但并不是所有缺血的器官在血流恢复后都会发生缺血一再灌注损伤,许多因素可以影响其发生及其严重程度,常见的有:1缺血时间首先影响再灌注损伤的是缺血时间。缺血时间短,恢复血供后可无明显的再灌注损伤.因为所有器官都能耐受一定时间的缺血。缺血时间长,恢复血供则易导致再灌注损伤。若缺血时间过长,缺血器官会发生不可逆性损伤,甚至坏死,反而不会出现再灌注损伤。例如,阻断大鼠左冠状动脉5~10min.恢复血供后心律失常的发生率很高.但短于2min或超过20min的缺血,心律失常较少发生。另外,不同动物、不同器官发生再灌注损伤所需的缺血时间不同,小动物相对较短,大动物相对较长。如家免心肌再灌注损伤所需的缺血时间一般为40min,脑一般为30min(全脑血流阻断),肝脏一般为45min(部分肝血流阻断),肾脏一般为60min,小肠大约为60min,骨骼肌甚至为4小时。再灌注损伤与缺血时间的依赖关系,提示在缺血过程中组织发生的某些变化,是再灌注损伤发生的基础,再灌注损伤实质上是将缺血期的可逆性损伤经恢复血流后进一步加重或转化为不可逆性损伤。2侧支循环 缺血后侧支循环容易形成者,可因缩短缺血时间和减轻缺血程度,不易发生再灌注损伤。3需氧程度 因氧易接受电子,形成氧自由基增多.因此,对氧需求高者,较易发生再灌注损伤.如心、脑等。4再灌注压力愈高,造成的再灌注损伤愈严重;适当降低灌注液的温度、pH值.则能减轻再灌注损伤;减少灌注液中的Ca’、Na’含量,或适当增加K’、M矿含量.有利于减轻再灌注损伤。缺血再灌注损伤的发生机制尚未彻底阐明。目前认为自由基的作用、细胞内钙超载和白细胞的激活是缺血一再灌注损伤的重要发病学环节。缺血-再灌注损伤的原因及条件一、原因(一)、组织器官缺血后恢复血液供应如休克时微循环的疏通、冠状动脉痉挛的缓解、心脏骤停后心脑肺复苏等。(二)、动脉搭桥术、 PTCA 、溶栓疗法等血管再通术后,心脏外科体外循环术、器官移植及断肢再植等。二、条件并不是所有缺血的组织器官在血流恢复后都会发生缺血 - 再灌注损伤,但许多因素可影响其发生发展和严重程度,常见的原因有:(一)、缺血时间 缺血时间的长短与再灌注损伤的发生与否相关,缺血时间过短或过长都不易发生再灌注损伤。例如:大鼠心肌缺血 2min 以内或 20min 以上进行再灌注,不易发生再灌注损伤;狗心肌缺血 15min 以内或 40min 以上进行再灌注,再灌注损伤不易发生,缺血 15-20min 再灌注,心肌再灌注损伤的发生率高达 25%-50% 。(二)、侧支循环 缺血后侧支循环容易形成者,因可缩短缺血时间和减轻缺血程度,不易发生再灌注损伤,如肺脏。(三)、需氧程度 对氧需求量高的组织器官,如心、脑等,易发生再灌注损伤。(四)、再灌注条件 一定程度的低压、低温( 25℃ )、低pH 、低钠、低钙溶液灌流,可减轻组织器官的再灌注损伤、使其功能迅速恢复。反之,高压、高温、高钠、高钙灌注可诱发或加重再灌注损伤。第二节 缺血再灌注损伤的发生机制一、自由基的作用(一)、自由基的概念及分类自由基( free radical )是指在外层电子轨道上具有单个不配对电子的原子、原子团或分子的总称,又称游离基,如氯自由基( Cl·)、羟自由基( OH·)、甲基自由基( CH3·)等。自由基的种类很多,主要包括非脂性自由基和脂性自由基,前者主要指氧自由基。1.氧自由基 由氧诱发的自由基称为氧自由基,属于活性氧的一种,包括超氧阴离子和羟自由基。过氧化氢本身不是自由基,是一种活性氧。 H2O2 在 Fe 或 Cu 的作用下可生成 OH . 或者通过 H2O2 的均裂产生 OH. ,这是 H2O2 造成细胞氧化应激的主要机制。单线态氧也不是自由基,而是激发态的分子氧,也属于活性氧的范畴 。2.脂性自由基 指氧自由基与多价不饱和脂肪酸作用后生成的中间代谢产物,如烷自由基( R ·),烷氧自由基( RO ·),烷过氧自由基( ROO·)等。3.其他 如氯自由基( Cl·)、甲自由基( CH3·)和一氧化氮( NO )等。