首页

> 论文发表知识库

首页 论文发表知识库 问题

初中数学小论文学生作品

发布时间:

初中数学小论文学生作品

人类是认识0早还是认识1早 在自然数中,存在着0和1这两个特别的数字,说它们特别,是因为它们具有特殊的“通行证”,如0加任何数仍得这个数,1乘任何数也仍得这个数!那么,这些数字到底是怎么由来的呢? 人类最初生活在一个没有数字的生活里,工作、生活起来十分不方便!大约在公元500年,随着经济、文化以及佛教的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶波海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。后来,由于印度人在此基础上发明了阿拉伯数字,也就是现在我们所看到的“1”、“2”、“3”……人类才用上了数字。在我们的印象中,似乎是数越小,就来的越早,而通常报数时,往往总是先报“1”,而不是先报“0”,那么,人类到底是先发现1的还是发现0的? 起初,是没有0这个数字的,早期,人们是用结绳记数,0是后来由于数字需要才发明的定义的。 0这个概念也是由古印度人发明的,在古罗马和中国的数字字典是没有0这个数字的,而古巴比伦人用空格来代表0,后来古罗马和中国才根据古巴比伦人用空格的。在数字发明之后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。印度人首先发明了现用的阿拉伯数字中的1~9,用空格表示没有,但容易搞错,所以后来就用“.”表示没有。印度人的计数法传到阿拉伯后,阿拉伯人用“0”代替了印度人的“.”,并把它带到了欧洲,就有了现用的阿拉伯数字0~9。数字的写法经过不断的进化也和早期有所不同。应该说是印度人发明了现有的计数法,阿拉伯人改进完善了它。阿拉伯人对数字的形状进行了改造并把它传播到整个欧洲,最后风行全球。该数字系统得到全球普及,阿拉伯人功不可没,因此称为阿拉伯数字。 由 此看来,说明人类先认识1再认识0。 人类的知识源源不断,我们一定要好好发挖。

在中学教学课堂教学中培养学生的学习兴趣古代教育家孔子说:“知之知不如好之者,好之者不如乐之者。”要让学生愉快、轻松、有效地学习数学,关键是要培养学生学习数学的兴趣。课堂教学是目前中学数学教学的基本组织形式,是中学数学教学过程中最重要的环节。因此,我认为应该精心设计课堂教学,充分培养学生学习数学的兴趣。一、 精心设计新课导入,激发学生学习兴趣。“良好的开端是成功的一半”课堂教学也是如此。因为学生对出次接触的 事物有一种好奇心和探索心,所以要想把学生的思维吸引到每一堂课的教学内容上来,设计一个好的导入非常重要。教师可以根据教材提出有趣的问题、或讲一个小故事、或做一个小游戏等形式寻入。例如,向学生介绍著名科学家、学者,献身祖国、献身科学的事迹,叙述他们在事业攻坚上的成功与失败、顺利与挫折的故事,会给学生深刻的启迪,极大的提高他们的学习兴趣。又如,有关勾股定理的史料非常多,可以安排学生进行研究性学习。学生通过课前对有关勾股定理的探索与研究,既提高了发现问题、分析问题和解决问题的能力,又体现了“乐中学”的宗旨,且充分挖掘这一数学知识点,有利于知识的巩固。二、 认真创设教学情境,调动学生的学习兴趣。在课堂教学中,如果创设好教学情境,把证明某个结论改为探索性实验,让学生研究的方式,参与到探索、发现,获得知识的全过程中,充分发挥学生的主观能动性,使其体会通过自己取得成功的快感,并且产生浓厚的兴趣和强烈的求知欲望。例如,在对“等腰三角形的判定”进行教学设计时,我通过具体问题的解决创设如下的问题情境:一块等腰三角形玻璃被打碎,它的一部分没了,只留下一条底边BC和一个底角∠C,请问,有没有把原来的等腰三角形重新画出来,先划出残余图形并思索着如何画出被打碎的部分。这时,各种划法出现了。于是我抓住“所三角形一定是等腰三角形吗?”引出课题,再引导学生分析划法的实质,并用几何语言概括出这个实质,即“△ABC中,若∠B=∠C,则AB=AC”这样学生自己从问题出发获得了判定理。接着,再引导学生根据上述实际问题的启示思考证明方法,进而得到结论。三、 借助现代化教学手段,培养学习兴趣现代化技术的不断发展,为培养学生学习数学的兴趣提供了更高的教学手段。教师可借助计算机、幻灯机、计算器等直观性教具的教学手段,向学生提供多种形式的感性材料,化难为易,化繁为简,使抽象的知识直观化、形象化,为学生的思维“搭桥铺路”,使学生学起数学来兴趣怏然。例如,在讲“轴对称和轴对称图形”课时,我运用计算机辅助教学,出示生活中大量的轴对称图形,吸引了学生的注意力,他们表现得异常活跃和好奇。在我的启发、引导下,学生通过自己的观察,得出屏幕上的两个轴对称三角形的演示,引导他们找出对称点与对称轴、对称线段与对称轴之间的关系,使他们比较容易得到轴对称的三个性质定理及其逆定理。四、 展现数学之美,拓展学生学习兴趣爱美之心,人皆有之,对美的追求是人的天性,数学中处处蕴涵着美,是一个群芳斗娇的百花园,数学家洛克拉斯断言:“哪里有数,哪里就有美。”如果在教学过程不失时机的将种种数学内在美揭示给学生,使学生受到强烈的感染,激发他们对数学的兴趣,继而从内心深处感受到学习数学的乐趣。例如,在学习“黄金分割”一堂课时,我展示给学生包括维纳斯、巴黎圣母院、舞蹈演员在内的一些精美图片,问这些图片美不美?美在哪?给学生讨论后,我告诉学生这些精美图片之所以美,是因为这些形体的比例都符合“黄金分割”原理,它是最美最恰好的比例。接着我向学生介绍“黄美分割”的概念,收到了很好的教学效果。五、 精心设计课堂练习,巩固学生学习兴趣做数学题有时很费“脑筋”,要进行大量的计算,而学生往往最讨厌繁琐的计算,所以在设计课堂练习时,多安排一些在计算中存在计算技巧的题目,让学生在平淡的计算中体会无穷的乐趣。成功次数越多,学生学习的兴趣就越浓。教师还应多设计一些与实际生活有关的练习。例如,在讲“一元二次方程应用题”时,我在课堂上出了这样一道题:本届世界杯足球赛有32支足球队参加小组赛,每小组有4支队伍,问小组赛共举行几场足球赛,则每小组有几支队伍?这种题的设计符合当前很多中学生喜欢足球的心理,趣味性强,难度又不大,通过讨论可使问题得到解决。学生对这类问题既感兴趣又能从中体验成功的喜悦,感受到了数学的魅力与威力,激活了他们爱数学、学数学、用数学、做数学的 ,从而巩固了学习数学的兴趣。 通过多年的教学实践,我深感必须抓住课堂教学这一主渠道,坚持以学生为中心,从提高学生学习的积极性、培养学生学习数学的兴趣出发,精心设计课堂教学,形成一种培养兴趣、传授知识,提高能力同步良性循环的发展趋势,从而真正提高教学质量。我相信,只要我们数学教师在平时细心地发现、思考、研究、积累、总结、提高,我们的学生将在轻松愉快的氛围中获得知识,充分享受到学习的快乐。 谢建浩

