首页

> 论文发表知识库

首页 论文发表知识库 问题

多孔氧化硅的研究进展大学论文

发布时间:

多孔氧化硅的研究进展大学论文

传感器在环境检测中可分为气体传感器和液体传感器,这是我为大家整理的传感器检测技术论文,仅供参考!

试述传感器技术在环境检测中的应用

摘要:传感器在环境检测中可分为气体传感器和液体传感器,其中气体传感器主要检测氮氧化合物和含硫氧化物;液体传感器主要检测重金属离子、多环芳香烃类、农药、生物来源类。本文阐述了传感器技术在环境检测方面的应用。

关键词:气体传感器 液体传感器 环境检测

中图分类号:O659 文献标识码:A 文章编号:

随着人们对环境质量越加重视,在实际的环境检测中,人们通常需要既能方便携带,又可以够实现多种待测物持续动态监测的仪器和分析设备。而新型的传感器技术就能够很好的满足上述需求。

传感器技术主要包括两个部分:能与待测物反应的部分和信号转换器部分。信号转换器的作用是将与待测物反应后的变化通过电学或光学信号表示出来。根据检测方法的不同,我们将传感器分为光学传感器和电化学传感器;根据反应原理的不同,分为免疫传感器、酶生物传感器、化学传感器;根据检测对象不同,分为液体传感器和气体传感器。

1气体传感器

气体传感器可以对室内的空气质量进行检测,尤其是有污染的房屋或楼道;也可以对大气环境中的污染物进行检测,如含硫氧化物、氮氧化合物等,检测过程快速方便地。

以含氮氧化物(NOx)为例。汽车排放的尾气是含氮氧化物的主要来源,但随着时代的发展,国内消费水平的提高,汽车尾气的排放量呈逐年上升趋势。通过金属氧化物半导体对汽车尾气及工厂废气中的含氮氧化物进行直接检测。如Dutta设计的传感器,采用铂为电极,氧化钇和氧化锆为氧离子转换器,安装到气体排放口,可以检测到含量为10-4~10-3的NO。含硫氧化物是造成酸雨的主要物质,也是目前环境检测的重点项目,因为在大气环境中的含量低于10-6,需要更高灵敏度的传感器。如高检测的灵敏度的表面声波设备。

Starke等人采用直径为8~16nm的氧化锡、氧化铟、氧化钨纳米颗粒制作的纳米颗粒传感器,对NO和NO2的检测下限可达到10-8,提高反应的比表面积,增加反应灵敏度,且工作温度比常规的传感器大大降低,减少了能源消耗。

2液体传感器

在实际环境检测中,液体传感器大多应用于水的检测。由于水环境中的污染物种类广泛,因此液体传感器比气体传感器的应用更为广泛和重要。水中的污染物除了少量的天然污染物以外,大部分都是人为倾倒的无机物和有机物。无机物中,重金属离子为重点检测对象;有机污染物包括杀虫剂、激素类代谢物、多环芳香烃类物质等。这些污染物的过度超标,会严重影响到所有生物体的健康和安全。

重金属离子检测

采水体中重金属离子的主要来源包括开矿、冶金、印染等企业排放的废水。这些生产废水往往混合了多种废水,所含的重金属离子种类繁多,常见的有汞、锰、铅、镉、铬等。重金属离子会不断发生形态的改变和在不同相之间进行转移,若处置不当,容易形成二次污染。生物体从环境中摄取到的重金属离子,经过食物链,逐渐在高级生物体内富集,最终导致生物体的中毒。因此如果供人类食用的鱼类金属离子超标,将对人类产生严重的影响,因此对于重金属离子的检测显得尤为重要。

Burge等人发明的传感器,可以利用1,2,2联苯卡巴肼和分光光度计,可以检测地下水中的重金属铬浓度是否超标。

除了通过化学反应检测外,采用特殊的生物物质,也可以方便和灵敏地检测重金属离子。如大肠杆菌体内有一种蛋白质可以结合镍离子,有人在这种蛋白质的镍离子结合位点附近插入荧光基团,当蛋白质结合镍离子后,荧光基团会被淬灭,由于荧光的强度与镍离子浓度成反比,从而实现对镍离子的定量检测,检测范围未10-8~10-2mol/L。日方法也可应用于检测Cu2+、Co2+、Fe2+和Cd2+等几种离子中。他们还结合了微流体技术,该技术只需消耗几十纳升体积的待测液体,就可以对100nmol/L以下浓度的Pb2+进行检测。Matsunaga小组将TPPS固定在多孔硅基质中,当环境中存在Hg2+时,随着Hg2+浓度的变化,TPPS的颜色会从橘黄色逐渐转变成绿色,该传感器的检测限为,通过加入硅铝酸去除干扰离子Ni2+和Zn2+。

利用传感器技术不仅可以准确测定待测物的浓度,而且由于传感器的微型化技术特点,还可以通过传感器的偶联,进行多项指标的检测。Lau等人设计了基于发光二极管原理的传感器,可以同时检测Cd2+和Pb2+,该传感器对Cd2+和Pb2+的检测限分别为10-6和10-8。

农药残留物质的检测

农药是一类特殊的化学品,它在防治农林病虫害的同时,也会对人畜造成严重的危害。中国是农业大国,每年的农药使用量相当庞大,因此有必要对其进行监测。采用钴-苯二甲蓝染料和电流计就能方便地检测三嗪类除草剂,无需脱氧,直接检测的下限为50Lg/L,如果通过预处理进行样品浓缩后,检测限可以达到200ng/L。

采用带有光纤的红外光谱传感器可以进行杀虫剂的快速检测。将光纤内壁涂覆经非极性有机物修饰的气溶胶材料后,能显著改善光纤中水分子对信号的耗散作用,并且能够提取出溶液中的有机磷类杀虫剂进行光谱分析。此类传感器对于有机溶剂,如苯、甲苯、二甲苯的检测限则可达10-8~8*10-8。

多环芳香烃类化合物的检测

多环芳香烃类物质是另外一大类有害的污染物质,这类物质具有致癌性,但在许多工业生产过程中均会使用或产生此类物质。水体中的多环芳香烃类物质含量非常低,一般在10-9范围内,因此需要借助高灵敏度的检测传感器,Schechter小组发明了光纤光学荧光传感器。在直接检测过程中,待测样本中还可能存在一些如泥土这样的干扰物质,会降低检测信号值,如果用聚合物膜先将非极性的PAH富集,然后对膜上的物质进行荧光检测,从而解决信号干扰问题,报道称这种经膜富集后的传感器技术,对pyrene的检测可达到6*10-11,蒽类物质则可达4*10-10。Stanley等人利用石英晶振微天平作为传感器,在芯片表面固定上蒽-碳酸的单分子膜,检测限可达到2*10-9。

基于免疫分析原理,采用分子印迹的方法,在传感器表面印上能够结合不同待测物质的抗体分子,可以实现多种不同物质的检测。近年来发展起来的微接触印刷技术,也可应用到该领域,这样制备得到的传感器体积可以更加微型化。

生物类污染物质

除了以上的无机和有机合成类污染物质,还有生物来源的一些潜在污染分子。如激素类分子及其代谢物的污染常常会引起生物体生长、发育和繁殖的异常。Gauglitz带领的研究小组采用全内反射荧光生物传感器和睾丸激素抗体,对河流中的睾丸激素直接进行了即时检测,其检测限为。该技术无需样品的预处理,对于不同地区的自然界水体均可以进行睾丸激素的现场直接检测,检测范围为9~90ng/L。

另外,致病菌和病毒也是被检测的对象,水体中出现某些特定菌种,可以表明水体受到了某种污染,利用传感器技术非常容易检测到这些生物样本的存在,而且选择性非常高,如可以从烟草叶中快速地发现植物病毒烟草花叶病毒,采用QCM可以直接检测到酵母细胞的数量。

3结论和展望

目前,传感器技术已开始应用于各环境监测机构的应急检测,但是实际应用中有诸多的局限性,比如在对大气中的某些有害物质进行检测时,由于其含量往往低于传感器的最低检测限,因此在实际应用过程中,还需要进行气体的浓缩处理,这样就使传感器不容易实现微型化,或者需要借助更高灵敏度的传感器;同样,在野外水体检测时,常常会出现待测水体含有多种复杂干扰成分的情况,无法与实验室的标准化条件相比;在有些以膜分离分析技术为原理的传感器中,其膜的使用寿命往往较短,而频繁更换新膜的价格较为昂贵,因此仍然无法得到广泛的应用。

尽管如此,随着传感器技术的不断发展和完善,仍然有望应用于将来工厂企业排气、排污的现场直接检测和野外环境的动态无人监测,而且其结果能与实验室常规仪器的检测结果相符,这样将大大加快对环境监测和治理的步伐。

参考文献

[1]NaglS,,2007,132:507-511.

