中较为方便地得出物体运动的基本规律;

二是可以对模型讨论的结果稍加修正,即可用于对实际事物的分析和研究;

三是有助于对客观物理世界的真实认识,达到认识世界,改造世界,为人类服务之目的。

二、中学物理教材中经常碰到的几种物理模型

物理模型就它在实际问题中所扮演角色或所起作用的不同,可分为:

1.物理对象模型 即把物理问题的研究对象模型化。

例如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特性,用一个有质量的点来描述,又如点电荷、弹簧振子、单摆、理想变压器、理想电表等等,都是属于将物体本身的理想化。

另外诸如点光源、电场线、磁感线等,则属于人们根据它们的物理性质,用理想化的图形来模拟的概念。

2.物理过程模型 即把研究对象的实际运动过程进行近似处理。排除其在实际运动过程中的一些次要因素的干扰,使之成为理想的典型过程。

如研究一个铁球从高空中由静止落下的过程。首先应考虑吸引力,由公式F=GMm�r2可知,铁球越接近地面,F就越大,其次还要考虑空气阻力、风速、地球自转等影响。这样考查铁球下落运动过程就显得十分复杂,研究起来十分不便。为此,我们在研究过程上突出铁球下落的主要因素,即受重力作用,而忽略其它次要影响,并把重力视为恒力,通过如此简化,使研究问题简化,其研究结果也不致影响到基本规律的正确性。从而成为物理学中一个典型的运动过程,即自由落体运动。这种物理模型称之为过程模型。

教材中的匀速直线运动、简谐振动、弹性碰撞;理想气体的等温、等容、等压、绝热变化等等都是将物理过程模型化。

3.物理条件模型 如自由落体运动规律就是在建立了“忽略空气阻力,认为重力恒定”的条件模型之后才得出来的。力学中的光滑斜面;热学中的绝热容器;电学中的匀强电场、匀强磁场等等,也都是把物体所处的条件理想化了。

4.物理等效模型 即通过充分挖掘原有物理模型的特征去等效具有相似性质或特点的现象和相似运动形态的物质和运动。如将理想气体分子等效为弹性小球,并用弹性小球对器壁的碰撞去解释和推导气体压强公式,用单摆振动模型去等效类比电磁振荡过程等等。

5.物理实验模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,然后根据逻辑推理法则,对过程作进一步的分析,推理,找出其规律,得出实验结论。

如伽利略就是从斜槽上滚下的小球滚上另一斜槽,后者坡度越小,小球滚得越远的实验基础上提出了他的理想实验――在无摩擦力情况下,从斜槽滚下的小球将以恒定的速度在无限长的水平面上永远不停地运动下去,从而推翻了延续两千多年的“力是维持物体运动的不可缺少”的结论,为惯性定律(牛顿第一定律)的产生奠定了基础。

再如在研究电场强度时,设想在电场中放置一个不会引起电场变化的点电荷,去考查它在各点的F�q值等等。

6.物理数学模型 即建立以物理模型为描述对象的数学模型,进行对客观实体近似的定量计算,从而使问题由繁到简。如单摆的摆线与竖直方向的夹角不得大于50,使弧线计算转化为三角计算等等。

三、物理模型在中学物理教学中的地位和作用

1.建立正确鲜明的物理模型是物理学研究的重要方法和有力手段之一

物理学所研究的各种问题,在实际上都涉及许多因素,而模型则是在抓住主要因素,忽略次要因素的基础上建立起来的。它具有具体形象、生动、深刻地反映了事物的本质和主流这一重要属性。

如“质点”模型,在物体的宏观平动运动中,描述运动的物理量位移、速度、加速度等对同一物体来说其上各点都相同,在这些问题的研究中,运动物体的大小和形状是可不考虑的,故可将运动物体质点化,即用质点模型来取代真实运动的物体。

2.正确鲜明的物理模型本身就是重要的物理内容之一,它与相应的物理概念、现象、规律相依托

人们认识原子结构的进程中,从汤姆逊模型到卢瑟福模型的飞跃就是生动的反映。

爱因斯坦光电效应方程的建立成功地解释了光电效应,而它是建立在反映光粒子性的“光子”模型之上的。

诸多的事实都在说明大凡物理现象、过程、规律都直接与之相应的物理模型关联着;一定的物理模型又是最生动最集中地反映着相应的物理概念、现象、过程和规律,二者密不可分。

3.正确鲜明的物理模型的建立,使许多抽象的物理问题变得直观化、具体化、形象化

例如,电场线对电场的描述,磁感线对磁场的描述。分子模型对理解分子动理论的基本观点,原子核式结构对a粒子散射实验现象的解释;光子模型对光的粒子性的理解等等,凡是学物理的人都会感受到物理模型所给予的无可争辩的重要作用。

四、物理模型的教学要着眼于学生掌握建立正确鲜明的物理模型这一根本方法

物理模型是物理基础知识的一部分,属物理概念的范畴。学习前人为我们创造的各种物理模型是完成教学内容的重要组成部分,培养学生掌握这一方法,即对一个具体的物理内容、现象或过程能反映出一幅鲜明的“物理图景”,是培养学生科学思维能力的一个重要方面。为此,我们在教学中应注意如下几点:

1.讲清各物理模型设计的依据。物理模型看上去是独立的,但设计物理模型的思想是相通的。

2.讲授物理模型要前后呼应,触类旁通。运动学中建立的“质点”模型,发展到质点动力学中,万有引力定律中,以至物体转动问题中,还可引伸到单摆中的摆球,弹簧振子中的振子,甚至帮助我们建立电学中的点电荷模型,光学中的点光源模型。

3.物理模型思维贯穿在物理教学的过程中,随着人们对某个物理问题认识的不断深刻和提高,物理模型也必将随之完善和准确。例如对于光本性的问题,人们从牛顿的微粒说,惠更斯的波动说、电磁说、粒子说到波粒二象性,在此发展过程中光的模型也随之一次次地得到深化。