我自己写的数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

数学伴随我成长 1983年,大学刚刚毕业的我被分配到河北承德第一中学数学组,每位前辈都是业务精湛,师德堪称楷模,是真正能把高深的理论、经验的结晶和教学的智慧融为一体的教学专家.从此,我不放过老教师那儿我能听的每一节课,对每节课都细细地揣摩,深刻地反思.我总是把我的思考写在听课笔记上,记得四年下来,我一共听了1193节课,使我很快适应了高中教学.老教师也关注着我的成长,在我的课堂上,真的记不清多少次在学生的"起立"声中,会突然发现有一位白发人站在课室后面……他们的关注让我兴奋,催我奋进.

初中数学学生小论文

人类是认识0早还是认识1早 在自然数中,存在着0和1这两个特别的数字,说它们特别,是因为它们具有特殊的“通行证”,如0加任何数仍得这个数,1乘任何数也仍得这个数!那么,这些数字到底是怎么由来的呢? 人类最初生活在一个没有数字的生活里,工作、生活起来十分不方便!大约在公元500年,随着经济、文化以及佛教的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶波海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。后来,由于印度人在此基础上发明了阿拉伯数字,也就是现在我们所看到的“1”、“2”、“3”……人类才用上了数字。在我们的印象中,似乎是数越小,就来的越早,而通常报数时,往往总是先报“1”,而不是先报“0”,那么,人类到底是先发现1的还是发现0的? 起初,是没有0这个数字的,早期,人们是用结绳记数,0是后来由于数字需要才发明的定义的。 0这个概念也是由古印度人发明的,在古罗马和中国的数字字典是没有0这个数字的,而古巴比伦人用空格来代表0,后来古罗马和中国才根据古巴比伦人用空格的。在数字发明之后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。印度人首先发明了现用的阿拉伯数字中的1~9,用空格表示没有,但容易搞错,所以后来就用“.”表示没有。印度人的计数法传到阿拉伯后,阿拉伯人用“0”代替了印度人的“.”,并把它带到了欧洲,就有了现用的阿拉伯数字0~9。数字的写法经过不断的进化也和早期有所不同。应该说是印度人发明了现有的计数法,阿拉伯人改进完善了它。阿拉伯人对数字的形状进行了改造并把它传播到整个欧洲,最后风行全球。该数字系统得到全球普及,阿拉伯人功不可没,因此称为阿拉伯数字。 由 此看来,说明人类先认识1再认识0。 人类的知识源源不断,我们一定要好好发挖。