[2],2005,59:209-217.

[3]HanrahanG,,2004,6:657-664.

[4]HoneychurchKC,,2003,22:456-469.

[5]AmineA,,2006,21:1405-1423

传感器与自动检测技术教学改革探讨

摘要:传感器与自动检测技术是电气信息类专业重要的主干专业课,传统授课方法侧重于理论知识的传授,而忽略了应用层面的培养。针对此问题试图从教学目的、教学内容、教学形式、教学效果等多个方面进行分析,对该课程的教学方案改革进行探讨,提出一套技能与理论知识相结合、行之有效的教学方案。

关键词:传感器与自动检测技术;教学内容;教学模式;工程思维

“传感器与自动检测技术”是电气信息类专业重要的主干专业课,是一门必修课,也是一门涉及电工电子技术、传感器技术、光电检测技术、控制技术、计算机技术、数据处理技术、精密机械设计技术等众多基础理论和技术的综合性技术,现代检测系统通常集光、机、电于一体,软硬件相结合。

“传感器与自动检测技术”课程于20世纪80年代开始在我国普通高校的本科阶段和研究生阶段开设。本课程侧重于传感器与自动检测技术理论的传授,重知识,轻技能;教师之间也缺乏沟通,教学资源不能得到充分利用,教学效果不理想,学生学习兴趣不高。

一、教学过程中发现的问题及改革必要性分析

笔者在独立学院讲授“传感器与自动检测技术”课程已有四年,最开始沿用了研究型大学的教学计划和教学大纲,由于研究型大学是以培养研究型人才为主,而独立学院是以培养应用型人才为主,在人才培养目标上有较大差异,在逐渐深入的过程中发现传统方案不太符合学院培养应用型人才的定位,存在以下几方面的问题。

1.重理论,轻实践

该课程是应用型课程,其中也有大量的理论知识、数学推导,而传统的研究型教学方法普遍都以理论教学为主,在课堂上大篇幅讲解传感器的原理,进行数学公式推导,相比而言传感器的应用通常只是通过一个实例简单介绍,导致最后大多数学生只是粗略地知道该传感器的结构,而不知道如何用,在哪里用。

2.教学模式单一

该课程传统上以讲授的教学方式为主,将现成的结论、公式和定理告诉学生,学生不能主动地思考和探索,过程枯燥乏味,导致学生产生了厌学情绪。同时理论教学与实训、实践教学脱节问题也很严重。

3.教学实验安排不合理

传统的实验课程安排,验证性实验比例高达80%,综合设计性实验极少,缺少实训、实践环节。然而应用型人才的培养应该以实践教学为核心,重点培养学生的工程思维和实践能力、动手能力,以在学生毕业时达到企业对技术水平与能力的要求,使学生毕业后能尽快适应工作岗位。

二、适合独立学院培养应用型人才的教学方案改革

传统的传感器与自动检测技术课程重理论、轻实践,教学模式单一,教学实验以验证性实验为主,这种方案能够培养研究型人才,但却无法培养合格的应用型人才。在教学过程中,笔者潜心研习,并反复实践,总结出以下几个可以改革的方面。

1.优化教学内容,注重工程思维

本课程一个很重要的内容是各种类型传感器的原理,传统的教学要讲清楚其中的来龙去脉,而本人则认为针对应用型人才培养,充分讲授清楚基本概念、基本原理和基本方法即可,涉及大额数学公式可以选择重要的进行讲解,其他则可作为学生的自学内容,让学生课余自学。同时应该重点讲解该传感器的工程应用实例;另一方面要结合最新实际工程讲解。这样才能激发学生的学习兴趣,培养学生应用型工程学习思维。

2.改革教学方法,改变教学模式

传统的教学是“灌输式”的方法,无论学生是否接受,直接把要讲的内容全部讲述给学生,而这也违背了培养学生分析问题和解决问题的能力以及创新能力的出发点和归宿。笔者认为应该应用工程案例教学,实行启发式、讨论式、研究式等与实践相结合的教学方法,发挥学生在教学活动中的主体地位。

3.与工程实际相结合,与其他课程相结合

教学过程中要从不同行业提取典型的工程应用实例,精简以后作为实例进行讲解。在进行教学时,要培养学生的系统观,让学生明白这不是一门独立的课程,而是与自动控制原理、智能控制理论等课程相融合的,以达到融会贯通的学习效果。

4.实验环节改革

实验教学主要是为了提高学生的动手能力、分析问题和解决问题的能力,加深学生对课堂教学中理论、概念的感性认识。以往该课程的实验内容大部分为原理性、验证性的实验,学生容易感到枯燥无味,毫无学习积极性,很少有学生进行独立思考并发现问题,实验效果极不理想。为了改变这种模式化的教育,笔者将实验内容由传统的验证性实验调整为设计开发型实验。在实验教学中根据客观条件在适当减少验证性实验的基础上,增加了开拓性实验项目以及设计综合性实验。

5.改革教学评价方法,提高课堂教学效率

高效的学习成果反馈机制是促进教学相长的必要手段,目前该课程都是通过课程作业进行学习效果反馈,可以采用每一个章节布置一道设计型题目,让学生更加广泛地查阅资料,并在一定知识广度的基础上深入分析题目中用到的内容,进而从更深的层面分析解决问题,以达到深度、广度相结合的效果。

本文针对传感器与自动检测技术传统研究型大学的方案,提出了三个方面的问题,并根据四年的教学积累,在教学内容、教学模式、实验环节、教学评价及反馈等几个方面进行了探讨分析并提出了一套改革的方法和措施。本方案以实际工程应用实例为核心,在教学内容上侧重于传感器应用方面的讲解,以提出问题、分析问题、解决问题为主线调动学生的学习积极性和主动性,培养学生的工程思维和能力,重视实验环节,以设计性、综合性实验代替验证性实验培养学生将抽象的知识具体化、培养学生的实际应用能力、动手能力和创新能力。

参考文献:

[1]吴建平,甘媛.“传感器”课程实验教学研究[J].成都理工大学学报.

[2]曹良玉,赵堂春.传感器技术及其应用.课程改革初探[J].中国现代教育装备.

[3]李玉华,胡雪梅.传感器及应用.课程教学改革的探讨Ⅱ技术与市场.