4.在平时的例题教学中也是处处体现了物理模型的重要地位和作用。解答各类物理习题,学生能否依据题意建立起相应的物理模型,是解题成败的重要环节。如果解题者所理解的题意中的物理模型与命题者的设计模型一致,题意就必然变得清晰鲜明,习题的难点便会随之而突破,这种例子是垂手可得的。

总之,物理模型的教学确实需要我们予以足够的重视,这个问题对提高我们的物理教学水平关系甚大。

物理猜想与中学物理教学

【摘 要】阐述物理猜想在中学物理教学中的意义及教师在物理课堂教学中引导学生进行物理猜想的方法。

【关键词】中学 物理猜想 物理教学

【中图分类号】 G 【文献标识码】 A

【文章编号】0450-9889(2014)11B-0076-02

随着基础教育课程改革的逐步深入,在新课程标准中,对高中生在学习物理过程中的学习能力提出了更高的要求,由此教会学生运用物理猜想方法可以让学生更有效地学好物理。为了促进中学生学会运用物理猜想方法,新课程的物理教材刻意设计了许多研究物理现象的活动。以此增进学生对物理知识的理解,提高学生学习物理知识的能力,例如提出问题、猜想与假设、合作与交流等能力。这些基本能力是确保科学研究各种物理现象得以顺利进行的前提和基础。只有通过猜想、假设,并经过许多的研究活动,才能使研究物理现象过程顺利完成。根据笔者这十多年的教学经验,总结出物理猜想对高中物理教学的作用以及如何通过物理猜想提高物理教学的经验,现浅谈自己的看法。

一、物理猜想对中学物理教学有着重要的意义

新课标义务教育阶段的物理课程中,提出要鼓励学生积极大胆地进行科学研究,使学生从基本的科学研究过程中学到科学研究的方法,最终达到提高他们的科学研究能力的目的。使学生养成尊重事实、大胆想象的科学习惯,发扬研究真理的科学精神;培养学生敢于质疑、勇于创新、战胜困难的信心和决心。在中学物理教学中教师的作用是引导学生进行科学猜想,引导学生进行科学探索活动,提升他们的科学探索创新能力。鼓励他们在研究活动过程中,根据已经了解的物理知识和物理现象,进行猜想与假设,然后设计实验,通过亲自动手做实验来验证自己的猜想与假设。因此,要达到新课标中的要求,笔者认为猜想在新课程标准的教学过程中的运用起到了关键的作用。物理猜想的运用是教育教学发展的要求,也是促进物理教育教学改革和发展的需要。笔者认为运用物理猜想法在中学物理教学中有以下几个重要的意义。

1.提高学生学习兴趣和增进学生学习主动性

学生往往对新生事物比较好奇,都希望能够尽快了解其中的知识、规律和奥秘。如果在中学物理教学过程中多鼓励学生对所要学习的物理现象猜想出其可能出现的某些现象或规律,那么不但能增强学生的新奇心,而且还能激发学生的探究意识和能力,使他们更能积极地深入到学习新知识当中。锻炼和培养中学生的物理猜想能力,能提高学生对研究物理问题的兴趣和欲望。兴趣和欲望正是学生学习物理知识的动力。因此,物理猜想是提高学生学习兴趣和增进学生主动学习的好方法。

2.提高学生的思维能力

在中学物理教学过程中,教师要经常通过提出问题并引导学生根据他们现有知识和理解问题的能力进行猜想,经过观察、实验、归纳、总结等进行严格推理和验证,使学生在学习物理知识的过程中逐渐提高他们的发散思维能力,也使他们思想更加灵活。因此通过猜想法不仅使学生容易理解和掌握物理知识,而且有利于提高学生的思维能力。

3.有利于学生巩固所学的物理知识

物理猜想是学生根据自己的思维意识进行推测,是开放性的思维方式。经过对事物仔细观察和辩别认识,提高了学生对事物整体性的研究,促进学生的思维进程,使学生迅速地理解和掌握新知识。如果这些新知识是由学生自己主动猜想后经过验证推理得来的,那么学生就比较容易接受。因此,这些物理现象及规律就会深深刻印在学生的心里,巩固这些新的物理知识。

4.培养学生创新能力

在新课程标准中,特别着重对中学生创新能力培养。科学的物理猜想是培养中学生创新能力的主要方法之一。科学的物理猜想对中学生创新能力的培养起着积极的作用,它能提高学生的反应能力和灵活解题能力。因此,科学的物理猜想能够非常有效地提高中学生的创新能力。

二、教师在物理课堂教学中引导学生进行物理猜想的方法

教师在教学过程中为了尽可能地发挥学生的想象能力,要根据学生现已掌握的物理知识、兴趣爱好和想象能力等引导学生提出猜想。教师如何更好地引导学生运用已掌握的物理知识和技能来构建出新的物理猜想呢?笔者认为,教师在实际教学过程中需要讲究提出猜想一些方法。

1.启发学生根据自己各种经历、各种经验和已学的知识提出猜想

科学发展的经验告诉我们,科学的猜想并非胡乱猜测,它需要有科学依据,要根据学生的经历、经验、生活常识等提出猜想。爱因斯坦创立的“相对论”起初就是根据前人的经验、自己的经历以及自己掌握的科学知识提出的猜想,然后通过观察、推理、推导、证明,才提出了理论依据,最后才建立了举世闻名的“相对论”。例如,在学习“自由落体运动”时,先让学生观察羽毛和铁片在有空气的玻璃管中同时下落的情况,再启发他们猜想如果将玻璃管中的空气抽出后,再让羽毛和铁片同时下落会出现什么情况。让学生猜想并记下这些猜想,然后通过演示实验让学生观察,最后得出结论。这种通过启发学生猜想和实验演示相结合的教学方法,更能加深学生理解所学的物理知识。

2.激励学生讨论,诱发物理猜想

在教学过程中学生引导学生进行猜想时,应该将学生分成几个组,让各组提出各自不同的猜想,并由他们各自陈述自己猜想的理由和依据。激励他们讨论、争辩,经过讨论和争辩提高他们对物理猜想的兴趣和对物理猜想的积极性。例如,在学习“牛顿第二定律”时,将同学们分成两个小组,一组猜想物体的加速度与力的关系,另一组猜想物体的加速度与质量的关系,然后让他们分别做实验,得出结论。教师在课堂中认真听取各组学生的观点后,引导诱发他们讨论并猜想加速度与力及质量的关系,最后总结出牛顿第二定律。这样能更好地完成教学任务,取得更好的教学效果。