数学论文 —————兴趣是快乐学习数学的最好方法 孔子说,知之者不如好之者,好之者不如乐之者。带着兴趣学习数学,才能让自己更上一层楼。在深夜里,你会不会看着一串串数字而心生疲倦?在课堂上,你会不会听着老师的讲课而早已神游天外?在练习中,你会不会看着拦路虎而烦躁?久而久之,成绩下降了,你更加不愿学习它了。这可怎么办呢?你不如静下心来,慢慢体会数学中的乐趣,喜爱上数学。学习数学,有人觉得很简单,还有些同学则感到非常吃力,关键就在于是不是带着兴趣学。从小,祖冲之的小脑袋里就充满了各种奇思妙想,对于天地之间的秘密非常感兴趣。有一天,祖父带祖冲之去拜访一个精通天文的官员何承天。何承天很喜欢聪明伶俐的祖冲之,就问祖冲之:“研究天文不但很辛苦,而且既不能靠它升官,也不能靠它发财,你为什么还要钻研它呢?”祖冲之挺着小胸脯说:“我不求升官司发财,只想弄清天地的秘密。”打那以后,祖冲之经常去找何承天研究天文历法和数学,还研究各种机械造等,通过刻苦的钻研和丰富的实践,祖冲之终于成为杰出的数学家、天文学家。可见,兴趣是点燃智慧的火花,是探索知识的动力。而著名的居里夫妇却与中子的发现擦肩而过。1932年1月,约里奥.居里夫妇用放射性元素钋所放出的a粒子轰击铍核,发现从铍核发出一种看不见的穿透力很强的中性射线,这种射线能量达到55兆电子伏,能将石蜡等含氢物质中的质子击出,他们认为这种中性粒子是光子。虽然很难解释光子会有这样大的能量能够把质子撞出来,他们仍认为这是发生了类似康普顿效应的某种特殊现象。英国科学家卢瑟福早在1920年就预言了中子的存在,他的学生查德威克一直在想办法通过实验寻找中子。查德威克从约里奥.居里夫妇所做的实验受到启发,认为这很可能就是他正在寻找的中子,他重复了同样的实验并用云雾室作为探测器,从1932年2月2日开始狂热地投入工作状态,正是由于兴趣,他每天只睡3小时觉,仅用10天就成功地证实了这种射线是名为中子的中性粒子流,并计算出中子的质量。中子的发现对认识原子核内部结构是一个转折点,具有重大理论意义,由此也可以这样认为兴趣帮助查德威克获得1935年诺贝尔物理奖。"机遇只偏爱有准备的头脑”,查德威克由于有明确的指导思想,因而在实验中能拨开云雾,认清现象的本质,约里奥.居里夫妇的类似实验由于缺乏明确的指导思想,而与中子的发现这一殊荣擦身而过。明白了兴趣对激发学习潜力的神奇作用,我们就该有意识地培养自己对数学的兴趣,而不是把它看做是我们的负担或者烦恼。有的同学只对物理感兴趣,不喜欢数学,其实向纵深研究物理时发现数学是其基础,因此我们就应该提高对数学的兴趣,从而带动其它学科。小时候,我们都玩过“巧算24点”这个游戏。别看这个游戏方式简单易学,它也考验了脑子的灵活性。玩游戏也是有技巧的,比如:你可以利用3×8=24、4×6等于24、2×12=24求解,这个方法用得最多,成功率也很高。经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点。是不是很奇妙呢?一个小小的游戏,都包含了数学知识,何况我们的生活呢!主动去学习,去探索,发现更多的乐趣,让兴趣成为我们学习数学的最好方法。自己写的。。供参考、、

你可以找有关数据处理方面的论题,同时也可以找与实际生活有关的论题!

初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

初中生数学小论文初一

数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? (二) 学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题2、善于反思与反求

有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。 1、三角形很稳定,许多支架都是三角形的许多支架用三个脚支撑用了一个数学公理三点确定一个平面 2、一些人在木门上钉斜条,是为了克服四边形的不稳定性。卷闸门也是一样的道理。 3、河南登封观星台、南京中山陵都是中心对称图形 4、蚊帐的孔是六边形的~ 5、筷子是圆锥型的。光碟是圆形的。 6、电线是线段冰箱是长方体门是长方形轮胎是圆形地球是圆形 数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(

初一数学小论文浅谈多媒体技术在教学中的作用 一个有经验的教师在编写教案时,都要明确教学目的、重点、难点、课时安排和教学过程等,甚至对自己的语言、表情、和板书等都有所考虑,对于教具、实物、模型和实验都要事先做好准备。其目的在于让学生明确和接受所要讲解的知识。有了多媒体技术,这一切都变得更容易实现了。因为用多媒体来辅助教学,以逼真、生动的画面,动听悦耳的音响来创造教学的文体化情景,使抽象的教学内容具体化、清晰化,使学生的思维活跃,兴趣盎然地参与教学活动,有助于学生发挥学习的主动性,从而优化教学过程。具体的说,在现在各科的课堂教学中,多媒体技术有如下几点作用: 一、调整学生情绪,激发学习兴趣 兴趣是由外界事物的刺激而引起的一种情绪状态,它是学生学习的主要动力。然而许多的教学内容通常本身较为枯燥无味,这就需要每位教师善于采用不同的教学手段,以激发学生的兴趣。根据心理学规律和小学生学习特点,有意注意持续的时间很短,加之课堂思维活动比较紧张,时间一长,学生极易感到疲倦,就很容易出现注意力不集中,学习效率下降等,这时适当地选用合适的多媒体方式来刺激学生,吸引学生,创设新的兴奋点,激发学生思维动力,以使学生继续保持最佳学习状态。 如在教学“长方形的面积”时,老是运用公式计算面积,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:把一个正方形裁成两个完全相同的长方形,裁成的两个长方形周长之和与正方形周长有何变化?把两个完全相同的长方形拼成一个正方形,它们的周长又有何变化?先让学生根据题意想象,然后再电脑演示。演示过程中,画面不断闪烁,使学生清楚地感受到了周长的变化。同学们一看,兴趣来了。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。 二、形象导入新课,创设学习情景 导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对一堂课教学的成败与否起着至关重要的作用。运用电教媒体导入新课,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。 如低年级学生,他们的定向能力尚处在较低的层次,他们的注意状态仍然取决于教学的直观性和形象性,很容易被新异的刺激活动而兴奋起来。针对这些情况,运用多媒体,激起学生的学习兴趣。教《锄禾》这课,在导入新课时,可以用一组“动画”:“太阳火辣辣地炙烤着大地,辛勤的农民手拿锄头用力地耕种,大颗大颗的汗珠从额头滚落下来,滴入稻田里。”此情此景,学生已有深刻的感性认识,随后,我又在图画上方出示古诗,诗句和图相对照,激起学生思维的层层涟漪。对于刚才“明于心而不明于口”的心理状态,立刻解决带点字锄、汗、粒等的解释已是一触即发了。 三、突出学习重点,突破学习难点 传统的教学往往在突出教学重点,突破教学难点问题上花费大量的时间和精力,即使如此,学生仍然感触不深,易产生疲劳感甚至厌烦情绪。突出重点,突破难点的有效方法是变革教学手段。由于多媒体形象具体,动静结合,声色兼备,所以恰当地加以运用,可以变抽象为具体,调动学生各种感官协同作用,解决教师难以讲清,学生难以听懂的内容,从而有效地实现精讲,突出重点,突破难点,取得传统教学方法无法比拟的教学效果。 如在教学“圆柱的体积”一课时,为了让学生更好地理解和掌握圆柱体积计算公式推导这一重点,电脑演示把一个圆柱体的底面平均分成若干等份(平均分成16等份、32等份……),然后把圆柱切开,通过动画拼成一个近似的长方体(平均分的份数越多,就越接近于长方体)。反复演示几遍,让学生自己感觉并最后体会到这个近似的长方体的体积与原来的圆柱的体积是完全相等的。再问学生还发现了什么?通过动画演示体会到这个近似的长方体的底面积、高与圆柱的底面积、高的关系,从而推导出求圆柱的体积公式,使得这课的重难点轻易地突破,大大提高了教学效率,培养了学生的空间想象能力。 四、增强训练密度,提高教学效果 在练习巩固中,由于运用多媒体教学,省去了板书和擦拭的时间,能在较短的时间内向学生提供大量的习题,练习容量大大增加。这时可以预先拟好题目运用电脑设置多种题型全方位,多角度、循序渐进的突出重难点。当学生出错后(电脑录音)耐心地劝他不要灰心,好好想想再来一次,这符合小学生争强好胜的性格,生动有趣地复习巩固了新识。 总之,恰当地选准多媒体的运用与课堂教学的最佳结合点,要考虑各层次学生的接受能力和反馈情况,适时适量的运用多媒体,适当增强课件的智能化。就能较好地激发学生的兴趣,使学生独立地、创造性地完成学习任务,这样的教学才可以说是得多媒体教学之精髓了。