(二)、缺血 - 再灌注时氧自由基生成增多的机制1.黄嘌呤氧化酶形成增多 黄嘌呤氧化酶( xanthine oxidase , XO )及其前身为黄嘌呤脱氢酶( xanthine dehydrogenase, XD ),二者主要存在毛细血管内皮细胞内。正常时 XD 占 90% , XO 只占 10% 。当组织缺血缺氧时,由于 ATP 生成减少,膜泵失灵,钙离子进入细胞增多,激活钙依赖性蛋白酶,使 XD 大量转变为 XO 。同时因缺血缺氧, ATP依次分解为 ADP、 AMP、腺苷、肌苷和次黄嘌呤( hypoxanthine ),而次黄嘌呤自身不能代谢生成黄嘌呤( xanthine ),使 XO 的底物堆积。再灌注时,缺血组织重新得到氧,在缺血时大量蓄积的次黄嘌呤在XO的作用下形成黄嘌呤,继而又催化黄嘌呤转化为尿酸,这两步反应都是以分子氧作为电子受体,结果产生大量的 O2·- 和 H2O2 , O2· - 和 H2O2 在金属铁参与下,形成 OH · 。2.中性粒细胞的呼吸爆发 中性粒细胞被激活时耗氧量显著增加,其摄入 O2 的 70%~90% 在还原型辅酶 Ⅱ 氧化酶( NADPH oxidase )和还原型辅酶 Ⅰ 氧化酶( NADH oxidase )的催化下,接受电子形成氧自由基,以杀灭病原微生物。另外组织缺血可激活补体系统,或经细胞膜分解产生多种具有趋化活性的物质, 如 C 3 片段、白三烯等,吸引、激活中性粒细胞。再灌注期间组织重新获得氧供应,激活的中性粒细胞耗氧显著增加,产生大量氧自由基,称为呼吸爆发( respiratory burst )或氧爆发( oxygen burst ),可损伤组织细胞。3.线粒体功能受损 因缺血、缺氧使 ATP 减少,钙进入线粒体增多,使线粒体功能受损,细胞色素氧化酶系统功能失调,进入细胞的氧经 4 电子还原成水减少,而经单电子还原生成氧自由基增多。而钙离子进入线粒体可使锰 ~ 超氧化物歧化酶减少,对自由基的清除能力降低,使氧自由基生成进一步增加。4.儿茶酚胺自身氧化增加 各种应激性刺激,包括缺血、缺氧,均可使交感肾上腺髓质系统兴奋产生大量的儿茶酚胺。儿茶酚胺一方面具有重要的代偿调节作用,另一方面在单胺氧化酶的作用下,通过自氧化可产生大量的自由基。(三)、自由基对细胞的损伤作用1.对膜磷脂的损伤作用 ①破坏膜的组分,使膜磷脂减少,膜胆固醇和胆固醇 / 磷酸比值增加;②由于膜组分改变使膜的流动性降低;③使与膜结合的酶的巯基氧化,导致酶活性下降;④形成新的离子通道,当细胞膜两层磷脂中的磷脂过氧化氢沿膜长轴以相互吸引的方向作用时,同一层的磷脂过氧化氢聚集,并进一步形成跨膜过氧化物,从而形成新的离子通道。⑤使膜脂质和蛋白质之间、蛋白质和蛋白质之间交联或聚合,促进膜损伤;⑥促进“脂质三联体”( lipid triad )形成。膜脂质过氧化、磷脂酶活化及过量的有利脂肪酸和溶血磷脂的“去污剂”作用(即具有破坏膜结构和功能的作用)合称 “脂质三联体” 的作用。膜脂质过氧化能促进 “ 脂质三联体 ” 的形成,因为膜脂质过氧化能使细胞内 Ca 含量增加,促进磷脂酶活化。磷脂酶活化水解膜磷脂导致了溶血磷脂及游离脂肪酸的聚集,进而引起细胞膜的损伤。此外自由基还可减少 ATP 生成,导致线粒体的功能抑制,使细胞的能量代谢障碍加重。2.对蛋白质的损伤作用 自由基可引起蛋白质的交联、聚合和肽链的断裂,也可使蛋白质与脂质结合形成聚合物,从而使蛋白质功能丧失。3.对核酸的破坏作用 自由基可作用于 DNA ,与碱基发生加成反应,而造成对碱基的修饰,从而引起基因突变;并可从核酸戊糖中夺取氢原子而引起 DNA 链的断裂。自由基还可引起染色体的畸变和断裂。4.对细胞外基质的破坏 自由基可使细胞外基质中的胶原纤维的胶原蛋白发生交联,使透明质酸降解,从而引起基质变得疏松,弹性下降。二、钙超载的作用各种原因引起的细胞内钙浓度明显增多并导致细胞结构损伤和功能代谢障碍的现象称为钙超载( calcium overload )。