1 引 言 磁性纳米粒子是近年来发展起来的一种新型材料,因其具有独特的磁学特性,如超顺磁性和高矫顽力,在生物分离和检测领域展现了广阔的应用前景[1]。同时,因磁性氧化铁纳米粒子具有小尺寸效应、良好的磁导向性、生物相容性、生物降解性和活性功能基团等特点[2~4], 在核磁共振成像、靶向药物、酶的固定、免疫测定等生物医学领域表现出潜在的应用前景[5~7]。但由于其较高的比表面积,强烈的聚集倾向,所以通常对其表面进行修饰,降低粒子的表面,能得到分散性好、多功能的磁性纳米粒子。对磁性纳米粒子的表面进行特定修饰,如果在修饰后的粒子上引入靶向剂、药物分子、抗体、荧光素等多种生物分子,可以改善其分散稳定性和生物相容性, 以实现特定的生物医学应用。此外,适当的表面修饰或表面功能化还可以调节磁性纳米粒子表面的反应活性[8],从而使其应用在细胞分离、蛋白质纯化、核酸分离和生物检测等领域。本文介绍了磁性氧化铁纳米粒子的制备方法, 比较了各种制备方法的优缺点,并对其在生物分离及检测中应用的最新进展进行了评述。2 磁性氧化铁纳米粒子的合成方法 磁性纳米粒子的制备是其应用的基础。目前已发展了多种合成和制备方法,如共沉淀法、水热合成法、溶胶凝胶法和微乳液法等,上述方法均可制备高分散、粒度分布均匀的纳米粒子,并能方便地对其表面进行化学修饰,这些方法的优点和缺点见表1。 在这些合成方法当中,共沉淀法是水相合成氧化铁纳米粒子最常用的方法。该方法制备的磁性纳米颗粒具有粒径小,分散均匀,高度生物相容性等优点,但制得的颗粒存在形状不规则,结晶差等缺点。通过在反应体系中加入柠檬酸,可得到形状规则、分散性好的纳米粒子。利用这种方法合成的磁性纳米材料被广泛应用在生物化学及生物医学等领域[9]。微乳液法制备纳米粒子,产物均匀、单分散,可长期保持稳定,通过控制胶束、结构、极性等,可望从分子规模来控制粒子的大小、结构、特异性等。微乳液合成的磁性纳米粒子仅溶于有机溶剂,其应用受到限制。通常需要在磁性纳米粒子的表面修饰上亲水分子,使其溶于水,从而能应用于生物、医学等领域。 热分解法是有机相合成氧化铁纳米粒子最多也是最稳定的方法。利用热分解法制备的纳米Fe3O4颗粒产物具有好的单分散性,且呈疏水性,可以长期稳定地分散于非极性有机溶剂中。该方法合成的氧化铁纳米粒子虽然具有粒径均一的特点,但必须在其表面偶联亲水性及生物相容性好的生物分子或制备成核壳结构,才可用于生物医学领域。表1 磁性氧化铁纳米粒子的制备方法(略)此外,绿色化学和生物方法合成氧化铁纳米粒子也备受关注[28,29]。磁性氧化铁纳米粒子除具有的表面效应、小尺寸效应、量子效应、宏观量子隧道效应等纳米粒子基本特性外,它同时还具有超顺磁特性、类酶催化特性和生物相容性等特殊性质,因此在医学和生物技术领域中的应用引起了人们的广泛兴趣。 3 磁性氧化铁纳米材料在生物分离与生物检测的应用 磁性氧化铁纳米材料在生物分离的应用 磁性氧化铁纳米粒子可以通过外界磁场来控制纳米粒子的磁性能,从而达到分离的目的,如细胞分离[30,31]、蛋白分离[32] 和核酸分离[33]等。此外磁性氧化铁纳米粒子由于兼有纳米、磁学和类酶催化活性等性能,不仅能够实现被检测物的分离和富集,而且能够使检测信号放大,在生物分析领域也都具有很好的应用前景[34,35]。磁性纳米粒子(MNP)能够应用于这些领域主要基于它的表面化学修饰,包括非聚合物有机固定、聚合物有机固定、无机分子固定及靶向配体修饰等[36](图1)。纳米粒子表面功能化修饰是目前研究的热点。 磁性氧化铁纳米材料在细胞分离方面的应用 细胞分离技术的目的是快速获得所需目标细胞。传统细胞分离技术主要根据细胞的大小、形态以及密度的差异进行分离,如采用微滤、超滤以及超离心等方法。这些方法操作简单,但是特异性差,而且存在纯度不高、制备量偏小、影响细胞活性等缺点,因此未能被广泛地用于细胞的纯化研究[37]。近年来,随着对磁性纳米粒子研究的深入,人们开始利用磁性纳米粒子来分离细胞[38,39]。如磁性氧化铁纳米粒子在其表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质、外源凝结素等),利用它们与目标细胞的特异性结合,在外加磁场的作用下将细胞分离、分类以及对其种类、数量分布进行研究。张春明等[40]运用化学连接方法将单克隆抗体CD133连接到SiO2/Fe3O4复合粒子的表面得到免疫磁性Fe3O4纳米粒子,利用它分离出单核细胞和CD133细胞。经培养后可以看出,分离出来的CD133细胞与单核细胞一样,具有很好的活性,能够正常增殖形成集落,并且在整个分离过程中对细胞的形态以及活性没有明显的毒副作用,这与Kuhara等[30]]报道的采用磁分离技术分离CD19+和CD20+细胞的结果一致。Chatterjee等[39]采用外源凝结素分别修饰聚苯乙烯包被的磁性Fe3O4微球和白蛋白磁性微球,利用凝结素与红细胞良好的结合能力,快速、高效的分离了红细胞。此外,磁性粒子在分离癌细胞和正常细胞方面的动物实验也已获得成功。 磁性氧化铁纳米材料在蛋白质和核酸分离中的应用 利用传统的生物学技术(如溶剂萃取技术等)来分离蛋白质和核酸程序非常繁杂,而磁分离技术是分离蛋白、核酸及其他生物分子便捷而有效的方法。目前在外磁场作用下,超顺磁性氧化铁纳米粒子已广泛应用于蛋白质和核酸的分离。 Liu等[41]利用聚乙烯醇等表面活性剂存在下制备出共聚磁性高分子微球,表面用乙二胺修饰后用于分离鼠腹水抗体,得到很好的分离效果。Xu等[42]在磁性氧化铁纳米粒子表面偶联多巴胺分子,用于多种蛋白质的分离纯化。多巴胺分子具有二齿烯二醇配体,它可以与氧化铁纳米粒子表面配位不饱和的Fe原子配位,形成纳米颗粒多巴胺复合物,此复合物可以进一步偶联次氨基三乙酸分子(NTA),NTA分子可特异螯合Ni+,对于具有6×His标签的蛋白质的分离纯化方面表现出很高的专一性。Liu等[43]用硅烷偶联剂(AEAPS)对核壳结构的SiO2/Fe2O3复合粒子的表面进行处理,研究复合磁性粒子对牛血清白蛋白(BSA)的吸附情况,结果表明BSA与磁性复合粒子之间是通过化学键作用被吸附的,复合粒子对BSA的最大吸附量达86 mg/g,显示出在白蛋白的分离和固定上有很大的应用潜力。Herdt等[44]利用羧基修饰的吸附/解离速度快的核壳型(Fe3O4/PAA)磁性纳米颗粒与Cu2+亚氨基二乙酸(IDA)共价交联,通过Cu2+与组氨酸较强的亲和能力实现了组氨酸标记蛋白的选择性分离,分离过程如图2所示。 磁性纳米粒子也是核酸分子分离的理想载体[45]。DNA/mRNA含有单一碱基错位,它们的富集和分离在人类疾病诊断学、基因表达研究方面有着至关重要的作用。Zhao等[46]合成了一种磁性纳米基因捕获器,用于富集、分离、检测痕量的DNA/mRNA分子。这种材料以磁性纳米粒子为核,包覆一层具有生物相容性的SiO2保护层,表面再偶联抗生素蛋白维生素H分子作为DNA分子的探针,可以将10-15 mol/L DNA/mRNA有效地富集,并能实时监控产物。Tayor等[47]用硅酸钠水解法、正硅酸乙酯水解法制备SiO2/Fe2O3磁性纳米粒子并对DNA进行了分离。结果表明,SiO2功能化的Fe2O3磁性纳米粒子对DNA的吸附分离效果明显好于单独Fe2O3磁性纳米粒子的分离效果,但是其吸附机理有待进一步研究。 磁性氧化铁纳米材料在生物检测中的应用 基于磁学性能的生物检测磁性氧化铁纳米粒子因其特有的磁导向性、小尺寸效应及其偶联基团的活性,兼有分离和富集地作用,使其在生物检测领域有广泛的应用。当检测目标为低含量的蛋白分子时,不能通过聚合酶链反应(PCR)对其信号进行放大,而磁微球与有机染料或量子点荧光微球结合可以对某些特异性蛋白、细胞因子、抗原和核酸等进行多元化检测,实现信号放大的作用。Yang等[48]采用一对分子探针分别连接荧光光学条码(彩色)和磁珠(棕色),对DNA(顶端镶板)和蛋白质(底截镶板)生物分子进行目标分析(图3)。如果目标DNA序列或蛋白存在,它将与两个磁珠结合一起,形成了一个三明治结构,经过磁选,光学条码可以在单磁珠识别目标水平下,通过分光光度计或是在流式细胞仪读出。通过此方法检测目标分子是基于数百万个荧光基团组成的微米尺寸光学条码信号的扩增而检测出来,其基因和蛋白的检出限可达到amol/L量级,甚至更低。 Nam等[49]利用多孔微粒法(每个微粒可填充大量条形码DNA)和金纳米微粒为基础的比色法生物条形码检测技术检测了人白细胞介素2(IL2),检出限可达到30 amol/L,比普通的酶联免疫分析技术的灵敏度高3个数量级。Oh等 [50]利用荧光为基础的生物条形码放大方法检测了前列腺特异性抗原(PSA)的水平,其检出限也低于300 amol/L,而且实现了快速检测。 在免疫检测中,磁性纳米粒子作为抗体的固相载体,粒子上的抗体与特性抗原结合,形成抗原抗体复合物,在磁力作用下,使特异性抗原与其它物质分离,克服了放免和酶联免疫测定方法的缺点。这种分离具有灵敏度高、检测速度快、特异性高、重复性好等优点。Yang等[51]通过反相微乳液法制备了粒径很小的SiO2包覆的Fe3O4磁性纳米粒子,生物分子通过诱导这些高单分散的磁性纳米粒子可用于酶的固定和免疫检测。Lange等[52]采用直接或三明治固相免疫法(生物素基化抗IgG抗体和共轭连接链霉素的磁性纳米粒子组成三明治结构)和超导量子干涉法(SQUID),研究它们在确定抗原、抗体相互作用免疫检测中的应用,结果表明特异性键合的磁性纳米颗粒的驰豫信号大小依赖于抗原(人免疫球蛋白G,IgG)的用量,这种磁弛豫(Magnetic relaxation)免疫检测方法得到的结果与广泛使用的ELISA方法的结果相当。 因磁性纳米粒子独特的性能,在生物传感器上也有潜在的应用前景。Fan等[53]在磁珠上偶联被检测物的一级抗体,在金纳米颗粒上连接二级抗体,两者反应后,利用HClNaClBr2将Au氧化为Au3+,催化发光胺(Luminol)化学发光,人免疫球蛋白G(IgG)的检出限可达2 × 10-10 mol/L ,实现了磁性纳米颗粒化学发光免疫结合的方法对IgG进行生物传感分析(图4)。 