有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。 1、三角形很稳定,许多支架都是三角形的许多支架用三个脚支撑用了一个数学公理三点确定一个平面 2、一些人在木门上钉斜条,是为了克服四边形的不稳定性。卷闸门也是一样的道理。 3、河南登封观星台、南京中山陵都是中心对称图形 4、蚊帐的孔是六边形的~ 5、筷子是圆锥型的。光碟是圆形的。 6、电线是线段冰箱是长方体门是长方形轮胎是圆形地球是圆形 数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(引自《古今数学思想》第一册P1——作者注)。“在BC3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展”,而“在BC600—BC300年间古希腊学者登场后”,数学便开始“作为一名有组织的、独立的和理性的学科”(引自《古今数学思想》第一册P1——作者注)登上了人类发展史的大舞台。 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。由于这些内容所涉及的高中数学知识不是很多,在此就不赘述了。 由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。 例如:在教学“求两个数的最小公倍数”时,课始,我创设了这样一个情景:皇塘每6分钟有一辆中巴车开往常州(向东),8分钟有一辆中巴车开往丹阳(向北)。现在刚好有两辆中巴车同时分别开往常州和丹阳,问再过几分钟,又有两辆中巴同时开往常州和丹阳?数学在我们得生活当中是无处不在到,小到买菜的讨价还价,大到火箭的设计......其实我们在学习数学得过程中是为了培养自己得逻辑判断能力,让自己得思维更严谨,我们在学校学习数学,不单单只是为了去记住一个公式,而是在学习这个公式得推倒得过程中渐渐得培养了自己得思维逻辑能力,可以说,一个人的数学学好了,对于一件事得判断能力会大大增强,所以学好数学,不单单只是为了应付考试,而是在学习一项在社会生存得基本技能.

初中生写数学小论文

呵呵不要说我教坏你给你两篇我用了N次的范文哈《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

初一的作文应多观察身边,应仔细、认真,还要有良好的心态。反复练习,这样可能会进步!