3.鼓励学生大胆猜想

在教学过程中许多学生由于害怕自己提出的猜想被其他同学取笑或者自己提出的猜想不正确被老师责怪而羞以启齿,这时教师应该鼓励、引导学生大胆猜想,消除他们的顾虑。例如,研究玻璃的折射率时,可以猜想单色光通过平行玻璃砖后传播方向是否发生改变。先鼓励学生大胆进行猜想其出射的方向,并记下来。不管他们的猜测是否合理、准确,教师都要持平和的态度,让实验验证结果。只有这样才能提高学生的学习积极性,增强学生科学猜想的意识。

4.创造良好的猜想条件

在教学过程中,当教学到有利于培养学生猜想能力的内容时,教师应该积极引导鼓励学生进行猜想。例如,在“楞次定律”教学中,教师在课堂演示让磁体的N极靠近闭合的铝环的实验之前,先启发学生猜想让磁体的N极靠近闭合的铝环时会看到什么现象,让磁体的N极去靠近有缺口的铝环时又会看到什么现象。然后通过实验引导学生注意观察实验现象。同样,让磁体的S极去靠近闭合的铝环时又会出现什么情况。总之,教师要尽最大可能为学生进行猜想创造条件。

物理猜想既是一种自由尝试,也是一种严谨的创造,因此,在教学过锃中,教师要善于抓住每一个有利于提高学生猜想能力的机会,鼓励学生大胆猜想,从而提高他们的思维能力,增加他们学习物理的兴趣,进而提高物理教学的效率。

【参考文献】

[1]王较过,孟蓓.物理探究教学中培养“猜想与假设”能力的策略[J].当代教师教育,2008(6)

[2]付红周.新课程下全方位认识猜想及其在物理教学中的培养・高中物理[M].北京:人民教育出版社,2012

[3]林东槟.物理探究教学中培养猜想与假设能力的策略[J].实验教学与仪器.2013(4)

[4]蔡严娟.新课改物理探究教学中猜想与假设能力的培养[J].现代教育科研论坛.2011(5)

细心观察,生活中其实也有很多物理现象,冰箱里就是如此。打开冰箱,会有一股凉气飘扬而出,每到夏天,这种感觉便更加明显,这和冰箱里各种物态变化的功劳是分不开的。冰箱里的凉气,是大量气态“搬热人员”在气化是吸热所造成的。有吸必有放,冰箱外部,在加压的条件下,这些勤劳的搬运工,在这里液化,将所保存的热量释放出来,以便于下一轮继续工作。当然,在冰冻室中,也会存在凝固的现象。如果你将冷冻室中的物品拿到冷藏室,也会出现融化的现象,但他们都是次要的了。还有更次要的,那就是任何地方都会出现的升华与凝华,就不用说了。小小的一个冰箱,就存在全部6种物态变化,更何况鬼斧神工的大自然呢?

复摆振动实验研究论文

烧水时,壶盖会被顶起从冰箱内拿出东西会产生液化现象给你这两个建议,至于怎么写,我无能为力

当摆动的角度较小时,摆动近似为简谐振动,所以复摆公式T成立条件是摆动角度较小。

T检验是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。

例如:

化简得(a-1)*(a+5)≥0

所以有a≤-5或a≥1

注意对称轴和开口方向

最小值可以在X=3/4取得为31/8

最大值可以在X=-2取得为19

也是注意对称轴和开口方向

将原式配成y=(x+(2t+1)/2)^2-t-5/4

所以当t=-5/4时,y的最小值为0

扩展资料:

复摆的转轴与过刚体质心C并垂直于转轴的平面的交点O称为支点或悬挂点。摆动过程中,复摆只受重力和转轴的反作用力,而重力矩起着回复力矩的作用。设质量为m的刚体绕转轴的转动惯量为I,支点至质心的距离为s,则复摆微幅振动的周期如图,式中g为重力加速度。它相当于摆长l=I/ms的单摆作微幅振动的周期。

