课本上的证明方法,你学会了吗?
BC=AC-ABBC^2=(AC-AB)^2=AC^2-2AC*AB+AB^2a^2=b^2-2bccosA+c^2
比如三角形的三边对应的三个向量a,b,ca·b=b·c=c·a,可以用4种方法判断它的形状1.(根据对称性)条件a?b=b?c=c?a中a,b,c是对称的,从而判断其为等边三角形。2.因为a+b=c,所以由a?c=b?c得a?(a+b=b?(a+b)),从而a^2=b^2,即。同理可得b=c,所以是等边三角形。3.由a?c=b?c得(a-b)?c=0,即a-b垂直于c。在该直角三角形中由勾股定理得a^2+c^2=4b^2。同理可得a^2+b^2=4c^2。两式相减并化简可得b=c.同理.所以是等边三角形。4.由a?c=b?c得,。而在三角形中有余弦公式b^2=a^2+c^2-2bccosB,a^2=b^2+c^2-2bccosA。由这三个等式可得。同理.所以是等边三角形。
ab/|ab|表示ab边的单位向量,ac/|ac|表示ac边的单位向量,所以(ab/|ab|+ac/|ac|)表示的向量在角bac的角平分线上,因为(ab/|ab|+ac/|ac|)*bc=0,所以角bac的角平分线垂直于边bc,所以△abc是以角a为顶角的等腰三角形,ab/|ab|*ac/|ac|=1*1*cosa=cosa=1/2,所以角a=60°,等腰△abc中一角为60°,所以△abc为等边三角形。
初二就要论文?还3000字。。。。。唉。。。。。
你们厉害啊,我高一写过。你就把数学学会的徽标写了就行,应该能凑够3000字了。
七年级数学小论文怎么写?下面是小编搜集的七年级数学小论文500字范文,希望对大家有帮助! 七年级数学小论文500字(一) 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙. 例如,三角形.三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形.通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度.用6个正三角形就可以铺满地面. 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度.用4个正四边形就可以铺满地面. 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度.它不能铺满地面. 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度.用3个正四边形就可以铺满地面. 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度.它不能铺满地面. 由此,我们得出了.n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度.若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面. 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面. 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的. 七年级数学小论文500字(二) 1证明一个三角形是直角三角形 2用于直角三角形中的相关计算 3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 即: c=(a2+b2)(1/2) 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 七年级数学小论文500字(三) 我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快。可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对。 今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9→积中有1个奇数数字。33×33=1089→积中有2个奇数数字。333×333=110889→积中有3个奇数数字。3333×3333=11108889→积中有4个奇数数字。…… 从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面。积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字。 做了这道题,我知道做数奥不能求快,要求懂它的方法。 七年级数学小论文500字(四) 今天,我遇到两道数学题,并得到了一些窍门。 第一题:幼儿园买进大小两种毛巾各40条,共用58。8元。大毛巾比小毛巾的2倍多元。这两种毛巾各多少元?其实,这道题还是较简单的。只要用解方程就行了。先算出大小毛巾的价钱,在计算,不一会,我就做完了。 乔布斯水果店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售,由于定价过高,无人购买。后来不得不按38%的利润重新定价,这样售出了其中的40%。此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。结果,实际获得的总利润是原定利润的,那么第二次降价后的价格是原来定价的。第二次降价的利润是:(×)÷(1-40%)=25%,价格是原定价的(1+25%)÷(1+100%)=。接着道题要把这批苹果看成1,价格也看成1,这批苹果总共分两次卖,第一次卖了,第二次卖了。总的利润是,总的售出价格就是,第一次卖了40%×,×就是第二次卖出的总货款。再减掉二次的成本60%,就得到第二次多卖出的钱。利润就是销售价比成本价多出来的钱再除以成本,所以用这个钱除以第二次的成本1-40%,就等于第二次降价后的利润,这时候需要注意,原来的定价应该是(1+100%),所以用(1+25%)÷(1+100%)相除就等于所要答案。 某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15,小轿车10元。某日通过该收费站的大客车和小客车数量比是5:6,小客车与小轿车数量比是4:11,收取小轿车通行费比大客车多210元。求这天这三种车辆通过的数量。解题思路:先把两个比换算成同样的比例,这样三个之间就可以作比较。小轿车比大轿车多出210元,车子的数量比是33:10,实际上收费比是3:1,这样形成的差33×1-10×3=3,210除以3就等于每个配给的量是70辆。就是5:6=10:12,4:11=12:33,30:10=3:1,33×1-10×3=3,210÷3=70(辆);大客车:70×30÷30=70(辆),小客车:70×6÷5=84(辆),小轿车:84×11÷4=231(辆)。 不要担心题目有多难,无论什么数学题总会有答案的,数学就是这么简单,就要看你逻辑性、思维和分析能力是否强。希望你们也爱上数学! 七年级数学小论文500字(五) 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。[七年级数学小论文500字]相关文章:1.趣味数学小论文2.数学小论文作文3.数学小论文的作文4.数学小论文200字5.关于数学小论文6.数学高中小论文7.小学有关数学小论文8.高中的数学小论文9.数学与生活(小论文)精选10.数学生活小论文
自己要改动一下, 不能直接用哦勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500). 实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.