,论文题目:(下附署名)要求准确,简练,醒目,新颖.2,目录目录是论文中主要段落的简表.(短篇论文不必列目录)3,摘要是文章主要内容的摘录,要求短,精,完整.字数少可几十字,多不超过三百字为宜.4,关键词或主题词关键词是从论文的题名,提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇.关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索. 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在"提要"的左下方.主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语.(参见《汉语主题词表》和《世界汉语主题词表》). 学位论文的标准格式二5,论文正文(1)引言:引言又称前言,序言和导言,用在论文的开头. 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围.引言要短小精悍,紧扣主题.(2)论文正文:正文是论文的主体,正文应包括论点,论据, 论证过程和结论.主体部分包括以下内容:a.提出问题-论点;b.分析问题-论据和论证;c.解决问题-论证方法与步骤; d.结论.6,参考文献一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾.参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行.中文:标题--作者--出版物信息(版地,版者,版期)英文:作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证.(2)所列举的参考文献要标明序号,著作或文章的标题,作者,出版物信息.如何选题获取最佳论文选题的途径 1,选择你有浓厚兴趣,而且在某方面较有专长的课题. 2,在不了解和了解不详的领域中寻找课题.3,要善于独辟蹊径,选择富有新意的课题.4,选择能够找得到足够参考资料的课题.5,征询导师和专家的意见.6,善于利用图书馆; 图书馆的自动化,网络化为读者选题提供了便利条件. 论文的核心不同的问题,有不同的写法,一般一篇论文论述一个核心问题(综述除外)论文的核心是作者根据国内外发展和自己工作梳理出来的,可以从多个方面着手元部件和系统,理论分析和实验,系统特性和测试,方案设计和实现等;新思想,新概念,新理论,新途径,新方案,新进展,不同看法.文章结构和长度结构题目,摘要和关键词引言正文结论和致谢(结束语)参考文献,附录等文章长度并无明确规定,一般科技期刊文章在4000-8000字(含图表),根据杂志和文章类别而定.综述文章多由编辑部门邀请权威撰写,涉及历史的回顾和未来的展望,内容广泛,可以较长.科技论文的篇名用简洁恰当的词组反映文章的特定内容,明确无误篇名简短,不超过20个字少用研究和空洞应用之类字避免用不熟悉的简称,缩写和公式等关键词4-6个反映文章特征内容,通用性比较强的词组第一个为本文主要工作或内容,或二级学科第二个为本文主要成果名称或若干成果类别名称第三个为本文采用的科学研究方法名称,综述或评论性文章应为"综述"或"评论"第四个为本文采用的研究对象的事或物质名称避免使用分析,特性等普通词组引言主要回答为什么研究(why)介绍论文背景,相关领域研究历史与现状,本文目的一般不要出现图表正文论文核心,主要回答怎么研究(how),一般正文应有下述几个部分组成本文观点,理论或原理分析实现方法或方案(根据内容而定)数值计算,仿真分析或实验结果(根据内容而定)讨论,主要根据理论分析,仿真或实验结果讨论不同参数产生的变化,理论分析与实验相符的程度以及可能出现的问题等结论文章的总结,要回答研究出什么(what)以正文为依据,简洁指出由研究结果所揭示的原理及其普遍性研究中有无例外或本论文尚难以解决的问题与以前已经发表的论文异同在理论与实际上的意义对近一步研究的建议致谢对给予本文研究的选题,构思,实验或撰写等方面给以指导,帮助或建议的人员致以谢意;由于论文作者不能太多,所以部分次要参加者可不列入作者,表示致谢;一般资助单位应在文章首页下脚加注,一般不再致谢.参考文献文章中引用他人成果或文章内容应注明参考文献参考文献规格应按国标或出版社编辑部格式作者,文献题名,刊名,年,卷(期),起止页码附录附录不是文章的必要组成部分,但可为深入了解本文人员提供参考主要提供论文有关公式推导,演算以及不宜列入正文的数据和图表等注意事项-缩写词,外文字母摘要和正文中的缩写词第一次出现都必须写出全称外文字母必须分清大小写,正斜体和上,下角正体:计量单位(cm, kg)斜体:物理量,坐标,函数符号 R,L,C注意事项-量和单位使用国际标准和国家法定计量单位一篇文章不要用一个符号表示两个或多个物理量,如用C同时表示常数和电容首次出现(公式)的符号应在其后说明物理意义量的符号一般为单个字母,如阈值电压(Threshold Voltage) 不能用TV ,应当用 Vt 组合单位的斜线不能多于1个,W/m2/k应为W/( m2· k)或W·m-2·k -1 注意事项-图,表图表内容及含义,坐标名称量纲清楚图和表内容不应重复,一种数据用图或表一个表示应按顺序连续编号 Fig. 1, Fig. 2, Table 1…图框宜细,曲线应粗表格应用三线表基本入手途径(一)1.选题最关键一定要选择具有一定理论深度的题目,可拓展性强的领域要尽可能选择研究学科交叉点不要盲目追随研究热点,强调独立选择.2.创新之路提出自然的,很简单的,具有直觉性的解决方法,做深下去考虑自己感兴趣的,具有实际意义的点做下去要广泛粗看,少量精看基本入手途径(二)3.提高论文写作能力背诵科技英文段落及常用句式由浅入深,勤于动笔向国外投稿,得到反馈科技论文的摘要简明扼要, 200字左右,无废话;用第三人称写,说明文章目的,方法,结果和结论,不应出现"本文","我们","作者"字眼,也不要有"首先" , "最后" , "简单" , "主要"和"次要"等修饰词;文摘可单独发表,应有独立性和自明性,不得使用文章中的章节号,图号和表号等;第一句不要重复文章篇名或已表述过的信息;不能写常识性内容,过去情况和未来的计划,只写最新进展.三,关于英文文摘英文摘要(Abstract)SCI,ISTP和EI等索引主要是根据英文题名和文摘选录文摘长度一般为100-200 words.内容要求与中文大体相同,主要讲目的,过程,方法和结果.内容要精练,不要将结论译成英文作摘要.文章题目第一词切不可用冠词The,A,An和And(单位名称也不用The Institute …)四,怎样读文章怎样读文章(一)在读文章前,确信它是值得的.先看题目,然后是摘要,如果没有完全失望,继续看介绍和结论(title->abstract->introduction->conclusions)在掌握所有细节之前,浏览整个文章,尽量找到那些关键点(the most implortant points).如果还觉得它是有关和值得的,就回去继续看(当然如果是老板要你看的重要文章,跳过前面的内容,直接读就行了). 