类酶催化特性在生物检测中的应用 Cao等[54]发现Fe3O4磁性纳米粒子能够催化H2O2氧化3,3',5,5'四甲基联苯胺(TMB)、3,3'二氨基联苯胺四盐酸盐(DAB)和邻苯二胺(OPD),使其发生显色反应,具有类辣根过氧化物酶(HRP)活性(图5),而且其催化活性比相同浓度的辣根过氧化物酶高40倍。并且Fe3O4磁性纳米粒子可以运用磁分离手段进行重复性利用,显著降低了生物检测的实验成本,利用此特性可进行多种生物分子的检测。 利用葡萄糖氧化酶(GOx)与Fe3O4磁性纳米粒子催化葡萄糖的反应(见式(1)和(2)),通过比色法检测葡萄糖,其检测的灵敏度达到5×10-5 ~ 1×10-3 mol/L 。由于Fe3O4磁性纳米粒子制备简单、稳定性好、活性高,成本低,因而比普通酶更有竞争优势,这也为葡萄糖的检测提供了高灵敏度和选择性的分析方法,在生物传感领域的应用上展现了巨大的潜能,为糖尿病人疾病的诊断提供了快速、灵敏的检测方法。然而要提高检测灵敏度,合成催化效率高的Fe3O4磁性纳米粒子及多功能磁性纳米粒子是关键。Peng等[56]用电化学方法比较了不同尺寸Fe3O4纳米粒子的催化活性发现,随着尺寸的变小,磁性纳米粒子的催化活性变高。Wang等[57]制备的单分散哑铃型PtFe3O4纳米粒子,由于本身尺寸和结构特点,可更大限度地提高催化活性。本研究组已经合成了分散性好和磁性高的氧化铁纳米粒子并对其进行了表征,利用其磁学和催化特性,已开展了葡萄糖等生物分子的检测,该方法的检出限达到1 μmol/L,具有灵敏度高、操作简便和成本低等优点[58]。总之,Fe3O4磁性氧化铁纳米粒子不但具有显著的超顺磁性,而且具有类辣根过氧化物酶催化特性,可通过使用过氧化物敏感染料,设计了一系列(如乙肝病毒表面抗原等)的免疫检测模型[59],因此超顺磁性纳米粒子在生物分离和免疫检测领域具有广阔的应用前景。4 结 语 随着纳米技术的迅速发展,磁性氧化铁纳米粒子的开发及其在生物医学、生物分析、生物检测等领域的潜在应用已经越来越受到重视,但同时也面临很多挑战和问题。(1)构建并制备尺寸小、粒径均一、分散性和生物相容性好及催化性能高的多功能磁性纳米粒子;(2)根据被检测生物分子的特点设计多功能磁性氧化铁纳米粒子,实现高灵敏度、特异性检测;(3)利用纳米氧化铁颗粒作为分子探针进行实时、在线、原位、活体和细胞内生物分子的检测。这些问题不仅是纳米材料在生物分子检测领域应用需要解决的难点,也是目前其进行生物分子检测研究的热点和重点。【参考文献】 1 Perez J M, Simeone F J, Saeki, Y, Josephson L, Weissleder R. J. Am. Chem. Soc., 2003, 125(34): 10192~101932 Kim G J, O'Regan R M, Nie S M. 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2005,17:714~7163 LIU JunTao(刘军涛), LIU RuPing(刘儒平), WANG MiXia(王蜜霞), LIU ChunXiu(刘春秀), LUO JinPing(罗金平), CAI XinXia(蔡新霞). Chinese J. Anal. Chem.(分析化学), 2009, 37(7): 985~9884 Lang C, Schuler D, Faivre D. Macromol. Biosci., 2007, 7(2): 144~1515 Silva G A. Surg. Neurol., 2007, 67(2):113~1166 Corot C, Robert P, Idee J M, Port M. Adv. Drug Delivery. Rev., 2006, 58(14): 1471~15047 Kohler N, Sun C, Wang J, Zhang M Q. Langmuir., 2005, 21(19), 8858~88648 LI BaoYu(李宝玉). Biomedical Nanomaterials(纳米生物医药材料). Beijing(北京): Chemical Industry Press(化学工业出版社), 2004: 1419 Tartaj P, Morales M P, GonzalezCarreno T, VeintemillasVerdaguer S, Serna C J. J. Magn. Magn. Mater., 2005, 290: 28~3410 ZHANG Xin(张 鑫), LI XinGang(李鑫钢), JIANG Bin(姜 斌). Chinese Chem. Industry. Eng.(化学工业与工程), 2006, 23(1): 45~4811 Wu J H, Ko S P, Liu H L, Jung M H, Lee J H, Ju J S, Kim Y K. Colloids Surf. A, 2008, 313/314: 268~27212 CHENG HaiBin(程海斌), LIU GuiZhen(刘桂珍), LI LiChun(李立春), GUAN JianGuo(官建国), Yuan RunZhang(袁润章). J. Wuhan University of Technology(武汉理工大学学报), 2003, 25(5): 4~613 QIU XingPing(邱星屏). J. Xiamen University: Natural Science(厦门大学学报:自然科学版), 1999, 38(5): 711~71514 Mao B D, Kang Z H, Wang E B, Lian S Y, Gao L, Tian C G, Wang C L. Mater. Res. Bull., 2006, 41(12): 2226~223115 Fan R, Chen X H, Gui Z, Liu L, Chen Z Y. Mater. Res. Bull., 2001, 36(3~4): 497~50216 Wang H W, Lin H C, Yeh Y C, Kuo C H. J. Magn. Magn. Mater., 2007, 310(2): 2425~242717 Harris L A, Goff J D, Carmichael A Y, Riffle J S, Harburn J J, St Pierre T G, Saunders M. Chem. Mater., 2003, 15(6):1367~137718 SONG LiXian(宋丽贤), LU ZhongYuan(卢忠远), LIAO QiLong(廖其龙). J. Funct. Mater.(功能材料), 2005, 36(11): 1762~176819 Itoh H, Sugimoto T. J. Colloid. Interface. Sci., 2003, 265(2): 283~29520 Xu J, Yang H B, Fu W Y, Du K, Sui Y M, Chen J J, Zeng Y, Li M H, Zou G. J. Magn. Magn. Mater., 2007, 309(2): 307~31121 Li Z, Wei L, Gao M Y, Lei H. Adv. Mater., 2005, 17(8): 11301~11305 22 Sun S H, Zeng H. J. Am. Chem. Soc., 2002, 124(28): 8204~820523 Bang J H, Suslick K S. J. Am. Chem. Soc. 2007, 129(8): 224224 Vijayakumar R, Koltypin Y, Felner I, Gedanken A. Mater. Sci. Eng. A, 2000, 286(1): 101~10525 Pinkas J, Reichlova V, Zboril R, Moravec Z, Bezdicka P, Matejkova J. Ultrason. Sonochem., 2008, 15(3): 257~26426 Khollam Y B, Dhage S R, Potdar H S, Deshpande S B, Bakare P P, Kulkarni S D, Date S K. Mater. Lett., 2002, 56(4): 571~57727 HAI YanBing(海岩冰), YUAN HongYan(袁红雁), XIAO Dan(肖 丹). Chinese Chem. Res. Appl.(化学研究与应用), 2006, 18(6): 744~74628 Jun Y W, Huh Y. M, Choi J S, Lee J H, Song H T, Kim S, Yoon, S, Kim K S, Shin J S, Suh J S, Cheon J. J. Am. Chem. Soc., 2005, 127(16), 5732~573329 Bharde A A, Parikh R Y, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad B L V, Shouche Y S, Ogale S, Sastry M. Langmuir, 2008, 24(11): 5787~579430 Kuhara M, Takeyama H, Tanaka T, Matsunaga T. Anal. Chem., 2004, 76(21): 6207~621331 Y, G. Biofuctionalization of Nanamaterials. WileyVCH: Weinheim 200532 Safarik I M S. Biomagn. Res. Technol., 2004, 2(1): 7