一、创设教学情景,使“数学教学生活化”。以此激发学生的学习兴趣,调动学生积极性。 创设教学情境是模拟生活,使课堂教学更贴近现实生活,让学生身临其境,如见其人,如闻其声,加强感知,突出重点,突破难点,激发兴趣,开发思维。课堂教学中如何创设教学情境呢?我认为可这样做: 1、运用实例创设情境。如教学循环小数概念时,我给学生讲永远讲不完的故事:“从前,山上有座庙,庙里有个老和尚在给小和尚讲故事:老和尚说:从前山上有座庙……”,通过实例初步感知“不断重复”,再举出自然现象“水→汽→云→水”的循环变化,引出“循环”的概念。 2、运用实物(挂图)创设情境。“圆的认识”教学时,我这样引入:出示一幅颜色鲜艳的用正方形做轮子的自行车,问同学们这自行车漂亮吗?喜不喜欢?为什么?学生们回答:“不喜欢。因为这车虽然漂亮但踩不动。”我把正方形车轮换成椭圆后再问学生喜不喜欢,同学们还是说不喜欢,因为骑这样的自行车,即使是在平坦大路上也象在颠跛不平的路上骑一样,我再把椭圆形车轮换成圆形,学生才满意。 3、动手操作创设情境。在推导平行四边形面积公式时,我让学生准备几个平行四边形,鼓励他们动手操作,通过画、剪、移、拼等方法把一个平行四边形变成我们学过平面图形——长方形,观察拼成的长方形长和宽与平行四边形的底和高有什么关系,然后推导出:因为长方形面积=长×宽,所以平行四边形面积=底×高。平行四边形面积公式是学生在操作时,通过观察、思考概括而来,学生尝试到成功的快乐,不但能掌握知识,更能培养他们的信心和兴趣。 4、运用多媒体创设情境。多媒体教学具有直观、形象、具体、生活化的特点,运用多媒体创设情境,使抽象概念具体化,使难理解的问题容易化。如教学“长方体的认识”时,相对的面完全相同,相对的棱长度相等,我运用电脑平移两个面和相应的棱,使学生看见两个相对的面完全重合,相对的棱完全相等,从而达到具体,直观的效果。 5、 模拟生活创设情境。如教学两步加减的应用题时,要求每个小组的同学可以邀请别组的同学参加,小组人数可以比原来的人数多也可以比原来的少。 第一小组:我这组原来6人,走了2人,来了4人,现在有8人。 问:谁能把第一小组人员变化情况列成式子?6-2+4=8(人) 又问:谁把它编成求“现在有多少人?”的应用题。 第二小组:我这组原来6人,先来了2人,后面又来了3人,现在有11人。…… 通过若干个小组的汇报训练,学生在活动中完成了两步加减的应用题学习。 创设生活化的情景,让学生经历将现实问题抽象成数学模式的过程。 如我在教三年级教学《分数的初步认识》时,我就安排了这样一个游戏:先请上男、女学生各一名站在讲台前,然后,我拿出4个月饼,请其余学生用手指表示每人分到的月饼个数。要求大家仔细听老师要求,然后做。我边分边说:“我有4个月饼,平均分给蔡伟和熊娴,请用手指个数表示每人分到的月饼个数”。学生很快伸出2个手指。我接着问如果只有一个月饼,要平均分给蔡伟和熊娴,请用手指表示每人分到的月饼个数,这时,许多同学都难住了,有的同学伸出弯着的一个手指,问他表示什么意思,回答说,因为每人分到半个月饼,我进一步问:你能用一个数来表示“半个”吗?学生被问住了。此时,一种新的数(分数)的学习,成了学生自身的欲望,这样创设了一个与生活相关的教学情景,就激发了学生学习的兴趣,激起了学生解决问题的欲望。 二、研究生活中的数学,使数学课堂教学生活化。 知识是前人在生活中积累的经验或是揭示出的规律,而教学目标是为了掌握规律及学习发现规律的方法。我们老师如果只是让学生掌握知识,那就是把学生头脑当成了知识的容器,“头脑不是一个要被填满的容器,而是一把需被点燃的火把”。因此,教学中必须让学生了解知识发生的过程,但40分钟毕竟有限,因此我们老师要引导学生善于去捕促、获取、积累生活中的数学知识。 首先,要挖掘教材中生活资源。我以小学数学第十册举三个例。例1:数据的收集,要求学生在上放学途中遇到红灯时,数一数另一方向经过的大客车、小汽车、摩托车各是多少辆?例2:长方体和正方体的认识,要求学生模仿家庭中长方体和正方体用硬纸板动手做一个长方体和正长体。例3:质数和合数,分解质因数,布置作业,想一想班上每个同学的学号是质数还是合数,并把合数分解质因数。 其次,要指导学生观察生活中的教学。让学生观察生活中的数学,既可积累数学知识,更是培养学生学习数学兴趣的最佳途径。低年级学生数一数客厅的资砖、光碟等数量,比一比身高、体重,认一认周围的平面图形和立体图形。中高年级观察数学美,如形体的美、结构美等。 三、设计“数学生活化”的练习,帮助学生去发现生活中的数学问题,并应用所学的数学知识解决实际问题。使学生通过练习感觉到生活中处处有数学,数学来源于生活并应用于生活。 1、在练习过程中创造性地对教材内容进行还原和再创造,将数学练习融合于生活中,就可以使原有的练习为我所用。如我教《求平均数》(第八册)时,练习中有一题是给出一组学生身高数据,算出平均身高,来巩固平均数=总数÷个数的这种方法。我是这样做的:先给出我省十岁儿童的平均身高是140cm,问“我们组的身高水平是在平均身高之上还是不到平均身高呢?”引出要算本组平均身高,再让学生统计本小组8个人的身高,最后通过计算,得出小组的平均身高,与140cm进行比较。同样是计算学生平均身高的练习,但这样的练习设计不但巩固了求平均数的方法,还让学生明白了算平均数的必要性,也体会到生活中需要平均数;还学会了算平均数的这些数据是怎样来的;从平均数中可以获得哪些信息等等。我觉得这样的教学就达到了目标。 2、把生活中的数学原型生动地展现在课堂上,使学生眼中的数学不再是简单的做数学练习,而是富有情感、贴近生活,具有活力的东西。如我在教学长“方体和正方体的表面积”一课的练习拓展中,我设计了这样一个题目,我们的教室由于使用时间过长,比较成旧,需要重新粉刷,泥工师傅要按平方受取工资,总务处胡老师想要大家帮他算一算:我们教室要粉刷的面积是多少?请同学们明天作个答复。接着我让同学们讨论:要算出这个教室的粉刷面,需要找到那些数据,同学们准备怎么办?然后,让大家课后完成,可以合作。通过老师的点拨,激发了学生的自主探究和动手实践,学生兴趣高涨,积极动脑思考,动手实践,真正地把数学知识用到了生活当中。 总之,我们数学教师要引导学生善于思考生活中的数学,加强知识与实际联系;要做生活中的有心人,力争结合教学内容和学生的生活经验以及已有的知识,尽可能地创设一些生动有趣、贴近生活、富有生活气息的情景和练习,使学生切实体验到“生活离不开数学”,“人人身边有数学”,用数学可以解决生活中的实际问题,从而对数学产生亲切感,和浓厚的学习兴趣,增强学生对数学知识的应用意识,培养学生的自主创新能力和解决问题的能力。我对“数学教学生活化”的点滴尝试 数学中的测量在现实生活中的应用