高的效率从结论开始,浏览图示和表,看看他的引用. 只在你觉得相关或者你觉得能给你不同的观点的时候才读其他部分. 跳过你已经知道的部分(比如背景和动机). 怎样读文章(二)积极主动的思考作者怎么想出这个念头的 这件工作到底完成了什么 它和这个领域的其他工作有什么关系 其中重要的引用文献是哪些 在这个工作的基础上合理的下一步工作是什么 相关领域的什么想法和这个主题相关 有什么不同 这些想法怎样帮助解决自己的研究问题 怎样读文章(三)总结所读的每个主题关键问题key problems 所描述问题的不同表达形式 不同方法之间的关系 替代的方法 读完以后,看一下表述的问题 什么使得这篇文章易读 文章解决了哪个级别的细节问题 什么例子用来阐述重要的概念 什么问题没有解决 结果能够一般化(推广)吗 怎样读文章(四)良好的组织习惯一个有用的方法是,用笔记录自己读过和听过的东西.写下自己的想法(speculations),感兴趣的难题,可能的解决方法,要查看的参考数目,笔记,文章的概要,有趣的印证.阶段性的复习可以发现这些思想是不是开始走在一起(fit together).即使那些笔记没有用,也会帮助我们集中精力,找到重点和进行总结.(You may find yourself spending over half of your time reading, especially at the beginning. This is normal.) 怎样读文章(五)发展自己的IDEA确认所描述的思想真的有用(而不是仅仅理论上成立,或者是一些不重要的例子上面成立)真正理解文章,就要懂得问题的动机,解决方法的可能选择,解决方法基于的假设.这些假设是不是现实,它们是不是可以在使方法有效的情况下移除,进一步的研究方向,实际完成或者实现的工作,理论判定或者实验验证的有效性,扩充和延伸算法的潜力. 保存读过的文章,建立在线的参考书目.增加关键字的的域,文章的位置和感兴趣的文章的总结.这对以后写文章以及给其他的研究生很有用. 怎样读文章(六)阅读,思考,再阅读,再思考每周留一定的时间看看是不是可以想出研究想法 每周至少到图书馆看一下相关领域前面杂志的摘要.选择一两篇仔细阅读并且批判. 每周进行一次调查,利用电子资源或者图书馆寻找领域相关的技术报告,选择性批判性的阅读. 参加一个研讨会或者讨论组,批判性的听取. 了解研究的进展要注意你清楚这个领域的所有文献,如果你不经常复习一个月以前的文献,你可能发现自己对别人的思想不清楚了.另外一方面,也不要让别人的想法限制了你的创造力. 要注意避免的方面主动(活跃)的听和读需要被当作贯穿你整个事业的"不间断教育".不要愚蠢的认为在你开始研究前应当读完所有的文献,而应该选择性的阅读.一开始从经典的文章(询问你的老师或者同学从而得到一些最有用的杂志和会议)和最近几年的杂志和会议开始. 五,开始写作开始写作(一)读一些最新的论文,尤其是那些发表了的.学习它们的内容和表达,注意它们里面的-进一步工作.(future work) 仔细的记笔记.记下每一个新的结果,即使没有重要的和有帮助的东西. 写出一个纲要,它以后会经常改变,经常在头脑中保持一个新的构想对以后平滑的过渡很有好处. 开始写作(二)第一章:导言问题是什么 为什么重要 别人做了什么工作 自己方法的主要思想是什么 文章的其他部分是怎样组织的 第二章:问题问题定义术语介绍基本属性讨论第三章:主要想法1……第k+2章:主要想法k第k+3章:结论重述完成的工作讨论进一步的工作开始写作(三)不要总认为文章必须从第一页写.直接写主要想法big idea,记录怎样和其他部分组织在一起.一个组织各章的方法是展现给你的实验室同学(fellow students),如果你能够将它们组织成连贯的"一小时报告",那就表明你可以写你的文章了.开始写作(四)无休止的修改格式而不是内容也是常犯的错误.要避免这种情况 清楚自己想说什么.这是写清楚要的最难最重要的因素.如果你写出笨拙的东西,不断的修补,就表明不清楚自己想说什么.确信你的文章真的有思想(ideas).要说清楚为什么,不仅仅是怎么样. 从每一段到整个文章都应该把最引人入胜的东西放在前面.让读者容易看到你写的东西(Make it easy for the reader to find out what you've done).注意处理摘要(carefully craft the abstract).确定(be sure)说出了你的好思想是什么.确定你自己知道这个思想是什么,然后想想怎么用几句话写出来.开始写作(五)不要大肆夸耀你自己做的事情. 得到反馈如果你加入讨论组,会收到很多别人的文章,他们请你评论.知道别人对论文的意见很重要.你给别人帮助,别人会在你需要的时候帮助你.而且,自己也能提高.为文章写有用的评论是一门艺术.你应当读上两遍,第一遍了解其思想(IDEAS),第二遍看表达. 如何减少写论文的痛苦写下自己的想法是完善它的好方法.你可能发现自己的想法在纸上会变成一团糟. 慢慢 地你也发觉它清晰起来.记住你写得草稿很可能要全部推翻.着重于内容而不是格式不要追求完美记住:写作是一个不断完善的过程.当你发现所写的不是你开始想写的,写下粗稿,以后再修补.写粗稿可以理出自己的思想,渐渐进入状态.如果写不出全部内容,就写纲要,在容易写具体的内容时再补充.如果写不出来,就把想到的东西全部写出来,即使你觉得是垃圾.当你写出足够的内容,再编辑它们,转化成有意义的东西.另一个原因是想把所有的东西都有序的写出来(in order).次序是不一定的.你可能要从正文写起,最后在你知道你写的到底是什么的时候再写简介.写作是很痛苦的事情,有时候一天只能写上一页.追求完美也可能导致对已经完美的文章无休止的修改润饰.这不过是浪费时间罢了.把写作当作和人说话就行了. 积极的动力积极的反馈定下每天,每周,每月的目标是一个很好的主意 尽可能让自己获得成就感及时的交流要与人分享你的想法或者给别人以建议分而治之 在写论文时,不是写整个的文章,而是一节,一段,一章的写.一次实现一个部分,找出那些一个小时里可以解决的问题,如果不确信,不要让它们阻止你完成一些东西——一天一次.记住:你完成的每一步工作都使你接近完成.六,论文写作辅助工具论文模板绘图工具的使用公式编辑器实验七,一个例子及常见问题学士论文例子基于对等网络的即时消息系统在写之前把目录做好终点就是起点.以终为始,以始为终.学士论文常见问题1.论文格式不合要求或字数不够 2.第一章改为: "绪论"或"概述"或许要好一些,这一单应分为几个小节.概述最好写到4页以上.,概述写清背景,动机以及本文的工作安排.也可以把本文的贡献放上去, 3.对于论文的实验结果,应给出实验结果的详细分析,而不应是仅仅罗列一些结果.4.有的论文描述算法时给出了算法的代码,最好不要大段地拷贝代码,而尽量用流程图或伪代码.并对代码给出分析. 5.论文尽量少用或不用"我,我们"之类的词,尤其尽量不要用"我"这一字眼 6.你的情况,借本课本多从课本上找依据,再搞几个数学名著的理论用名著撑面子~有点乱,但是加油哈 一个专业论文网预祝马到成功o(∩_∩)o...