参考资料来源:百度百科-复摆

有鸡蛋的要不?物理是一门以观察和实验为基础的学科。在教学中,有意识地引导学生联系生活实际,分析物理现象;利用身边物品,进行物理实验,都能激发学生的学习兴趣,加深学生体会。这里介绍一组与鸡蛋有关的物理现象和实验。1、液体蒸发吸热 实验:把刚煮熟的蛋从锅内捞起来,直接用手拿时,虽然较烫,但还可以忍受。过一会儿,当蛋壳上的水膜干了后,感到比刚捞上时更烫了。 分析:因为刚捞上来的蛋壳上附着一层水膜,开始时,水膜蒸发吸热,使蛋壳的温度下降,所以并不觉得很烫。经过一段时间,水膜蒸发完毕。由蛋内部传递出的热量使蛋壳的温度重新升高,所以感到更烫手。 2、热胀冷缩的性质 实验:把煮熟捞起的蛋立刻浸入冷水中,待完全冷却后,再捞起剥落。 分析:首先,蛋刚浸入冷水中,蛋壳直接遇冷收缩,而蛋白温度下降不大,收缩也较小,这时主要表现为蛋壳在收缩。其次,由于不同物质热胀冷缩性质的差异性,当整个蛋都完全冷却时,组织疏松的蛋白收缩率比蛋壳大,收缩程度更明显,造成蛋白蛋壳相互脱离,剥蛋壳就更方便了。 3、验证大气压存在 实验:选一只口径略小于鸡蛋的瓶子,在瓶底热上一层沙子。先点燃一团酒精棉投入瓶内,接着把一只去壳鸡蛋的小头端朝下堵住瓶口。火焰熄灭后,蛋被瓶子缓缓“吞”入瓶肚中。 分析:酒精棉燃烧使瓶内气体受热膨胀,部分气体被排出。当蛋堵住瓶口,火焰熄灭后,瓶内气体由于温度下降,压强变小,低于瓶外的大气压。在大气压作用下,有一定弹性的鸡蛋被压入瓶内。 4、浮沉现象 实验:把一只去壳鸡蛋,浸没在一只装有清水的大口径玻璃杯中。松开手后,发现鸡蛋缓缓沉入杯底。捞出鸡蛋往清水中加入食盐,调制成浓度较高的盐溶液。再把鸡蛋浸没在盐溶液中,松开手后,鸡蛋却缓缓上浮。 分析:物体浮沉情况取决于所受的重力和浮力的大小关系。浸没在液体中的物体体积就是它所排开液体的体积,根据阿基米德原理可知物体密度与液体密度的大小关系可以对应表示重力与浮力的大小关系。因为蛋的密度略微比清水的密度大,当蛋浸入清水中时,所受重力大于浮力,所以蛋将下沉。当浸没在盐水中时,由于盐水密度比蛋的密度大,所受的重力小于浮力,所以蛋将上浮。 5、惯性、摩擦阻力现象 实验:选用外形相似的生鸡蛋、熟鸡蛋各一只,放在水平桌面上。用相同的力使它们在原处旋转。能迅速旋转的是熟鸡蛋,缓慢旋转几圈就停止的是生鸡蛋。 分析:生鸡蛋的壳内是液状的蛋清,外力作用在蛋壳上旋转时,蛋清由于惯性,继续保持静止状态,则它与蛋壳间存在摩擦阻力作用,使整个蛋只能缓慢转动。而熟鸡蛋内蛋清已凝固成蛋白,外力作用时旋转时,整个蛋就能迅速转动。 6、物体的稳定平衡 实验:选用一只生鸡蛋,在小头一端开个孔并清除干净壳内的蛋清蛋黄。沿小孔滑入一块重物。以蛋壳的大头端为底部,扶好蛋壳。点燃一只蜡烛,滴入烛油,把重物封存在蛋壳底部。烛油大约封存至整个蛋壳高度的四分之一即可。把制好的蛋壳推倒后,蛋壳能自动立起。制成一个“不倒翁”。 分析:在空蛋壳的底端封存的重物和烛油,使整个蛋体的重心移近蛋壳的底部,重心起低,稳定性越好。当蛋壳倾斜,偏离平衡位置时,使蛋体的重心升高。因为蛋壳底端是球形的,在蛋体的自身重力作用下,蛋体又恢复到原来的平衡位置上。 7、分子运动现象 实验:外壳完好的蛋,埋入食盐中腌制一段时间,可以制成一只咸蛋。虽然蛋壳仍然完好,但连内部的蛋黄都变咸了。 分析:因为物质的分子间存在间隙,而且分子不停地做无规则运动,所以食盐分子扩散到蛋黄中,使蛋黄也变咸。

细心观察,生活中其实也有很多物理现象,冰箱里就是如此。打开冰箱,会有一股凉气飘扬而出,每到夏天,这种感觉便更加明显,这和冰箱里各种物态变化的功劳是分不开的。冰箱里的凉气,是大量气态“搬热人员”在气化是吸热所造成的。有吸必有放,冰箱外部,在加压的条件下,这些勤劳的搬运工,在这里液化,将所保存的热量释放出来,以便于下一轮继续工作。当然,在冰冻室中,也会存在凝固的现象。如果你将冷冻室中的物品拿到冷藏室,也会出现融化的现象,但他们都是次要的了。还有更次要的,那就是任何地方都会出现的升华与凝华,就不用说了。小小的一个冰箱,就存在全部6种物态变化,更何况鬼斧神工的大自然呢?

弹簧振动的研究实验论文

弹簧振子的振动周期公式T=2π√m/k

甲图说明温度随质量增大而增大,乙图说明温度随k增大而减小。但是这两种关系都不是线性的,也就是说不是成正比的,否则图像应该是直线型的,虽然我们不能确定T与m或是k的关系,但是唯一可能的就是那个B选项

