人类是认识0早还是认识1早 在自然数中,存在着0和1这两个特别的数字,说它们特别,是因为它们具有特殊的“通行证”,如0加任何数仍得这个数,1乘任何数也仍得这个数!那么,这些数字到底是怎么由来的呢? 人类最初生活在一个没有数字的生活里,工作、生活起来十分不方便!大约在公元500年,随着经济、文化以及佛教的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶波海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。后来,由于印度人在此基础上发明了阿拉伯数字,也就是现在我们所看到的“1”、“2”、“3”……人类才用上了数字。在我们的印象中,似乎是数越小,就来的越早,而通常报数时,往往总是先报“1”,而不是先报“0”,那么,人类到底是先发现1的还是发现0的? 起初,是没有0这个数字的,早期,人们是用结绳记数,0是后来由于数字需要才发明的定义的。 0这个概念也是由古印度人发明的,在古罗马和中国的数字字典是没有0这个数字的,而古巴比伦人用空格来代表0,后来古罗马和中国才根据古巴比伦人用空格的。在数字发明之后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。印度人首先发明了现用的阿拉伯数字中的1~9,用空格表示没有,但容易搞错,所以后来就用“.”表示没有。印度人的计数法传到阿拉伯后,阿拉伯人用“0”代替了印度人的“.”,并把它带到了欧洲,就有了现用的阿拉伯数字0~9。数字的写法经过不断的进化也和早期有所不同。应该说是印度人发明了现有的计数法,阿拉伯人改进完善了它。阿拉伯人对数字的形状进行了改造并把它传播到整个欧洲,最后风行全球。该数字系统得到全球普及,阿拉伯人功不可没,因此称为阿拉伯数字。 由 此看来,说明人类先认识1再认识0。 人类的知识源源不断,我们一定要好好发挖。
在中学教学课堂教学中培养学生的学习兴趣古代教育家孔子说:“知之知不如好之者,好之者不如乐之者。”要让学生愉快、轻松、有效地学习数学,关键是要培养学生学习数学的兴趣。课堂教学是目前中学数学教学的基本组织形式,是中学数学教学过程中最重要的环节。因此,我认为应该精心设计课堂教学,充分培养学生学习数学的兴趣。一、 精心设计新课导入,激发学生学习兴趣。“良好的开端是成功的一半”课堂教学也是如此。因为学生对出次接触的 事物有一种好奇心和探索心,所以要想把学生的思维吸引到每一堂课的教学内容上来,设计一个好的导入非常重要。教师可以根据教材提出有趣的问题、或讲一个小故事、或做一个小游戏等形式寻入。例如,向学生介绍著名科学家、学者,献身祖国、献身科学的事迹,叙述他们在事业攻坚上的成功与失败、顺利与挫折的故事,会给学生深刻的启迪,极大的提高他们的学习兴趣。又如,有关勾股定理的史料非常多,可以安排学生进行研究性学习。学生通过课前对有关勾股定理的探索与研究,既提高了发现问题、分析问题和解决问题的能力,又体现了“乐中学”的宗旨,且充分挖掘这一数学知识点,有利于知识的巩固。二、 认真创设教学情境,调动学生的学习兴趣。在课堂教学中,如果创设好教学情境,把证明某个结论改为探索性实验,让学生研究的方式,参与到探索、发现,获得知识的全过程中,充分发挥学生的主观能动性,使其体会通过自己取得成功的快感,并且产生浓厚的兴趣和强烈的求知欲望。例如,在对“等腰三角形的判定”进行教学设计时,我通过具体问题的解决创设如下的问题情境:一块等腰三角形玻璃被打碎,它的一部分没了,只留下一条底边BC和一个底角∠C,请问,有没有把原来的等腰三角形重新画出来,先划出残余图形并思索着如何画出被打碎的部分。这时,各种划法出现了。于是我抓住“所三角形一定是等腰三角形吗?”引出课题,再引导学生分析划法的实质,并用几何语言概括出这个实质,即“△ABC中,若∠B=∠C,则AB=AC”这样学生自己从问题出发获得了判定理。接着,再引导学生根据上述实际问题的启示思考证明方法,进而得到结论。三、 借助现代化教学手段,培养学习兴趣现代化技术的不断发展,为培养学生学习数学的兴趣提供了更高的教学手段。