payout system 光纤补偿系统 isolation by porous oxidized sapphire 多孔氧化蓝宝石完全隔离 isolation by porous oxidized silicon (technology) 多孔氧化硅完全隔离(技术)

氢氧化镁最新研究进展论文

Nano flame retardant with high efficiency, versatility, low smoke, low toxicity, environmentally friendly, low filling volume of unique advantages, which greatly promoted the flame-retardant polymer matrix composite materials widely used. This paper describes the recent years with carbon nanotubes, magnesium hydroxide, aluminum hydroxide, antimony trioxide as flame retardant additives in polymer-based composite materials, the latest research, analysis of the flame retardant properties of materials retardant mechanism, and polymer-based flame-retardant composite application prospect.

以上的具体资料,急急急

Nano flame retardants are highly effective, multi-function, low smoke, low toxicity, environmental protection, low filling quantity special advantage, greatly contributed to the flame retardant polymer matrix composites, widely used. This paper briefly introduced in recent years to carbon nanotube, magnesium hydroxide, aluminum hydroxide, antimony trioxide as additives polymer-nanoparticle composites flame retardant the latest progress in research, this paper analyzes the characteristics and the flame retardant materials, and flame retardant mechanisms of flame retardant polymer-nanoparticle composites application prospect in the future.

二氧化碳制甲醇的研究进展论文

二氧化碳转化成甲醇过程中的一个关键因素是找到合适的均相催化剂,这对于加快化学反应生产甲醇至关重要。但问题是,转化反应需要的高温(约150℃)条件,往往会导致催化剂的分解。据物理学家组织网报道,此次研究人员开发出在高温下不会分解的金属钌催化剂,稳定性好,可重复使用,并可连续生产甲醇。研究表明,用新的催化剂及一些额外的化合物,可将从空气中捕获的二氧化碳转换为甲醇的效率提高到79%。在最初过程中,甲醇会与水混合,但水很容易通过蒸馏分离。研究人员希望这项工作未来能为“甲醇经济”做出贡献,并计划开发出一个“人为的碳循环”,其中碳被回收利用,以补充自然界碳的循环。

将二氧化碳转化为甲醇(一种潜在可再生的代用燃料)提供了同时形成代用燃料并减少二氧化碳排放的机会。自然发生过程的启发,一个团队波士顿大学的化学家使用多催化剂体系转换碳的二氧化碳,以甲醇具有高活性和选择性报道的最低温度,研究人员发表在杂志上的最新网络版化学。报告的主要作者波士顿学院化学副教授杰弗里·拜尔斯和弗兰克·宗格说,该团队的发现是通过在海绵状多孔晶体材料(称为金属有机骨架)中的单个系统中安装多个催化剂而实现的。分开的催化剂由海绵固定在适当的位置,可以和谐地工作。他们报告说,如果不以这种方式分离出催化活性物质,反应就不会进行,也不会获得任何产物。Tsung说,研究小组从细胞中的生物机械中汲取了灵感,该生物机械高效地使用了多组分化学反应。该小组采用了通过客体-客体化学分离催化剂的方法,其中将“客体”分子封装在“主体”材料中以形成新的化合物,从而将二氧化碳转化为甲醇。该方法受到自然界中多组分催化转化的启发,将温室气体转化为可再生燃料,同时避免了单一物种对催化的高需求。Tsung说:“我们通过将一种或多种催化剂封装在金属有机骨架中,然后将所得的主客体结构与另一种过渡金属配合物一起催化应用,来实现这一目标。”拜尔斯说,该团队包括研究生Thomas M. Rayder和本科生Enric H. Adillon,着手确定他们是否可以开发一种方法来整合不相容的催化剂,以便在低温下以高选择性将二氧化碳转化为甲醇。 。具体而言,他们希望找出与基于过渡金属配合物的二氧化碳到甲醇转化的最新技术相比,该方法是否具有特定优势。拜尔斯说:“在系统中正确的位置放置多个过渡金属络合物催化剂对于反应的转变至关重要。” “与此同时,将这些催化剂包封可以在多组分催化体系中实现可回收性。”研究表明,这些特性使多组分催化剂的结构在工业上更具相关性,这可能为碳中和的燃油经济性铺平道路。除了通过封装的催化剂,导致催化剂活性和循环利用实现现场隔离,球队发现的自催化功能的催化剂,而不需要大量的添加剂可以运行该启用的反应。Tsung表示,以前有关类似反应的大多数报道都使用了大量的添加剂,但该团队的方法避免了这种必要,并且是第一个在与能源相关的反应中使用二氧化碳的方法。