我也在早范文哈~~我只有格式。。可是看的不太明白。。科技论文的撰写格式一般说,科技论文的组成部分和排列次序为:题名、作者署名、摘要、关键词、引言、正文、结论(和建议)、致谢、参考文献和附录。1 题名 题名的概念题名,又叫文题、题目、标题(或称“总标题”,以区别于“层次标题”),是论文的总纲,是能反映论文最重要的特定内容的最恰当、最简明的词语的逻辑组合。 题名的一般要求 准确得体题名应能准确地表达论文的中心内容,恰如其分地反映研究的范围和达到的深度,不能使用笼统的、泛指性很强的词语和华而不实的词藻。常见的毛病有如下几种:1)题名反映的面大,而实际内容包括的面窄。例如:①新能源的利用研究实际上文中只讨论沼气的利用问题。沼气只是“新能源”中的一种,显然原题过于泛指和笼统。可改为“沼气的利用研究”或“沼气的利用”。2)标题一般化,不足以反映文章内容的特点。例如:②论自动化在我国工业现代化建设中的作用此题名不能引人注目,因为与此类似的题名已经不少,很多文章从不同的角度都在阐明工业自动化的作用,而该文有着十分明显的特点,就是首次提出了对于这一论题的定量分析的方法,通过建立数学模型和进行一系列的计算,得出了比较有说服力的结论;因此将②改为“自动化在我国工业现代化建设中的作用的定量分析”,就反映了这篇论文的特定内容“定量分析”,即有别于其他的一般性论述文章。3)不注意分寸,有意无意拔高。比如有的作者,其课题的研究深度并不大,却常常把“……的机理”、“……的规律”一类词语用在题名上。比较客观的做法是,除确实弄清了“机理”、掌握了“规律”而外,一般地取名为“……现象的(一种)解释”、“……的一种机制”等比较恰当,比较慎重,也留有余地。 简短精练题名应简明,使读者印象鲜明,便于记忆和引用。GB7713-87规定,题名“一般不宜超过20字”。我们应把这“20字”视为上限,在保证能准确反映“最主要的特定内容”的前提下,题名字数越少越好。这里介绍几种减少题名字数的方法:1)尽可能删去多余的词语。例如:①××港自引船增多对安全的影响及对策研究可改为“××港自引船增多对安全的影响及其对策”。2)避免将同义词或近义词连用。例如:②叶轮式增氧机叶轮受力分析探讨“分析”与“探讨”义近,保留其一即可。据文章内容可以删去“探讨”。3)题名不易简化时,可用加副题名的办法来减少主题名的字数(当然,列副题名不单是为了减少主题名的字数)。例如:③弧齿锥齿轮和准双曲面齿轮按大轮齿面上任一基准点配切小轮的原理共30个字。从需要考虑,原理很难简缩,但可改为:弧齿锥齿轮和准双曲面齿轮切齿调整计算新方法——按大轮齿面上任一基准点配切小轮的原理。采用了副题名,整个字数可能还不少(此例总字数还增加了),但不会使读者感到题名过长,而且编排页眉也很方便(按惯例,页眉可以不排副题名)。采用副题名不单单是为了减少主题名的字数,下列场合还可以采用副题名:a.题名语意未尽,用副题名补充说明论文的特定内容;b.一系列研究工作用几篇论文报道,或者是分阶段的研究结果,各用不同的副题名区别其特定内容;c.其他有必要用副题名作为引伸或说明的情况。 便于检索题名所用词语必须有助于选定关键词和编制题录、索引等二次文献,以便为检索提供特定的实用信息。题名中一定要有反映文章内容的关键词,关键词多一些更好。这一点只要避免了题名“笼统”和“空泛”就比较容易做到。 容易认读题名中应当避免使用非共知共用的缩略词、首字母缩写字、字符、代号等。 题名的文字要求题名在文字表达上还有特殊要求,那就是题名比内容的行文要求更高,即一定要符合现代汉语的语法、修辞和逻辑规则,决不能出现语病,同时还要尽量做到给人以美感。 结构应合理1)尽可能不用动宾结构。习惯上题名不用动宾结构,而用以名词或名词性词组为中心的偏正词组。例如:①研究一种制取苯乙醛的新方法这是动宾结构(研究+新方法),可改为偏正结构:“一种苯乙醛制取新方法的研究”;按题名精练原则,可以改为:一种制取苯乙醛的新方法。例外的是,若中心动词带有状语,则仍可用动宾结构。例如:②用机械共振法测定引力常数G由于中心动词“测定”带有状语“用机械共振法”,无法将“测定”作为名词而把②改为以“测定”为中心词的偏正词组,所以仍可以用动宾结构(测定+引力常数G)。还有一种例外,即“(试)论……”、“(浅)谈……”等形式的题名可用动宾结构。例如:③试论物流系统的网络模式2)注意选用定语词组的类型。不注意定语词组类型的选择,有时会产生歧义。例如:④研究模糊关系数据库的几个基本理论问题按文章作者的本意,原题名的中心语是“几个基本理论问题”,其定语是“研究模糊关系数据库(的)”,但组合结果却可能使读者理解为“研究”“几个基本理论问题”。问题出在定语采用了动宾词组(研究+模糊关系数据库),而应当改为主谓词组(模糊关系数据库+研究)。修改后的题名为“模糊关系数据库研究的几个基本理论问题”,最好是改为:“模糊关系数据库研究中的几个基本理论问题”。 选词应准确题名用词应仔细选取,否则会使语意不明或产生逻辑错误。例如:①煎炸油质量测试仪的研制在汉语里,“质量”一词有2种完全不同的含义:一种是物体中所含物质的量(英语为mass),另一种是产品或工作的优劣程度(英语为quality),两者毫无关系。从文章内容看,该测试仪是用来测量煎炸油的品质指标,而不是用来测量煎炸油的多少,所以,将“质量”改为“品质”,表意比较准确。 详略应得当1)避免“的”的多用和漏用。语法规则要求,联合词组、偏正词组、主谓词组、动宾词组、介词词组做定语时,中心语之前需用“的”;而修辞规则又要求,多项定语中的“的”字不宜多用。