孔子曰:教学相长。一语道破教与学的真正内涵:互相协调,共同促进。因此,教师除了注重自己的教以外,更应注重学生的学。把学生当作教育的主体。现代教学论认为,教学的过程归根结底是如何教会学生学习,而要教会学生学习,教师必须先对学生进行充分了解,对症下药。本文针对初中学生数学学习现状,探讨数学学法,以提高学生数学效率。 一、初中生数学学习现状 在多年的数学教学中,使我深切地体会到当前初中生,特别是初一学生在数学学习的基本方法“读、听、思、记、写”方面都存在着一定的缺陷,严重影响学生数学学习效率,主要表现在: 1.阅读能力差 往往沿用小学学法,死记硬背,囫囵吞枣,像浮萍溅水,一摇即落。根本谈不上领会理解,当然更谈不上应变和应用了。这严重制约了自学能力的发展。 2.听课方法差 抓不住要点,听不入门,顾此失彼,精力分散,越听越玄,如听天书。如此恶性循环,厌学情绪自然而生,听课效率更为低下。 3.思维品质差 常常固守小学算术中的思维定势,不善于分析、转化和作进一步的深入思考,以致思路狭窄、呆滞,不利于后继学习。 4. 识记方式单调 机械识记成份多,理解记忆成份少。对数学概念、公式、法则、定理,往往满足于记住结论,而不去理解它们的真正含义,不去弄清结论的来龙去脉,更不会数形结合,纵横联系,致使知识无法形成完整的知识网络。 5.表达能力差 格式混乱,表达不清。尤其是几何解证,对三种语言(图形语言、符号语言、文字语言)不能融会贯通、相互转换、作图失准、条理不清,缺乏数学应有的严谨、逻辑性、条理性。 6.畏难情绪严重 一遇难题(综合性强、灵活性大的题)便不问津,或互相抄袭,应付了事。 针对学生存在的上述缺陷,教师应继续保持多数学生对数学的兴趣,转化少数数学差生,数学差生分为智力型数学差生和情节感型数学差生,对智力数学差生的转化对策是帮助他们树立信心,诱发并强化学习动机;进行强化记忆训练,让其熟练各种记忆方法,筛选适合自己性格和个性的学习方法;反复进行思维方法的训练,让其掌握基本的数学方法,培养思维品质。对情感型数学差生要抓住兴趣缺乏这一环节,调动情感状态,优化外部环境,充分挖掘数学中的趣味和奥妙及应用,介绍有趣的数学故事,培养数学学习兴趣,帮助其在战胜困难的实践中感受成功的喜悦。 二、初中生数学学法指导 根据多年来的教学经验,就如何提高数学教学质量,使学生变“被动”为“主动”,提高学生学习效率,笔者认为应从以下几个方面入手: 1.教导“读” 现代教育理论认为:教师在教学中起主导作用,学生在教学中居主体地位。让学生学会自主读书,必须通过教师的正确指导,学生才能由“读会”转为“会读”。数学教学中,教师不仅要教会学生对数学语言的翻译,更重要的是教导学生怎样读数学,这是读法的核心,教师可以从以下几个方面教会学生读书: ①粗读。即先浏览整篇内容的枝干,传到既见树木又见森林。然后边读边勾、边划、边圈,粗略懂得教材内容,弄清重难点,将不理解的内容打上记号(以便求教老师、同学)。 ②细读。即根据章节的学习要求细嚼教材内容,理解数学概念、公式、法则、思想方法的实质及因果关系,把握重点,突破难点。 ③研读。即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书本读“薄”,以形成知识网络,完善知识结构。这样,当学生掌握了读法“三部曲”,形成稳固习惯,就能从本质上改变其读书方式,提高学习效率。 2. 开导“听” 课堂教学是师生的双边活动,教师的讲是信息的输出,学生的听是信息的接收,只有调谐学生的“频道”,使接收与输出同频,才能获得最佳收效。 数学教学中,对学生听法的开导,教师首先应从培养学习数学兴趣入手来集中学生注意力,使其激活原有认知结构,打开“听门’,专心听讲。这样,才能把接收的“频道”调谐到教师输出的“频道”,达到同频共振,获得最佳教学效果。其次,要开导学生注意去听教师对每节课所提出的学习要求;对定理、公式、法则的引入与推导过程;对概念要点的剖析和概念体系的串联;对例题关键部分的提示和处理方法;对疑难问题的解释及课末的小结。这样,让学生会抓住要点,延着知识的“生展线”来听课,就能大大提高听课效率。 3. 引导“思” “数学是思维的体操”,数学学习离不开思维。要使学生学会科学的思维方法,形成一定的数学思想,需要教师科学的指路引导。 数学教学中,对学生思法的引导,教师应着力于以下四点:①从学生思维的“最近发展区”入手来开展启发式教学,引导学生去积极主动思考,使学生学会联想。