三角学与天文学 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、 *** 数学中都有三角学的内容,可大都是天文观测的副产品.测量天体之间的距离不是一件容易的事. 天文学家把需要测量的天体按远近不同分成好几个等级.离我们比较近的天体,它们离我们最远不超过100光年(1光年=万亿1012公里),天文学家用三角视差法测量它们的距离.三角视差法是把被测的那个天体置于一个特大三角形的顶点,地球绕太阳公转的轨道直径的两端是这个三角形的另外二个顶点,通过测量地球到那个天体的视角,再用到已知的地球绕太阳公转轨道的直径,依靠三角公式就能推算出那个天体到我们的距离了.稍远一点的天体我们无法用三角视差法测量它和地球之间的距离,因为在地球上再也不能精确地测定它们的视差了. 〔河内天体的距离又称为视差,恒星对日地平均距离(a)的张角叫做恒星的三角视差(p),则较近的恒星的距离D可表示为:sinπ=a/D〕 若π很小,π以角秒表示,且单位取秒差距(pc),则有:D=1/π 用周年视差法测定恒星距离,有一定的局限性,因为恒星离我们愈远,π就愈小,实际观测中很难测定.三角视差是一切天体距离测量的基础,至今用这种方法测量了约10,000多颗恒星.因此从天文学中又衍生出了三角学,而三角学则为天文研究奠定了基础. 三角学起源于古希腊.为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理.印度人和 *** 人对三角学也有研究和推进,但主要是应用在天文学方面.15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的.16世纪法国数学家韦达系统地研究了平面三角.他出版了应用于三角形的数学定律的书.此后,平面三角从天文学中分离出来,成了一个独立的分支.平面三角学的内容主要有三角函数、解三角形和三角方程. 而三角学的发展历程又是十分漫长的. 最早,古希腊门纳劳斯(Menelaus of Alexandria)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些 *** 学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J•Regiomontanus,1436~1476). 雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表. 雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对16世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响. 最先使用三角学一词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的. 三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道.商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章. 16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucus,1514~1574).他1536年毕业于滕贝格(Wittenbery)大学,留校讲授算术和几何.1539年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表. 17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用. 三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的 *** 人中已有研究. 文艺复兴后期,法国数学家韦达(F.Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔.给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等.第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础.对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593年又用三角方法推导出余弦定理. 1722年英国数学家棣莫弗(A.De Meiver)得到以他的名字命名的三角学定理 ?(cosθ±isinθ)n=cosnθ+isinnθ, 并证明了n是正有理数时公式成立;1748年欧拉(L.Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式 ?eiθ=cosθ+isinθ, 对三角学的发展起到了重要的推动作用. 近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及19世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论. 如今,人们从更高、更深的角度来认识“三角学”,是由于复数的引入.人们对复数的思考由来已久,例如对方程x2+1=0的根的思考,但人们认真地将虚数=i引入数学则是16世纪的事了.之后欧拉建立了著名的欧拉公式:eiθ=cosθ+isinθ,使得三角学中的问题都可以化归为复数来讨论,于是三角学中一大批问题得以轻松地解决.有了复数与欧拉公式,使人们对三角学的已有理论的理解更为深刻,并可以把一些原始的、复杂的处理三角学的方法与工具“抛到一边”. 事实上,三角学是一门实用的数学分支,尽管源自于天文学,但在很多其他学科中都有用. 百年前,希尔伯特在他那著名的讲演中,用以下这段话作为结束语:“数学的有机统一,是这门科学固有的特点,因为它是一切精确自然科学知识的基础,为了圆满实现这个崇高的目标,让新世纪给这门科学带来天才的大师和无数热诚的信徒吧!”我深信,只要我们从现在开始,学好数学,用好数学,21世纪一定会“给这门科学带来天才的大师”,而且其中肯定有许多来自我们90后! 注:简单的将网上的排了一下序,仍需修改!