以空气为氧化剂的研究进展论文

湿式空气氧化法是以空气为氧化剂,将水中的溶解性物质(包括无机物和有机物)通过氧化反应转化为无害的新物质,或者转化为容易从水中分离排除的形态(气体或固体),从而达到处理的目的。通常情况下氧气在水中的溶解度非常低1 atm、20℃时氧气在水中溶解度约9 mg/L左右),因而在常温常压下,这种氧化反应速度很慢,尤其是高浓度的污染物,利用空气中的氧气进行的氧化反应就更慢,需要借助各种辅助手段促进反应的进行(通常需要借助高温、高压和催化剂的作用)。一般来说,在200~300 oC、100—200atm条件下,氧气在水中的溶解度会增大,几乎所有污染物都能被氧化成二氧化碳和水。湿式空气氧化法的关键在于产生足够的自由基供给氧化反应。虽然该法可以降解几乎所有的有机物,但由于反应条件苛刻,对设备的要求很高(要耐高温高压),燃料消耗大,因而不适合大水量污水的处理。 参考网络

空气中氧气含量测定的一种新方法 了解空气的主要成分并通过实验探究空气中氧气的体积分数是《全日制义务教育化学课程标准(实验稿)》的内容之一,引导学生认识和探究身边的化学物质,了解化学变化的奥秘,是化学启蒙教育的重要内容。本活动从日常生活和生产中选取学生熟悉的材料,引导学生通过观察和实验探究活动,认识物质及其变化,让学生体验化学美,从而激发学生学习化学的兴趣,使得学生乐于探究物质变化的奥秘,进而能体验科学研究过程中的喜悦,感受化学世界的奇妙与和谐。 � 一、活动材料 细铁丝、白醋、水、烧杯(250mL两只)、试管(约6cm长)、刻度尺、计时表、玻璃棒、试管刷。 二、活动原理 试管中形成的液柱高度与试管长度的比值代表空气中氧气含量,如28mm/150mm=19%。这存在着一个假设,即试管长度正比于试管体积,试管内气柱长度的变化完全是氧气消耗导致(试管中所有氧气被消耗),而且空气是理想混合气体,温度和压强不发生变化,该比值可表示空气中氧气的体积分数。 教师最好向学生建议用较细规格的铁丝及合适长度(与试管大小有关);在家里操作也可以用普通玻璃杯代替烧杯。 三、活动过程 1.量取长约100cm~200cm的细铁丝(越细越好),并弯折成长约4cm。 附图 实验装置 2.分别取1/8杯(约30mL)的醋和水,配制1∶1的醋—水混合物。 3.将弯折好的细铁丝浸入醋—水溶液中1min(浸于液面以下),然后轻轻取出并小心抖落上面的溶液(勿使醋溅出)。 4.稍扯铁丝使之蓬松,借助玻璃棒将其塞进试管,快速将试管倒放在另一只已经充满了3/4体积水的烧杯中,使试管口靠在水杯底(如附图)。 后,轻移试管,使试管中液面和烧杯中液面保持水平,量出试管中水柱高度,然后再将试管口靠在烧杯杯底。 6.每5min重复一次步骤5,当试管中液面高度不再变化时,记下该高度。实验过程中注意观察细铁丝有何变化,试管中的液面有何变化? 7.当试管内液面不再改变时,取出试管中的细铁丝,仔细观察细铁丝表面有何变化?然后用试管刷刷净试管。 8.测量试管的总长,计算试管液面不再变化时的高度与试管长度的比值,想一想,该比值能代表氧气在空气中的含量吗? 四、问题思考 1.活动中,你观察到细铁丝的变化了吗?想想看,细铁丝是否发生了某种化学反应?你能写出细铁丝发生变化的化学方程式吗?(提示:可根据细铁丝的表面颜色的变化来确定反应产物) 2.试管中液面发生什么变化?为什么会有此变化? 3.步骤5中为什么要移动试管,使得试管内外液面齐平? 4.在活动中,试管中氧气的体积分数变化了吗? 5.空气中氧气的体积分数大约为21%,把你的结果与该值比比看,相差多少?思考一下,以上哪些步骤可能对结果的影响较大? 五、参考答案 1.细铁丝的颜色从银白转变为红褐色,发生的化学反应是铁的氧化还原反应或腐蚀反应。可用化学方程式4Fe(s)+3O2(g) 2Fe2O3(s)来表示。 2.水液面上升,试管中的氧气被消耗了,压强和温度基本保持不变,因此,氧气减少意味着试管内气体体积的变化,则水面上升。 3.这是为了保证试管中气体体积(或长度)的测量是在相同大气压下进行,学生应尽可能获得不超过10%误差的测量结果。 参考文献 ��1�JCE Editorial Staff. Just Breathe: The Oxygen Content of .,2001,78:512A—512B ��2�中华人民共和国教育部.全日制义务教育化学课程标准(实验稿).北京:北京师范大学出版社,2001参考资料:

人类探索空气的组成的历史在远古时代,空气曾被人们认为是简单的物质,在1669年梅猷曾根据蜡烛燃烧的实验,推断空气的组成是复杂的。

空气是指地球大气层中的混合气体。

它由78%的氮气、21%氧气、还有1%的稀有气体和杂质组成,其成分不是固定的,随着高度的改变、气压的改变,空气的组成比例也会改变。它分层覆盖在地球表面,透明且无色无味,对人类的生存和生产有重要影响。

氧是一种重要的氧化剂,它使得空气具有氧化的作用。几乎所有化学燃烧和生理呼吸都需要氧。空气中的氧是通过光合作用产生的。在整个地球历史中通过光合作用所产生的氧的总量约是今天空气中氧的总量的20倍。