②从挖掘“问题链”来开展变式训练,引导学生去观察、比较、分析、推理、综合,使学生学会转化。③从创设问题情境来开展探索式教学,引导学生追根究源去思索,使学生学会深思。④从回顾解题分歧过程来开展评价,引导学生去分析错因,便学生学会反思。此外,教师在教学过程中,还应善于暴露思维过程,留下一定的思维时间和空间,让学生学会“思在知识的转折点,思在问题的疑难处,思在矛盾的解决上,思在真理的探求中”。这样,就能使学生学会并掌握基本数学思想方法,达到思悟思,融会贯通。 4. 传导“记” 学生学业成绩的好坏,是与其有无掌握良好的记忆方法正相关,而学生对良好记忆方法的领悟,尚需教师的传授指导。 数学教学中,对学生记法的传导,教师首先要重视改革教学方法,摒弃“满堂灌”,以避免学生死呆背。其次要善于结合教学之际,来传授记忆方法。如通过对知识编成顺口溜,使学生学会去联想记忆;通过绘制直观图,使学生在以形助数中,学会数形结合记忆;通过对发掘知识的本质属性,使学生在形成概念的同时,学会凭特征记忆;通过归纳概括所学知识,使学生学会按知识结构来系统记忆;通过揭示获取知识的思维过程,使学生学会循线索记忆。此外,教师还应让学生明确各种记忆的价值、效果、适用范围,以使他们牢固掌握和灵活运用。 5. 指导“写” 作业书写最能反映学生对知识的掌握程度,因此,必须充分重视。 深究学生书写条理混乱的原因可知,教师教学起始时不重视写法指导是一主要导致因素。因此,精心指导学生怎样写,才有助于其驾驭知识,正确解决问题。为此,应切实加强对学生数学语言的教学。 ① 在教学中,既要注重对教学语言的解释,又要注重必要的句法分析 ,这是理解、掌握数学语言的基础。由于数学语言不像日常用语那样能在生活中得到直接印证,换句话说,如果不是在特定的教学研究环境,一般难以使用其语言,因此,其特定的语义、句法规则,使学生理解起来困难。为此,其一,必须明确数学语言的语义,使学生正确理解其含义。如通过比较、区分和弄清一些易混淆的词语,如“大于”与“小于”,“都不”与“不都”,“有一个”与“至少”等等;其二,要明确符号的指代,提示符号的特征。如对符号 ,不仅要指明 所代表的对象,指明 的几何意义,提示它的非负性,还应与其它相关的表示方法相联系,加深学生的认识,如 等等,其三,加强句法分析,由于数学语言有一定的逻辑结构,其概念符号需要按一定的逻辑关系组合。了解这些句法规则是学生会用数学语言的必要条件,因此,在教学中要进行必要的“咬文嚼字”和对比分析,如“ 、 两数的和的平方”与“ 、 两数的平方的和”等,要作仔细的分辨,帮助学生体会、区分、理解 ,进而会灵活运用,对一些长句。还要作必要的分解。 ② 要注意语言规范,这是正确运用数学语言的保证。其一,说法要规范。以利思考和表达的规范,如“在直线 上顺次截取 ”,不能说成“在直线 上截取 ”;其二,书写、作图要规范,如(x+5)千克,不能写成x+5千克。画图也要规范,直线要直,垂线要垂,锐角要锐,不能乱来。 ③ 加强文字语言、符号语言、图形语言的互译和转换,这是促进学生理解数学语言,学会灵活运用的有效手段,为此,首先在概念和定理教学中应多采取转换成符号语言和图形语言来表述的练习。如:“ 是负数”可转换成“ ”,还可以用数学上原点左侧的点来表示。其次,应采用多种形式的互译训练促进三种形态语言的灵活转换能力。如:读图填空训练、读句画图训练等;再其次,要逐步强化语言的训练。 总之,教师在教学中要充分认识学生的认知障碍和情绪障碍,克服学生在“读、听、思、记、写”等方面的缺陷,创设正迁移条件,矫正学生学习障碍;同时加强与学生的沟通,强化学生主体意识参与意识,提高师生互动的正面效益,从而取得良好的教学效果和学习效益。笔者通过几年的教学实践经验总结,逐惭形成了自己的教学特色,学生平时及升学考试中均正常发挥,取得较好的成绩。

生活数学小论文初中

学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

呃呃呃呃呃呃呃呃呃呃呃呃呃呃呃呃呃

各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.

各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”

相关百科

热门百科

首页
发表服务