基于网络环境下《三角函数的图像和性质》课堂教学的探讨数学论文 摘 要:互联网的出现,教育模式将有革命性的变化,基于网络环境下的教学已成为当今教学改革的核心,也更能够体现新课程标准精神。基于网络环境下的数学教学,有助于突破难点,真正实现分层教学和因材施教,从而提高教学效益。基于网络环境下的数学教学应处理好网络与学生的和谐关系,网络与教师的关系,教师与学生的关系。关键词:教学 数学 网络 新课标传统的教育模式的教学方法、教学手段和教学评价已不能适应社会发展和人们学习的需要,基于网络环境下的学科教学和课堂评价的出现和普及,极大的丰富了教学改革的内容,充分有效的利用了教学资源,基于网络环境下的课堂教学与评价把文本、图像、图形、视频、音频、动画整合在一起,并通过互联网进行处理、控制传播、为学生提供了最理想的学习环境。 一、基于网络环境下的数学教学的含义 基于网络环境下的数学课堂教学,根据新课程标准的教学内容和教学目标需要,继承传统教学的合理成分,打破传统教学模式,全天候,不间断,因材施教的新型教学方法,教学与评价的信息在互联网上传输与反馈,极大的优化了教师群体,极大的丰富了学生的知识能力。基于网络环境下的教学,可以共享教学资源,传递多媒体信息,适时反馈学生学习情况,刺激学生不同的感官,符合学生的学习认知规律,提高学生的学习兴趣,扩大了信息接受量,增大了课堂教学容量,同时又具有实时性,交互性,直观性的特点大大丰富了课堂教学模式,同时又满足了分层教学,因材施教,远程教学等社会需要,开创了教学的全新局面。 二、基于网络环境下数学教学与评价的应用 基于网络环境下数学教学与评价有两大优点: 1、能做到图文并茂,再现迅速,情境创设,感染力强,能突破时空限制,特别是基于.Net技术的交互式动态网页更能提高学生的多种感官的感知效能,发挥个体的最大潜能和创造力,加快学生对知识的理解、接受和记忆,也最能体现新课标的精神,也极大的满足社会全民教育,终身教育的要求。 2、同时全体老师又能通过网络共享教学资源,适时创新资源,使每一位老师都成为名师,使教学的方法水平永不落后。如在讲授函数这部分内容时,二次函数,幂函数,指数函数,对数函数,三角函数的图像以及图像变换是重点内容,关于函数图像的传统画法,是通过师生列表,描点,连线而得,这些工作烦,静止孤立,间断的点和线。教师要自制每一节的课件难度大,时间又有限,而基于网络环境下的数学教学,就可以充分利用网络版课件,进行网上学习,从而化静为动,化繁为简,减轻教师的体力负担,使教师有更多的时间进行创新研究,同时让学生在交互的动态的网络环境下学习,函数值随自变量变化而同步变化以及对应运动的轨迹,从而得到完整精确的函数图像,通过交互学习让学生充分体会同一函数不同参数与图像特征之间的联系,充分掌握函数的性质和抓住图像的平移、反射、压缩、拉伸和对称变换特征。若有疑问或好的见解,还可以通过网络进行远程的交流互动。通过多媒体,交互反馈,使学生深刻理解,不易遗忘。也培养了学生自我学习和终身学习的能力。网络环境下的数学教学,教师教得轻松,也有更多的时间进行个别指导,学生学得愉快。学得有趣,这样数学教学的效率也提高了。 二、基于网络环境下数学教学突破教学难点 高中数学中有一些知识需要通过抽象思维来解决问题,而这也正是高中数学的难点之一,基于网络环境下的教学可以化抽象为直观,有利于突破难点。 如“二次函数即:y=ax2+bx+c(a≠0)在[m,n]上的最值的探讨,学生对二次函数的开口,对称轴移而区间不动或图像不动而区间变化时函数的最值”不易理解,在网络环境下,学生通过对网络课件的阅读和对a,b,c,m,n的动态控制,能深刻理解数学知识的要点,加上在网上的即时测试和评价,更能有效的掌握它,不再感到难以理解。 三、基于网络环境下的数学教学与评价形式多样化,即时化。 传统的教学形式是教师讲,学生听,这样教学方式课堂容量有限,反馈方式单调,信息交流少,所有的学生步伐相同不利于因材施教,不利于培养学生现代的终身的学习能力,同时不能解放教师,让教师从事更有意义的教育工作。而网络环境下的教学可以同时满足不同用户不同要求,培养活学活用的能力,真正实现教学以学生为中心,教学面向全体通过互联交流互联互动进行分层教学、个别教学实现因材施教,体现新课标的要求, 四、基于网络环境下数学教学应处理好的关系 (1)网络与学生的关系 和谐是教学成功的关键。实践中发现基于网络环境下的学科教学,应加强对互联网海量信息的搜索,筛选,加工,创新。在选好教育资源后,教师要努力探索适时、适用问题,创设学习情境,营造和谐的环境。加上学生对网络应用知识基本掌握,达到网络与人的和谐统一。 (2)网络与教师的关系 基于网络环境下的学科教学优势空前,实践中发现,只有网络环境下的教学与教师灵活生动的讲解和创新的适时评价互相配合,相互促进,协调传递信息,最大限度地发挥网络和教师的优势。 (3)教师与学生的关系 教为主导,学为主体,这是在任何教学模式中都应遵循的原则,要体现学生的主体发展与教师的主导相互作用的关系。专题教学网站和网络教学资源库的形成,即将教师从繁杂的重复劳动中解放出来了,但教师的主导作用不是减弱了而是加强了,网络环境下的教学,对教师提出了更高的要求,教师必须挤出大量的时间学习Windows,Authorwear,3Dmax,Flash等方面的知识,还要学会搜索,筛选,创新信息的能力,甚至包括各种电教媒体的操作技能和技巧,只有这样,才能使自己在网络环境下的学科教学中获得自由,掌握主动,充分发挥网络教学的优势,提高我国的教育教学质量。
1超市中的数字问题随着城市的发展和人民生活水平的日益提高,超市走进了人们的生活,他们给我们的生活带来了许多的方便,我们的生活方式也因超市的“闯入”受到了一定的影响。如今平望的经济高速发展,超市接二连三地开张。但超市发展之路是漫长的,超市在经营发展中又受哪些方面的影响呢?为此,我们初二(5)班研究性学习小组决定对平望的四大超市(华润超市,华联超市,世纪华联超市,葡萄园超市)做一次调查一、对影响平望超市经营发展的因素的调查与分析1、个人喜好喜好经常能影响一个人的思想,驱使一个人去做些事情,当然,包括让人不由自主地去哪家超市咯,而且平望的面积不算很大,人口有限,四大超市竞争激烈,超市能够受到广大消费者的欢迎是超市继续经营发展的重要条件。这也是我们关注这个问题的原因。以下是我们对这个问题做的一份调查(调查问卷附后),结果如 你最常去的超市是( )A 华润 B 华联 C 世纪华联 D 葡萄园超市从调查我们看出,华润超市受欢迎程度最高,华联次之,其它两个超市无过大差异。2、商品质量和地理位置众所周知,对超市发展影响最大的莫过于商品质量和地理位置。超市商品质量的好坏,能够直接影响消费者的购物欲。一个黄金地段往往是商家争取的重点,地理因素包括通达度,进出是否方便,能突出超市的存在,还有安全性等。这四大超市相距并不是很远,那么,地理位置对它们是否有影响呢?为此,我们特在问卷调查中列入了此项内容,并把它与其它因数进行了对比。结果如下:你常去该超市(你最喜欢的超市)的原因是()A 价格便宜 B 离家较近 C 商品质量好 D 服务态度好 E 其它有24%的人选择了B:离家较近,18%的人选择了A:价格便宜,20%的人选择了C:商品质量好,16%的人选择D:服务态度好,还有22%的人认为是其它原因,例如个人喜欢好。可见,人们对消费地点的选择各有不同。数字显示,超市的选址对消费者而言至关重要。因此分布在居民区的超市较受欢迎。“顾客就是上帝”,每个人都希望买到物美价廉的商品,而且如今的竞争已不是简单的价格战了,完全是商品质量的支撑。我们也坚信好的超市在商品质量和服务态度方面是不会懈怠的。3. 超市的经营理念一个超市的经营理念是一个超市对待顾客的宗旨,只有超市把顾客所想的摆在第一位,凡事都以顾客为中心,人们才会想去超市消费,那么超市便会长长久久。所以我们特别对此做了问卷调查。你认为超市应把什么放在第一位 ( )A.价格 B。质量 C。服务态度 D。商品种类 E。其它结果分析:经调查,多数人把质量放在第一位,说明产品质量对超市经营的影响是很大的。一个超市经营状况的好坏直接取决于商品与服务态度的高低,其中,质量占的比重较大,服务态度次之,这说明永安人民此时钞票的拥有量,正处于一个舒适的状态,而超市的物价水平与之正相适应,暂时达到一个双赢的局面,超市消费水平稳定超市的工作效率1. 当今的社会是跑在商业铁轨上的高速列车,任何效率的停滞,都会影响它的运行,当然,超市作为人们生活中重要的活动场所,在社会生活中扮演的台下的主角,它的效率自然成为人们选择超市的重要指标。所以我们设此问题,以考察超市效率在人们心中的比重大小。你会对效率低的超市产生反感吗 ? ( ) A. 会 B .不会 C.无所谓结果分析: 95%的人选择了A,在这个信息技术发达的社会,人们无论做什么事都讲求高效率,少时间,好享受,较差的服务对于消费者来说是对自己利益的损害,对商家而言既是不负责任的表现也是对自身形象的损害,更对今后的发展带来不利影响。消费者希望超市的服务能够一体化,更周到,无论是服务的设施还是售后服务都尽力而为,实事求是。二、超市对人民生活的影响 在超市里,你常常会有感于超市里不减的人气,超市成了逛街的好去处,从另一个侧面可以看出平望是一个生活满足而安逸的好地方,大家都在逛超市了。超市里那么多东西,怎么会没有一件你满意的商品?于是,钱就这样不知不觉从人们的口袋里一点一点的流走,无形中带动了消费的发展了。