氩是一种惰性气体。它基本上不参加化学反应。因此在焊接时氩用来当作保护气。此外由于它相对于空气而言导热性比较差,因此它也被用来作为气密窗玻璃之间的隔热气体。

氧疗研究新进展论文

经过临床验证《高压负离子氧疗临床研究报告》指出高压负离子氧舱是以治疗与康复支气管哮喘、慢性阻塞性肺疾病(COPD)为主的大型氧舱,有提高肺功能、改善机体缺氧、调节免疫平衡、增加机体抗疾病能力的作用。在此基础上配合其他药物和呼吸训练体操,使良好的康复治疗效应得以巩固,这一氧疗方案走出了高压氧医学和哮喘、慢阻肺治疗的低谷,具有重要医学价值。1、报道负离子高压氧对致病菌有直接抑制作用。通过临床研究发现:在治疗呼吸系统疾病患者709例,其中普通感冒189例,急慢性支气管炎439例(部分伴有哮喘、肺气肿、支气管扩张),支气管哮喘29例,支气管扩张、肺气肿10例,肺部感染7例。每日治疗1-2次,每次15-20分钟,10-30日为一疗程,负离子浓度×106个/cm3,总有效率在97%以上。普通感冒吸入后鼻塞很快消失,其他症状缓解至消失,特点是无1例并发上呼吸道炎症。2、急慢性支气管炎治疗后,炎症、咳痰等明显改善,对慢性支气管炎疗效尤为显著。支气管哮喘、肺气肿吸入负离子高压氧后,胸闷、发给等症状消失,对喘息症状缓解作用明显。3、对30例急慢性支气管炎病例进行负离子高压氧治疗前后进行了肺功能和血气分析对比,肺功能VC或FEV1有明显进步,血气PaO2在治疗后有明显改变。1年后随访,不复发的痊愈率达80%。4、应用负离子和药物气溶胶治疗呼吸系统感染347例,包括慢性支气管炎97例,慢性支气管炎伴肺气肿75例,肺心病伴呼吸道感染54例,慢性肺炎34例,肺结核伴呼吸道感染87例。药物气溶胶包括抗生素(庆大霉素或卡那霉素或青霉素加链霉素)、α-糜蛋白酶、地塞米松、鱼腥草提取液。必要时酌加氨茶碱或异丙肾上腺素、碳酸氢钠等。每日2次,12-15日为1疗程,经1-2个疗程后总有效率。对照组65例(单独吸入药物气溶胶),有效率。高压负离子氧舱是以治疗与康复支气管哮喘、慢性阻塞性肺疾病(COPD)为主的大型氧舱,有提高肺功能、改善机体缺氧、调节免疫平衡、增加机体抗疾病能力的作用。在此基础上配合其他药物和呼吸训练体操,使良好的康复治疗效应得以巩固,这一氧疗方案走出了高压氧医学和哮喘、慢阻肺治疗的低谷,具有重要医学价值。

吸氧是临床常用的治疗方法,也是缓解缺氧的一种方法。下面是我精心推荐的关于吸氧的技术论文,希望你能有所感触!

【关键词】 急性心肌梗死;氧气疗法;护理

【摘要】 目的 观察急性心肌梗死患者缺氧状态、监测吸氧疗效。 方法 对40例急性心肌梗死患者动脉血氧分压和氧饱和度进行监测,将氧饱和度和SpO2与患者病情比较,根据SpO2选择吸氧浓度并做好相应护理。 结果 急性心肌梗死患者入院时动脉血氧分压和氧饱和度下降占57%;患者病情与缺氧有关,SpO2≥病情较轻;吸氧增加SpO2者预后较好。 结论 根据患者缺氧具体情况选择吸氧浓度,SpO2≥有助于减轻心肌损伤,改善预后。

【关键词】 急性心肌梗死;氧气疗法;护理

急性心肌梗死(AMI)是在冠状动脉病变的基础上发生冠状动脉血供急剧减少或中断,使相应的心肌严重而持久地急性缺血所致。常并发低氧血症,吸氧是 治疗 急性心肌梗死的基本措施之一。为此,作者对我院收治的AMI患者吸氧流程进行了观察,以探讨吸氧浓度对减轻心肌缺氧损伤的效果,报告如下。

1 资料与方法

对象 选取2001年5月~2004年5月在我院治疗的发病≤24h急诊入院的40例AMI为观察对象。其中男31例,女19例;年龄41~84a,平均51a;梗死部位:非Q波AMI16例,前壁9例,下壁11例,多部位梗死2例,其它部位2例。入院时情况:心律失常17例,心衰5例,低血压性休克4例。

方法

检查与治疗 患者入院后立即作心电图检查,每隔2~6h抽血检查心肌酶CPKMB,直到24h为止,即刻抽取动脉血行血气 分析 动脉血氧分压(PaO2)和氧饱和度(SaO2)检查,经皮监测脉搏血氧饱和度(GPO2),并持续72h,然后给予吸氧,执行治疗医嘱如溶栓、抗凝、抗血小板、扩张冠状动脉、补液等。

吸氧护理与监测SpO2 向患者解释吸氧对治疗AMI的重要性,血气分析检查是吸氧的客观指标,当病人PaO2<或SaO2<时必须吸氧,选择鼻塞给氧法吸氧,开始氧流量为4L・min-1,以后根据SpO2调整氧流量,使SpO2保持≥指夹最好放置在非血压监测的手指,每2h更换1次手指,以防指夹长时间压迫手指缺血,监测时注意观察手指是否有红、肿、皮肤受损等,监测期间如发现读数突然下降,应及时检查探头是否松脱,吸氧过程中注意观察患者的脉搏、血压、精神状态、皮肤颜色、温度及呼吸方式等有无改善。

2 结果

临床疗效 40例AMI患者经过积极 治疗 和合理给氧,37例病情稳定,痊愈出院,3例由于严重并发症死亡。

AMI患者PaO2和SaO2异常情况 入院时PaO2在~,11例PaO2<;SaO2在~,12例SaO2<。入院时PaO2和/或SaO2下降共23例,占57%(23/40)。

AMI患者SaO2与SpO2异常情况 入院时SaO2为~,SpO2为~。

梗死部位与SaO2的关系 入院心电图梗死部位中非Q波AMI,前壁及下壁AMI患者的SaO2多数≥,多部位梗死2例SaO2均<,其它部位SaO2有1例≥,1例<。

临床表现与SaO2和SpO2之间的关系 入院24h内SpO2≥与SaO2<相比较,SaO2<的AMI患者临床表现重,合并低血压休克,心衰并发症多。

3 讨论

PaO2和SaO2正常值分别为~和~。AMI患者由于心肌缺血坏死、心功能降低引起肺静脉压升高,使肺间质和肺泡水肿,肺顺应性下降,肺通气/血流比值异常导致低氧血症,出现并发症时低氧血症更为严重,翁心植等[1] 分析 100例AMI患者血气分析检查结果发现SaO2和PaO2下降与心律失常及心衰进行性加剧有关。本组病例中有57%的AMI患者入院时SaO2<。心肌组织缺血缺氧会使心脏电生理、心肌代谢和心肌收缩功能恶化而导致更严重的不良后果。

吸氧是治疗AMI的基本措施之一,通过提高肺泡内氧分压来增加SaO2、PaO2及氧含量,纠正低氧血症,确保组织氧供应,缓解组织缺氧,改善心肌氧合,有助于梗死周围缺血心肌氧供,缩小梗死范围,减轻心肌缺氧性损伤。氧疗还能使肺内气体交换恢复,通气量下降,减少呼吸功能,降低氧耗量。吸氧对减轻呼吸困难、胸痛、紫绀及焦虑、恐惧等也有积极作用,兼有医疗和心理双重效果。给氧气如同药物一样应正确 应用 ,氧疗应有明确指征。临床实践证明吸入高流量氧也有不利作用,PaO2>可诱发冠脉痉挛,减少心肌氧供,外周血管收缩,增加心脏后负荷,加大心肌氧耗,吸氧浓度大于50%持续48小时,可使肺泡表面活性物质遭到破坏,导致肺损伤[2]。因此选择合理吸氧浓度是关键。