因此,题名中某处该不该用“的”,既要用语法规则,又要用修辞规则来“综合”检查-用了“的”修辞效果不好,不用“的”也通顺,就不用“的”;若不用“的”便不通顺,那就应当用“的”。例如:①专家系统结构的分析不用“的”既通顺又简练。②高层建筑变水量供水电气控制系统可改为“高层建筑变水量供水的电气控制系统”。原题名未用“的”,使定语同中心语界限不清,不便理解。2)删去多余的词语。题名应简洁,“多余”是拟定题名的大忌。本部分中已举例说明,这里不再讨论。3)不能随便省略词语。省去了不该省的词语,叫做苟简。题名中出现苟简,同样会造成语法和逻辑错误。例如:③车辆维修器材计算机信息处理系统按文章应改为“车辆维修器材管理的计算机信息处理系统”。其中,“管理”一词不能省,因为在这里,计算机处理的不是“器材”的信息,而是“器材管理”的信息。 语序应正确题名的语序不对,有时造成语意混乱,使人不知所云。例如:①计算机辅助机床几何精度测试正确的语序是:机床几何精度的计算机辅助测试。题名中结构助词“的”的位置不能忽视,否则表达的可能不是作者的本意。例如:②拱坝的应力特点和分布规律的探讨第1个“的”放错了位置,就成为“拱坝的应力特点”和“拱坝的分布规律”。前者读起来拗口,要不拗口应为“拱坝应力的特点”;后者简直与作者的本意不符:文中是研究拱坝应力的分布规律,而不是研究拱坝的分布规律。所以,修改后的题名为:拱坝应力的特点和分布规律的探讨。署名就不要了~~创新大赛不许出现名字3 摘要3.1 摘要的概念和作用摘要是对“论文的内容不加注释和评论的简短陈述”。对一篇完整的论文都要求撰写随文摘要。其作用有二:1)让读者尽快了解论文的主要内容,以补充题名的不足。科技文献数量大,读者不可能一拿到文章就通读。读者是否需要通读某篇论文,从题名上进行判断后,主要的就是根据摘要来决定,所以,摘要担负着吸引读者和介绍文章主要内容的任务。2)为科技情报人员和计算机检索提供方便。论文发表后,文摘杂志对摘要可以不作修改或稍作修改而直接利用,从而可避免由他人编写摘要可能产生的误解、欠缺和错误,这就为科技文献的检索和利用提供了极大的方便。3.2 摘要的分类3.2.1 报道性摘要报道性摘要即资料性摘要或情报性摘要。它用来报道论文所反映的作者的主要研究成果,向读者提供论文中全部创新内容和尽可能多的定量或定性的信息。尤其适用于试验研究和专题研究类论文,多为学术性期刊所采用。篇幅以200~300字为宜。3.2.2 指示性摘要指示性摘要即概述性摘要或简介性摘要。它只简要地介绍论文的论题,或者概括地表述研究的目的,仅使读者对论文的主要内容有一个概括的了解。篇幅以50~100字为宜。3.2.3 报道—指示性摘要报道—指示性摘要是以报道性摘要的形式表述论文中价值最高的那部分内容,其余部分则以指示性摘要形式表达。篇幅以100~200字为宜。以上3种摘要形式都可供作者选用。一般地说,向学术性期刊投稿,应选用报道性摘要形式,只有创新内容较少的论文,其摘要可写成报道—指示性摘要或指示性摘要。摘要形式选用不合适,尤其是对价值较高的论文若采用指示性摘要形式,往往会给文献检索带来麻烦,可能失去较多的读者,将直接妨碍研究成果的应用和推广。有人认为随文摘要可以写得“概括”或“简短”一些,理由是“全文就在后边”。实际上,摘要的形式及其字数的多少不能依随文不随文而定,即使是随文摘要,也应根据论文价值的大小、刊发刊物的类型和论文中有用信息的多少来决定,否则摘要就可能失去应有的作用。3.3 摘要段的内容摘要中应写的内容一般包括研究工作的目的、方法、结果和结论,而重点是结果和结论。下面的例子比较符合这一要求。〔例1 摘要段的内容〕题名 青少年足球运动员倾向性的不同因果模型摘要 借鉴Bcanlan的运动倾向性因果模型及其调查问卷来分析我国青少年足球运动员运动倾向性的影响因素。对北京市252名青少年足球运动员施测结果的分析表明:运动倾向性五因素模型比较符合北京市青少年足球运动员,其中运动乐趣、个人投入、参与机会是主要影响因素,而社会约束几乎无作用。用不长的篇幅即表述了研究工作的目的(从“分析我国”至“影响因素”片断)、方法(从“借鉴”至“问卷”片断)、结果和结论(冒号之后至末尾)。可见在行文方式上,倒无需机械地用“本文的目的是……”、“所用的方法是……”和“结果是……”这样的语句格式。我们看到的许多摘要,也如例1那样,自然地就把“目的”、“方法”、“结论”等主要内容阐述清楚了。当然,在具体行文时,“目的”、“方法”、“结论”等哪项应详写,哪项可略写,还有“研究的背景”、“成果的意义”等写不写,如何写,是因文而异的,不必千篇一律。3.4 摘要的写作要求根据有关规定,可以把摘要的写作要求归纳成如下几点。1)用第三人称。作为一种可供阅读和检索的独立使用的文体,摘要只能用第三人称而不用其他人称来写。2)简短精练,明确具体。简短,指篇幅短,一般要求50~300字(依摘要类型而定);精练,指摘录出原文的精华,无多余的话;明确具体,指表意明白,不含糊,无空泛、笼统的词语,应有较多而有用的定性和定量的信息。3)格式要规范。尽可能用规范术语,不用非共知共用的符号和术语。不得简单地重复题名中已有的信息,并切忌罗列段落标题来代替摘要。除了实在无变通办法可用以外,一般不出现插图、表格,以及参考文献序号,一般不用数学公式和化学结构式。不分段。摘要段一般置于作者及其工作单位之后,关键词之前。4)文字表达上应符合“语言通顺,结构严谨,标点符号准确”的要求。摘要中的语言应当符合现代汉语的语法规则、修辞规则和逻辑规则,不能出现语病。4 关键词关键词是为了满足文献标引或检索工作的需要而从论文中选取出的词或词组。