需多谈的,尤其是大型的超市对工作人员数量的要求是巨大的,无疑解决了很大的就业压力,这也是为什么政府对超市经营大力扶持的一个重要原因。但毕竟这类员工从事的都是体力类的劳动,报酬不高,但尚能维持生计,其中不乏初入社会的青年。超市为他们提供了一个基本的生存工作的岗位,每个人都有机会通过自己的努力提高自己的待遇。但这种机遇依然是有限的,毕竟从事零售服务是一件烦琐乏味的事情,故这类员工的心态也可以作为一个值得探讨的问题,更何况他们也是超市的一块招牌,他们工作的好坏,热情与否有时就是超市与顾客间交流的窗口。研究消费心理,少不了对销售心理的探访。有时一个销售人员的一个微笑,一段让人心动的产品介绍会让人有一种购买的蠢蠢欲动,其实有时这种销售人员的素质正是超市的一份无形的品 永安超市的发展模式需改善三、对平望超市经营的建议从宏观上看:平望现在超市发展的关键,需从价格制胜的竞争观念向集价格、文化、服务、品牌等多种因素的复合型竞争理念过渡. 1 、超市类型的多元化,在平望, 每个超市里的货物品种,价格,布局,氛围都应各有千秋。不能所有超市一个样,那样怎么会有吸引力呢?在平望,可以发展一些其它类型的超市,如农业超市,里面主要都是农业用具,机械等等呀,必竟平望还是一个农业城市为基础。2、超市分布区域的边缘化,何必一定要挤在市中心,可以到一些城乡结合部呀,现在的平望人民已经在提高进超市购买东西的习惯了,等到大家都习惯了,那些街道商铺可都要关门啦!在厦门的人都知道,厦门的那些大超市进来以后,现在人们一买东西都是进大超市,除了有时零星的购买,当然只能是在社区里的小卖部了。3、超市的特色(或者说是文化,或者说吸引人的地方),像在大城市里的一些超市,每天都有几种特价商品,这些商品平时是不打折的,只有轮到刚好的日子才有,而每个月超市都会将下个月要打折的商品日期提前公布,甚至将宣传单寄给每一个持会卡的人员。从微观上来看: 超市应该改进寄包的设施,超市的服务态度也应该有所改善,超市需要多增设几台收营台,超市的卫生也应做得更好。总结:我们希望通过这次的活动,可以对生活中的变化有所了解,激发对生活的热爱,对知识的不断追求,对实践能力有一个提高,甚至能对超市的经营发展有一定的帮助。 4古代数学发展史—宋元数学: 宋元数学是中国数学发展的高峰。 北宋王朝统一中国后,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪〔宋、元两代〕,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》〔11世纪中叶〕,刘益的《议古根源》〔12世纪中叶〕,秦九韶的《数书九章》〔1247〕,李冶的《测圆海镜》〔1248〕和《益古演段》〔1259〕,杨辉的《详解九章算法》〔1261〕、《日用算法》〔1262〕和《杨辉算法》〔1274-1275〕,朱世杰的《算学启蒙》〔1299〕和《四元玉鉴》〔1303〕等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有: 公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚) 公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。 公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。 公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。 公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。 另外,其它成就包括勾股形解法新的发展、解球面直角三角形的研究、纵横图(幻方)的研究、小数(十进分数)具体的应用、珠算的出现等等。 这一时期民间数学教育也有一定的发展,以及中国和伊斯兰国家之间的数学知识的交流也得到了发展。
都可以,看您擅长那个方面虽然您打算做量化研究,但在前期打基础时最好看一些比较经典的关于质性研究的论文,这样在前期时你可以将质性研究和量化研究进行对比,总结出相同点和相似点,这样更有利于您开展后续的量化研究。定量研究一般是为了对特定研究对象的总体得出统计结果而进行的。定性研究具有探索性、诊断性和预测性等特点,它并不追求精确的结论,而只是了解问题之所在,摸清情况,得出感性认识。定性研究的主要方法包括:与几个人面谈的小组访问,要求详细回答的深度访问,以及各种投影技术等。在定量研究中,信息都是用某种数字来表示的。在对这些数字进行处理、分析时,首先要明确这些信息资料是依据何种尺度进行测定、加工的,史蒂文斯()将尺度分为四种类型,即名义尺度、顺序尺度、间距尺度和比例尺度。