教师可借助计算机、幻灯机、计算器等直观性教具的教学手段,向学生提供多种形式的感性材料,化难为易,化繁为简,使抽象的知识直观化、形象化,为学生的思维“搭桥铺路”,使学生学起数学来兴趣怏然。例如,在讲“轴对称和轴对称图形”课时,我运用计算机辅助教学,出示生活中大量的轴对称图形,吸引了学生的注意力,他们表现得异常活跃和好奇。在我的启发、引导下,学生通过自己的观察,得出屏幕上的两个轴对称三角形的演示,引导他们找出对称点与对称轴、对称线段与对称轴之间的关系,使他们比较容易得到轴对称的三个性质定理及其逆定理。四、 展现数学之美,拓展学生学习兴趣爱美之心,人皆有之,对美的追求是人的天性,数学中处处蕴涵着美,是一个群芳斗娇的百花园,数学家洛克拉斯断言:“哪里有数,哪里就有美。”如果在教学过程不失时机的将种种数学内在美揭示给学生,使学生受到强烈的感染,激发他们对数学的兴趣,继而从内心深处感受到学习数学的乐趣。例如,在学习“黄金分割”一堂课时,我展示给学生包括维纳斯、巴黎圣母院、舞蹈演员在内的一些精美图片,问这些图片美不美?美在哪?给学生讨论后,我告诉学生这些精美图片之所以美,是因为这些形体的比例都符合“黄金分割”原理,它是最美最恰好的比例。接着我向学生介绍“黄美分割”的概念,收到了很好的教学效果。五、 精心设计课堂练习,巩固学生学习兴趣做数学题有时很费“脑筋”,要进行大量的计算,而学生往往最讨厌繁琐的计算,所以在设计课堂练习时,多安排一些在计算中存在计算技巧的题目,让学生在平淡的计算中体会无穷的乐趣。成功次数越多,学生学习的兴趣就越浓。教师还应多设计一些与实际生活有关的练习。例如,在讲“一元二次方程应用题”时,我在课堂上出了这样一道题:本届世界杯足球赛有32支足球队参加小组赛,每小组有4支队伍,问小组赛共举行几场足球赛,则每小组有几支队伍?这种题的设计符合当前很多中学生喜欢足球的心理,趣味性强,难度又不大,通过讨论可使问题得到解决。学生对这类问题既感兴趣又能从中体验成功的喜悦,感受到了数学的魅力与威力,激活了他们爱数学、学数学、用数学、做数学的 ,从而巩固了学习数学的兴趣。 通过多年的教学实践,我深感必须抓住课堂教学这一主渠道,坚持以学生为中心,从提高学生学习的积极性、培养学生学习数学的兴趣出发,精心设计课堂教学,形成一种培养兴趣、传授知识,提高能力同步良性循环的发展趋势,从而真正提高教学质量。我相信,只要我们数学教师在平时细心地发现、思考、研究、积累、总结、提高,我们的学生将在轻松愉快的氛围中获得知识,充分享受到学习的快乐。 谢建浩
我自己写的数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
数学伴随我成长 1983年,大学刚刚毕业的我被分配到河北承德第一中学数学组,每位前辈都是业务精湛,师德堪称楷模,是真正能把高深的理论、经验的结晶和教学的智慧融为一体的教学专家.从此,我不放过老教师那儿我能听的每一节课,对每节课都细细地揣摩,深刻地反思.我总是把我的思考写在听课笔记上,记得四年下来,我一共听了1193节课,使我很快适应了高中教学.老教师也关注着我的成长,在我的课堂上,真的记不清多少次在学生的"起立"声中,会突然发现有一位白发人站在课室后面……他们的关注让我兴奋,催我奋进.
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
89 浏览 3 回答
208 浏览 2 回答
119 浏览 3 回答
352 浏览 7 回答
293 浏览 3 回答
121 浏览 3 回答
175 浏览 4 回答
179 浏览 6 回答
225 浏览 5 回答
339 浏览 5 回答
225 浏览 3 回答
92 浏览 7 回答
318 浏览 6 回答
245 浏览 5 回答
149 浏览 4 回答
177 浏览 6 回答
183 浏览 4 回答
319 浏览 4 回答
331 浏览 2 回答
343 浏览 3 回答
165 浏览 2 回答
107 浏览 4 回答
118 浏览 5 回答
163 浏览 3 回答
275 浏览 3 回答