关键词包括主题词和自由词2个部分:主题词是专门为文献的标引或检索而从自然语言的主要词汇中挑选出来并加以规范了的词或词组;自由词则是未规范化的即还未收入主题词表中的词或词组。每篇论文中应专门列出3~8个关键词,它们应能反映论文的主题内容。其中主题词应尽可能多一些,它们可以从综合性主题词表(如《汉语主题词表》和专业性主题词表(如NASA词表、INIS词表、TEST词表、MeSH词表等)中选取。那些确能反映论文的主题内容但现行的主题词表还来不及收入的词或词组可以作为自由词列出,以补充关键词个数的不足或为了更好地表达论文的主题内容。关键词作为论文的一个组成部分,列于摘要段之后。5 引言5.1 引言的概念和内容论文的引言又叫绪论。写引言的目的是向读者交代本研究的来龙去脉,其作用在于唤起读者的注意,使读者对论文先有一个总体的了解。引言中要写的内容大致有如下几项。1)研究的理由、目的和背景。包括问题的提出,研究对象及其基本特征,前人对这一问题做了哪些工作,存在哪些不足;希望解决什么问题,该问题的解决有什么作用和意义;研究工作的背景是什么。要回答的问题比较多,只能采取简述的方式,通常用一两句话即把某一个问题交待清楚,无需赘言。2)理论依据、实验基础和研究方法。如果是沿用已知的理论、原理和方法,只需提及一笔,或注出有关的文献。如果要引出新的概念或术语,则应加以定义或阐明。3)预期的结果及其地位、作用和意义。要写得自然,概括,简洁,确切。5.2 引言的写作要求1)言简意赅,突出重点。引言中要求写的内容较多,而篇幅有限,这就需要根据研究课题的具体情况确定阐述重点。共知的、前人文献中已有的不必细写。主要写好研究的理由、目的、方法和预期结果,意思要明确,语言要简练。2)开门见山,不绕圈子。注意一起笔就切题,不能铺垫太远。3)尊重科学,不落俗套。有的作者在论文的引言部分总爱对自己的研究工作或能力表示谦虚,寻几句客套话来说,如“限于时间和水平”或“由于经费有限,时间仓促”,“不足或错误之处在所难免,敬请读者批评指正”等。其实不可不必。因为,第一,这本身是客套话,不符合科学论文严肃性的要求。第二,既是论文,作者应有起码的责任感和自信心。这里的责任感表现在自我要求不能出差错;自信心表现为主要问题上不会有差错。否则就不要投稿,不要发表。第三,水平高低,质量好坏,应让读者去评论。确实需要作说明或表示歉意,可以在文末处写,但要有分寸,实事求是;同时要具体写,不能抽象和笼统。当然,必要时引言中可以交待方法和结果等可以供哪些人、干什么作参考。4)如实评述,防止吹嘘自己和贬低别人。下面介绍1篇写得比较好的“引言”,供读者参考。〔例2〕题名:液压式固有频率可控动力消振器的研究(引言):动力消振器是一个附加于主振系上的由质量和弹簧组成的振动系统。当其固有频率与主振系的振动频率相等时,主振系便不发生振动(1)。由于动力消振器具有良好的消振效果,自本世纪初发明以来,已得到了广泛应用。(介绍研究对象及其基本特征)但传统动力消振器的缺点在于其固有频率固定不变,不能在使用过程中加以调节,更不能随主振系振动频率的变化对它进行控制,因而它只适用于消除基频基本不变的振动。对于更为常见的频率经常改变的振动系统,使用传统动力消振器不仅收不到良好的消振效果,反而会招致更大的危害(2)。(说明研究对象存在的问题,即前人研究的不足,亦说明了本研究的理由和背景)笔者提出一种可以用于消除变频振动的新方法,即采用液压式固有频率可控动力消振器来跟踪振动频率的变化,使之在变频条件下达到良好的消振效果。实验表明,这是一种很有前途的消振方法。(本研究的成果及其意义)这篇引言问题阐述明确,条理也很清楚。6 正文正文即论证部分,是论文的核心部分。论文的论点、论据和论证都在这里阐述,因此它要占主要篇幅。由于论文作者的研究工作涉及的学科、选题、研究对象和研究方法、工作进程、结果表达方式等差异很大,所以对正文要写的内容不能作统一规定;但是,总的思路和结构安排应当符合“提出论点,通过论据(事实和(或)数据)来对论点加以论证”这一共同的要求。 参考文献著录的目的与作用对于一篇完整的论文,参考文献著录是不可缺少的。归纳起来,参考文献著录的目的与作用主要体现在以下5个方面。1)著录参考文献可以反映论文作者的科学态度和论文具有真实、广泛的科学依据,也反映出该论文的起点和深度。2)著录参考文献能方便地把论文作者的成果与前人的成果区别开来。论文报道的研究成果虽然是论文作者自己的,但在阐述和论证过程中免不了要引用前人的成果,包括观点、方法、数据和其他资料,若对引用部分加以标注,则他人的成果将表示得十分清楚。这不仅表明了论文作者对他人劳动的尊重,而且也免除了抄袭、剽窃他人成果的嫌疑。3)著录参考文献能起索引作用。读者通过著录的参考文献,可方便地检索和查找有关图书资料,以对该论文中的引文有更详尽的了解。4)著录参考文献有利于节省论文篇幅。论文中需要表述的某些内容,凡已有文献所载者不必详述,只在相应之处注明见何文献即可。这不仅精炼了语言,节省了篇幅,而且避免了一般性表述和资料堆积,使论文容易达到篇幅短、内容精的要求。5)著录参考文献有助于科技情报人员进行情报研究和文献计量学研究。 参考文献著录的原则1)只著录最必要、最新的文献。2)只著录公开发表的文献。3)采用标准化的著录格式。 参考文献著录的方法和要求论文中参考文献的著录方法,国际上流行的有好多种,而我国国家标准《GB7714-87 文后参考文献著录规则》中规定采用“顺序编码制”和“著者-出版年制”这2种。其中,顺序编码制为我国科学技术期刊所普遍采用,所以这里只介绍这一种。