定性研究(Qualitative Analysis)定性研究,“Qualitative Analysis"基于对所研究对象的深入分析或了解。通常情况下,当样本规模比较小,但是需要对所研究问题需要有全面、详细和丰富的描述时,会采用定性研究。比如,采用案例分析(case study)时,重点是用语言文字详细描述你的研究、访谈和选择案例的过程如何展开。定性研究(Qualitative Analysis)经常使用灵活的数据收集方法,需要表达出从参与者的角度来理解问题,并强调时间发生的背景和意义。定性研究(Qualitative Analysis)常用的数据收集方法为:participant observation, focus group, qualitative interviews, discourse analysis, documentary analysis, and visuamethods。其中最常用的方法是访谈(Qualitative Interviews)。定性访谈的重点就是研究者通过一系列诱导式的提问从被采访者中获得他们经验的深入理解。定性研究(Qualitative Analysis)通常在社科类英文论文中用到,因为社会科学中的硏究很多情况下只能靠客观观察,并且硏究的可重复性很低,所以我们常常使用归纳法来得出结论。定性研究(Qualitative Analysis)的目的就是用定性的资料来说明、解释或者预测真实世界的现象。这种方法获得的资料比较丰富,另外一个优点是给研究者较大的诠释空间,来弥补定量研究的不足。定性研究(Qualitative Analysis)也有它的缺点。首先就是人力成本比较高,因为要通过直接观察和访谈来收集数据。第二,因为被观察对象通常是一个特定的群体,而且数据的收集都是基于研究人员的个人观察,所以结论的客观性很难保证,同时也很难推广到更加广泛的场合。定量研究(Quantitative Analysis)与定性研究(Qualitative Analysis)的归纳法不同,定量研究(Quantitative Analysis)使用Deductive(演绎)法来得出结论。演绎法就是通过使用现有的文献和理论来形成假设或者命题,再通过收集适当的数据,分析数据来检验这些假设或命题。如果分析结果一致,那就说明假设成立。定量研究(Quantitative Analysis)通常采用科学的方法,其中包括变量的实验控制和操作、收集经验数据、数据建模与分析等等。在商科毕业论文中,通常采用的定量分析为问卷调查(questionnaire survey)。在问卷调查中,研究者运用统一设计好的问卷,向选定的样本了解情况或者征询意见。问卷调查的好处是能够同时对大批目标用于进行测验,用时短,数据大。问卷通常由开放式问题和封闭式问题组成。由此可见,定量研究(Quantitative Analysis)的核心就是定量数据的收集以及分析。通过分析数据得出的结果往往具有可靠性和有效性的优势,并且可以建立研究问题与数据之间的因果关系。定量研究(Quantitative Analysis)方法的优点是可以相当快地收集和分析数据,研究结果也更为可靠客观。如果调查样本是有效的随机样本,那么我们可以把研究结果推广到整个人群。而它的缺点是数据不如定性研究来的详细,大规模的定量研究(Quantitative Analysis)成本也会非常昂贵。定性研究(Qualitative Analysis)和定量研究(Quantitative Analysis)的区别通过上面的详细介绍,大家可以了解到这两种研究方法之间存在着很大的区别:依据不同。定量研究(Quantitative Analysis)的依据来源于现实资料数据,而定性研究(Qualitative Analysis)的依据来源于大量的历史事实和生活经验。研究手段不同。定量研究(Quantitative Analysis)主要运用统计分析和建立模型等方法,而定性研究(Qualitative Analysis)主要运用逻辑推理、历史比较等方法。学科基础不同。定量研究(Quantitative Analysis)以概率论、统计学为接触,而定性研究(Qualitative Analysis)则以逻辑学为基础。结论的表述形式不同。定量研究(Quantitative Analysis)主要以数据、模式、图形等来表达,而定性研究(Qualitative Analysis)结论多以文字描述为主。