本组病例以心电图、心肌酶和临床情况作为心肌损伤指标,根据AMI患者缺氧具体情况选择吸氧浓度,确保SpO2≥有肋于减轻心肌损伤。

参考 文献

[1] 翁心植,王淑均,向红笛,等.急性心肌梗塞时血液气体分析检查的临床意义[J].实用内科杂志,1986,6(11):532

[2] 钱学贤. 现代 冠心病监护治疗学[M].北京:人民军医出版社,1993:138~151

点击下页还有更多>>>关于吸氧的技术论文

论文标题:长期氧疗的护理 内容摘要: 吸氧是治疗各种肺部疾患合并低吸氧是治疗各种肺部疾患合并低氧血症的基本手段。长期氧疗的适应症:为慢性呼衰稳定期的慢性阻塞性肺病患者治疗后PaO27. 33kPa(55mmHg),或Sa(O2)88%,或PaO2 7. 33~9 .33kPa,(50~70mmHg)且伴有继发性红细胞增多症(血细胞比容55%),肺动脉高压、肺心病临床表现之一者。其次是夜间低氧血症患者。长期氧疗可以纠正慢性缺氧患者低氧而不会明显加重CO2潴留,减缓肺功能恶化、降低肺动脉压延缓肺心病进程,疗程4~6周就可使红细胞压积减少、血液粘稠度降低、心肺氧供增加,改善心功能,提高生存率。但是长期氧疗中给患者也造成不适感,主要原因有对氧疗的方式不习惯,对氧气的气味不适应,影响睡眠、行动不方便、家庭经济困难等。所以,我们护理人员在保证准确、迅速、安全、有效的氧疗护理中,增加舒适感、减少噪音、提高和改善氧疗的依从性,给患者心理和生理带来尽可能的满足,使长期氧疗护理更具有重要意义和迫切性. 论文内容: 长期氧疗的护理 吸氧是治疗各种肺部疾患合并低氧血症的基本手段。长期氧疗的适应症:为慢性呼衰稳定期的慢性阻塞性肺病患者治疗后PaO27. 33kPa(55mmHg),或Sa(O2)88%,或PaO2 7. 33~9 .33kPa,(50~70mmHg)且伴有继发性红细胞增多症(血细胞比容55%),肺动脉高压、肺心病临床表现之一者。其次是夜间低氧血症患者。长期氧疗可以纠正慢性缺氧患者低氧而不会明显加重CO2潴留,减缓肺功能恶化、降低肺动脉压延缓肺心病进程,疗程4~6周就可使红细胞压积减少、血液粘稠度降低、心肺氧供增加,改善心功能,提高生存率。[1]但是长期氧疗中给患者也造成不适感,主要原因有对氧疗的方式不习惯,对氧气的气味不适应,影响睡眠、行动不方便、家庭经济困难等。所以,我们护理人员在保证准确、迅速、安全、有效的氧疗护理中,增加舒适感、减少噪音、提高和改善氧疗的依从性,给患者心理和生理带来尽可能的满足,使长期氧疗护理更具有重要意义和迫切性。 1.氧疗的健康宣教 给氧应该属于一种药物治疗,但人们低估了氧气治疗低氧血症的能力,如果给氧不当可致死亡。我们护士要懂得供氧的方法和病员吸氧的目的,还要教会病员如何接受正确、安全、舒适的氧疗,懂得用氧的基本常识、使用时的注意事项、可能遇到的问题加以说明、理解动脉血气分析及动脉血氧饱和度的意义。加强氧疗的科普教育自始至终贯穿整个氧疗护理全过程。 安全指导 要强化患者的安全用氧意识。氧气本身不会燃烧,但它是助燃气体,使用时注意防热、放火、防油、防震,严禁在病区内吸烟。使用氧气筒时随时查看氧气的压力,小于5Mpa时应换瓶,以免充气时发生危险。 给氧的目的 针对呼吸困难的病人,提供合适的氧疗非常重要。某些缺氧的病人如果接受了高浓度的氧可能会死亡,如慢性阻塞性肺部疾病的患者不能吸入高浓度的氧,因为患者对血液中的二氧化碳的敏感性降低,血液中的低氧状态较二氧化碳更能刺激呼吸中枢,如果此时吸入高浓度的氧可抑制呼吸中枢,导致二氧化碳潴留,甚至死亡。 严格执行氧疗浓度和时间 长时间高浓度的会引起氧中毒,呼吸抑制等副作用。有研究表明,控制氧浓度在24%-28%范围内,即使疗程超过10年也不会发生氧中毒。[2 3]对于需要长期氧疗的病员每天接受氧疗的时间越长,疗效越高,但是每天24小时不间断吸氧是不现实的。目前一致认为每天吸氧至少15小时,可使动脉血氧分压大于才能获得氧疗效果[4]护士在夜间巡视病房时,常发现病员擅自将氧流量调高现象,以为这样能改善缺氧症状。有些病员缺氧症状稍有改善后就拒绝氧疗,这重错误的行为要及时制止,使病员理解,所以这方面的宣教尤其重要。 2.给氧导管的选择 一次性单腔吸氧导管(鼻塞式) 这种给氧导管比以往鼻导管给氧法对鼻黏膜的刺激性明显减少,但它不容易固定,用胶布固定影响美观又造成皮肤不适。 一次性单腔吸氧导管(鼻勾式) 这种给氧导管弥补了上述这点,他利用软塑料卡住鼻翼,使导管不容易脱落,缺点是:单腔吸氧导管可使氧气气流集中冲击一侧鼻孔,加上软塑料卡住鼻孔,长期可使鼻黏膜充血、肿胀、降低氧疗。 一次性双腔吸氧导管(耳套式) 它有两个通气孔,将两个鼻塞塞入鼻孔,可使氧气气流分散吸入,鼻导管可用戴眼镜的方式套在耳朵上。活塞可根据病员的脸型长短,调节长度,增加稳固度和舒适度。有研究表明:以上三种给氧方式后呼吸、脉搏、血氧饱和度结果,差别无显著性。[5] 一次性面罩吸氧导管(松紧带式)面罩给氧对患者气道黏膜无刺激、固定好、氧流量大、氧浓度可达较高水平,缺点是清醒患者有憋气感[6]、妨碍交流、咳嗽咳痰不方便。 由上可以看出一次性双腔吸氧导管是长期氧疗患者的首选。 3.减少吸氧带来的噪音 原理:使通到氧气湿化瓶内的管子,鼓出的大水泡变成多个小水泡,而且开口对准瓶壁,受重力的影响,使小水泡撞击瓶壁的力量明显减少,最终消除噪音。 方法:先将开塞露空囊的颈部留取1cm,其余部分剪掉,用7号针头在球囊上刺入小孔(底部除外),大小要均匀,间距2cm,消毒后备用。用长3cm的压脉带将开塞露与湿化瓶内的通气管下端连接在一起,其余按吸氧操作常规进行。[7] 李敏[8]等人也对氧气湿化瓶进行改进:取长截面直径为4cm的圆柱形海绵柱,其中央为长,截面直径为的空心,将其放入湿化瓶内使海绵柱的空心套在湿化瓶内的长管上。海绵每周清洗消毒1次,用2%戊二醛溶液浸泡15min,再用蒸馏水洗净晾干后备用。他们对氧气湿化瓶改进前后不同流量吸氧时噪音均降低。 这样可以消除吸氧带来的噪音,保证长期氧疗患者夜间安静的休息环境。 4.注意氧气的加温、湿化 刁尚芝[9]等人对电子温控氧气湿化器对慢性阻塞性肺病急性期患者疗效的影响,结果表明:加热湿化的氧可湿化气道内分泌物顺利排出,防止小气道阻塞及闭塞性支气管炎的发生或加重,改善临床症状。经湿化的痰液纤毛易于推移,痰液排出明显加快。湿化的黏膜有利于炎症的消退,气道通畅度得以明显改善。 对于要长期氧疗的患者来说吸入的氧气以温度37C,湿度80%左右为宜,在湿化瓶中盛50-70C温水达瓶容积的1/3-1/2,每日更换,也可用暖瓶塞上打两个小孔,在瓶内盛4/5瓶50-70C温开水,按照吸氧装置的湿化瓶形式来安装暖水瓶,使氧气通过后达到加温、湿化的效果,保证适宜的温度、湿度的氧气吸入。

相关百科

热门百科

首页
发表服务