首先我没有看懂你这个强迫振动的微分方程。。 强迫振动的微分方程应该是[M]a+[c]v+[k]x=[F(t)],.....a-加速度v-速度x-位移[M]-质量矩阵[C]-阻尼矩阵[k]-刚度矩阵[F(t)]-系统激振力矩阵单自由度系统,M,C,K,F(t)也可以表示为质量、阻尼、刚度、激振力。 其中弹簧的属性直接影响着振动系统的阻尼和刚度,而且阻尼和刚度的衡量比较难,如果是线性弹簧,刚度K是一定范围内是一个定值,而对阻尼的确定却比较困难。如果是非线性弹簧,对弹簧就要更加认真的研究了,非线性弹簧对于不同的压缩量刚度K是不同的,这就要研究弹簧的非线性特性了。 所以对弹簧进行研究的意义是很重要的,弹簧对于系统减振有着至关重要的作用。很多地方都会用到弹簧对系统进行减振,比如说汽车的减振,机械振动需要有弹簧将地面与设备隔开,以到达减振的目的。当然弹簧的定义也不能局限于螺旋弹簧,现在也有橡胶弹簧,其主要特点就是非线性特性。所有啊,弹簧对于振动系统其着非常重要的作用,对其研究也很有意义。

简谐运动研究论文

纤维增强树脂基复合材料层合结构具有比强度高、比刚度大、阻尼特性好、疲劳寿命长、结构可设计性强等优点,在航空、航天及一些特殊领域中被广泛使用。然而,复合材料的各向异性,非均匀性等特点给复合材料结构的力学分析带来了一系列的挑战。尤其在航空航天领域,飞行器在运行过程中所处的环境和所受的载荷都非常复杂。除了考虑飞行器在这些复杂环境下的自振特性和确定性外载作用下的动力响应外,考虑随机性外载的影响也不容忽视。随机振动理论和方法就是处理这类问题的先进思想和重要手段,但在国内外航空航天领域中还很少实际应用,主要原因之一就是现有随机振动分析方法复杂而且低效,这在很大程度上限制了飞行器设计水平的提高。虚拟激励法是高效精确的随机振动分析方法,迄今已经在大跨度结构抗震、抗风,海洋平台和汽车随机振动等多个工程领域被数以百计的专家针对各工程领域的特点予以发展而取得很多实际成效。但是迄今为止,这一有力的工具却并未在航空航天领域被充分认识和应用,在这些具有战略意义的重要领域中,所应用的随机振动分析方法依然复杂低效,缺乏创新意识。本论文针对这一现状,依据航空航天领域材料和结构的复杂性,以及飞行器所处环境的复杂性,将虚拟激励法作了有针对性的发展,以完全自主版权的DDJ有限元程序系统为开发平台,完成了求解复合材料结构随机振动的高效精确分析程序。本论文中,着重对如下问题进行了研究:1.建立了基于Mindlin一阶剪切变形理论的复合材料层合板有限元分析模型,推导了层合板的有限元列式,在DDJ程序平台上对复合材料层合板的自振频率和模态进行了分析。将虚拟激励法引入到航空航天领域广泛使用的复合材料层合结构的随机振动分析中,针对复杂的复合材料结构有限元模型和非经典阻尼体系,发展了包含全部参振振型和随机激励点之间耦合项的随机振动高效求解方法,比较圆满地解决了传统计算方法精度差、效率低的应用障碍。2.本文推广虚拟激励法于敷设粘弹性阻尼层的复合材料层合结构的平稳和非平稳随机振动分析,建立了高效精确计算方法。尤其是综合考虑了粘弹性阻尼材料的性能参数随频率变化的特点以及复合材料层合结构本身的模态阻尼,建立了组合系统的非经典阻尼表达。为了解决随频率变化的非经典阻尼体系的平稳/非平稳随机响应,本文结合精细积分方法提出了一种直接解法,只需用原系统的实模态对虚拟激励法做出相应的发展,就可精确地求解频变阻尼系统的随机振动。据此对飞机水平尾翼的复合材料安定面结构进行了模拟研究,从精细的计算模型及合理的计算结果可以看出,本文所提出的方法对于这类相当复杂的复合材料结构的随机振动分析十分有效。3.研究飞机对大气紊流响应的主要方法是随机振动功率谱法。用高效、精确的分析方法计算不同飞行环境下飞机的响应,以预测飞机疲劳寿命和可靠度等是航空工程领域研究热点。本文在考虑了二维平面流中简谐振动平板产生的非定常力基础上,又按照虚拟激励法的特点同时考虑了竖向简谐风的影响,进而研究了复合材料二维机翼的大气紊流响应。随机激励谱选用了Dryden紊流频谱模型。结果表明,在处理二维机翼在大气紊流响应的随机问题中,基于简谐响应分析的虚拟激励法不但是精确算法,而且效率非常高,具有很大的实用优势。发展这一方法对于该领域的数值计算是很有价值的。4.计算流体动力学(CFD)是研究流体动力学的有力工具。本文为计算机翼颤振/抖阵分析中的气动参数,首次使用雷诺平均湍流模型对二维翼型截面的颤振导数进行了求解。基于等最新提出的CFD网格控制算法以及所建立的数值风洞,计算了结构简谐运动下的气动力,并识别了湍流场中NACA0012翼型的颤振导数。将由此得到的颤振导数和气动力应用到大气紊流引起的随机振动计算中,并将计算结果与基于Theodorsen函数得出的响应解析解进行比较,得到了相当满意的一致。本文计算的CFD气动参数充分考虑了气体的分子粘性和紊流粘性,其作用相当于附加阻尼,因此比Theodosen函数方法限制更少、应用范围更广,而且在此基础上还可以考虑三维流和可压缩性。因此本文实施的基于CFD的气动力计算方法具有广阔的应用前景,将成为应用虚拟激励法于航空航天结构时确定气动参数的有力工具。可以说,这一成功的尝试为随机振动方法更广泛地应用于航空航天工程走出了很重要的一步。

物体受到回复力(合外力)F满足F=k*x(x为到平衡位置的位移)时,物体做简谐振动。画出F关于x的图象,可以看到当选取半周期恰好关于图象与x轴上交点对称时,F做功为0,当选取的半周期恰好是一个半三角形时,F做功为mv2/2故B正确。同理:因为x=sinωt,所以F=k*x=k*sinωt 画出F关于t的图象,同分析F与x关系时可得D正确所以答案:B、D

1、特点

当某物体进行简谐运动时,物体所受的力跟位移成正比,并且总是指向平衡位置。它是一种由自身系统性质决定的周期性运动。

2、定义

如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。

扩展资料:

简谐运动的发现:

1656~1657年,荷兰的C.惠更斯首次提出物理摆的理论,并创制了单摆机械钟。20世纪初,人们关心的机械振动问题主要集中在避免共振上,因此,研究的重点是机械结构的固有频率和振型的确定。

1921年,德国的H.霍尔泽提出解决轴系扭转振动的固有频率和振型的计算方法。30年代,机械振动的研究开始由线性振动发展到非线性振动。

50年代以来,机械振动的研究从规则的振动发展到要用概率和统计的方法才能描述其规律的不规则振动──随机振动。

由于自动控制理论和电子计算机的发展,过去认为甚感困难的多自由度系统的计算,已成为容易解决的问题。振动理论和实验技术的发展,使振动分析成为机械设计中的一种重要工具。

参考资料来源:百度百科—简谐运动

参考资料来源:百度百科—机械振动

[原名直译简单和谐运动]是最基本也最简单的机械振动。当某物体进行简谐运动时,物体所受的力跟位移成正比,并且总是指向平衡位置。它是一种由自身系统性质决定的周期性运动。(如单摆运动和弹簧振

相关百科

热门百科

首页
发表服务