答:国内社会科学研究通常按照研究对象是“质”还是“量”,把研究分为“质性研究”和“定量研究”。这两种研究范式的区别主要包括以下几个方面:(1)含义不同① 定量研究又称为“量化研究”“量的研究”,它是重在对事物可以量化的特性进行测量和分析,以检验研究者的理论假设的研究方法。② 质性研究又称为“质的研究”,是指研究者参与到自然情境之中,采用观察、访谈、实物分析等多种方法收集资料,对社会现象进行整体性探究,采用归纳而非演绎的思路来分析资料和形成理论,通过与研究对象实际互动来理解和解释他们的行为的研究方 法。(2)研究过程不同① 定量研究有一套完备的操作技术,包括抽样方法、资料收集方法、数据统计方法等。其基本过程是:假设抽样一资料收集一统计检验。研究者首先明确分析所研究的问 题,确定其中的重要变量,对变量之间的因果关系或者相关关系做出理论假设,然后通过概率抽样的方式选择研究样本,使用可靠而有效的工具和程序来采集数据,进而通过数据统计分析来检验所假设的变量关系。② 质性研究一般不使用量表或其他测量工具,而是以研究者本人作为研究工具。质性研究不像定量研究那样通过收集事实资料来检验已有的理论假设,而是采用自下而上的思路,从原始资料中归纳出经验概括,寻找其中的核心维度,“扎根”于经验资料来建立理论。质性方法强调从被研究者的角度来真实地反映他们的做法、看法和体验,强调事件的整体性和情境性,强调随着资料的积累动态地调整研究问题和资料收集方法。(3)适用范围不同① 对研究对象的情况不清楚时适用质性研究,对研究对象的情况非常清楚时适用定量研究;② 进行探索性研究,相关的概念和变量不清楚,或定义不清楚时适用质性研究,测量方面存在的问题不大,或者问题已经解决时适用定量研究;③ 进行深度探索性研究,试图把行为的某些特定方面与更广的背景联系起来时适用质性研究,当不需要把研究发现与更广泛的社会文化背景相联系,或对这一背景已经有了清楚的了解时适用定量研究;④ 当所考查的是问题的意义,而不是次数或频率时适用质性研究,当需要对代表性样本进行详细的教学描述时适用定量研究;⑤ 当研究需要灵活性以便随时发现预料之外的深层问题时适用质性研究,当测量的可重复性非常重要时适用定量研究;⑥ 当需要对所选择的问题、个案和事件进行深层的、详细的考查时适用质性研究, 当需要把结果加以推广,或需要把不同的
一、性质不同
1、质性研究是以研究者本人作为研究工具,在自然情境下,采用多种资料收集方法(访谈、观察、实物分析),对研究现象进行深入的整体性探究,从原始资料中形成结论和理论,通过与研究对象互动,对其行为和意义建构获得解释性理解的一种活动。
2、量性研究是指先规定收集资料的方法,通过数字资料来研究现象的因果关系。
二、研究的目的不同
1、质性研究的目的在于描述和理解,是用系统的、互动的、主观的方法来描述生活经验,并赋予一定的意义。强调对研究对象有重要意义的观点和事实,而不是对研究者有重要意义的结果。质性研究着重探索现象的深度、丰富性和复杂性,有助于护理理论的发展以及发现新知识。
2、量性研究的目的是预测和控制。这种方法主要用来描述变量,检测变量间的关系,决定变量间的因果关系,可用于验证理论。
三、结果呈现方式不同
1、质性研究以叙述性的文字报告结果,将提炼的各个类别或主题内容描述出来。注重从参与者的自身感受出发来描述,常引用研究对象的原话,以支持类别或主题的内容。
2、量性研究的结果以数字资料为主,强调统计分析的正确性、数据的准确性和客观性。
1、研究原理不同。
定量研究用数学的工具对事物进行数量的分析;质性研究采用多种资料收集方法(访谈、观察、实物分析),对研究现象进行深入的整体性探究。
2、研究方法不同。
质性研究通过视觉分析、论述分析方法来经常研究;定量研究通过调查法、相关法、实验法来经常研究。
内容
通常是相对量化研究而言。量性研究在确定课题后要对研究形成假设方法:量性研究在确定课题后要对研究形成假设和科研设计,并规定收集资料的方法。意义是应用普遍,具有一定的客观性和代表性。量性研究一般只能解释所提出的研究问题变量之间的因果关系,验证理论或进一步发展某理论或模式。
质性研究与定量研究的区别: 1质性研究:研究者参与到自然情境之中,采用观察、访谈、实物分析等方法收集资料,对社会现象进行整体性探究,采用归纳的思路来分析和形成理论,通过与研究对象互动来即理解和解释他们的行为。 2定量研究:重在对事物可以量化的特性进行测量和分析,以检验研究者的理论假设。包括抽样方法、资料收集方法、数据统计方法等。基本过程是:假设-抽样-资料收集-统计检验。定量研究依靠的是对事物依靠量化的部分以及相关关系进行测量、计算和分析以达到对事物本质的一定的把握;而质性研究是通过研究者和被研究者之间的互动对事物进行深入、细致、长期的体验,以对事物的质达到一个比较全面的解释性理解。3.可以说两者可以互为补充,数量证据补充质性分析,质性研究为数量研究指明方向,二者相互包含,相互补充,共同作为科学研究的基础方法。