(一)、细胞内钙超载的发生机制1. Na /Ca 交换异常 生理条件下, Na/Ca 交换蛋白转运方向是将细胞内 Ca 运出细胞,与细胞膜钙泵共同维持心肌细胞静息状态的低钙浓度。 Na /Ca 交换蛋白以 3 个 Na 交换 1 个 Ca 的比例对细胞内外 Na 、 Ca 进行双相转运。 Na /Ca 交换蛋白的活性主要受跨膜 Na 浓度的调节,此外还受 Ca 、 ATP 、 Mg 、H 浓度的影响。已有大量的资料证实, Na/Ca 交换蛋白是缺血- 再灌注损伤和钙超载时钙离子进入细胞的主要途径。(1) 细胞内高 Na 对 Na /Ca 交换蛋白的直接激活作用:缺血使细胞内 ATP 含量减少,钠泵活性降低,造成细胞内钠含量增高。再灌注时缺血的细胞重新获得氧及营养物质供应,细胞内高 Na 除激活钠钾泵外,还迅速激活 Na /Ca 交换蛋白,以加速 Na 向细胞外转运,同时将大量 Ca 转入细胞内,造成细胞内 Ca 超载。(2) 细胞内高 H 对 Na /Ca 交换蛋白的间接激活作用:质膜 Na /H 交换蛋白主要受细胞内 H 浓度的变化,以 1:1 的比例将细胞内的 H 排出胞外,而将 Na 摄入细胞,这是维持细胞内 PH 稳定的重要机制。缺血缺氧期,由于细胞的无氧代谢增强使 H 生成增加,组织间液和细胞内液 PH 明显降低。再灌注使组织间液 H 浓度迅速下降,而细胞内 H 浓度很高,形成跨膜 H 浓度梯度。细胞膜两侧 H 浓度差可激活心肌 Na /H 交换蛋白,促进细胞内 H 排出,而使细胞外 Na 内流。如果内流的 Na 不能被钠泵充分排出,细胞内高 Na 可继发性激活 Na /Ca 交换蛋白,促进 Ca 内流,加重细胞钙超载。(3) 蛋白激酶 C ( PKC )活化对 Na/Ca 交换蛋白的间接激活作用:生理条件下,心功能主要受 β 肾上腺素能受体调节, α1 肾上腺素能受体的调节作用较小。但缺血 - 再灌注损伤时,内源性儿茶酚胺释放增加, α 1 肾上腺素能受体的调节相对起重要作用。 α1 肾上腺素能受体激活 G 蛋白 - 磷脂酶 C ( PLC )介导的细胞信号转导通路,促进磷脂酰肌醇分解,生成三磷酸肌醇( IP3 )和甘油二脂( DG ),促进细胞内 Ca 的释放; DG 经激活 PKC 促进 Na /H 交换,进而促进 Na/Ca 交换,使胞浆 Ca 浓度增加。2.生物膜损伤(1) 细胞膜损伤:生理情况下,细胞膜外板和糖被膜( glycocalyx )由 Ca 紧密联结在一起。①当 Ca 反常时,可使细胞糖被膜受损;②当细胞缺血缺氧时可导致细胞膜受损、破裂;③心肌缺血缺氧时,一方面使交感 - 肾上腺髓质系统兴奋,血中儿茶酚胺含量增加。儿茶酚胺能产生氧自由基,从而损伤细胞膜;另一方面,心肌缺血部位 α 肾上腺素能受体上调, α 肾上腺素能受体兴奋可导致 Ca 内流增加。(2) 线粒体及肌浆网膜损伤: 自由基增加和膜磷脂分解增强可造成肌浆网膜损伤,钙泵功能抑制使肌浆网摄 Ca 减少,胞浆 Ca 浓度升高。线粒体损伤抑制氧化磷酸化过程,使 ATP 生成减少,细胞膜和肌浆网膜钙泵能量供应不足,促进钙超载的发生。(二)、钙超载引起再灌注损伤的机制1.线粒体功能障碍 再灌注后,胞浆中Ca浓度大量增加,可刺激线粒体和肌浆网的钙泵摄取钙,使胞浆中的 Ca 向线粒体和肌浆网中转移 。这在再灌注早期具有一定的代偿意义,可减少胞浆中钙超载的程度。但细胞内钙增多使肌浆网及线粒体消耗大量 ATP ;同时,线粒体内的 Ca 离子与含磷酸根的化合物反应形成磷酸钙,干扰线粒体氧化磷酸化,使能量代谢障碍, ATP 生成减少。二者均使细胞能量供应不足。2.激活磷脂酶 细胞内 Ca 超载可激活多种磷脂酶,促进膜磷脂的分解,使细胞膜及细胞器膜均受到损伤。此外,膜磷脂的降解产物花生四烯酸、溶血磷脂等增多,增加了膜的通透性,进一步加重膜的功能紊乱。3.通过 Na/Ca 交换蛋白形成一过性内向离子流( transicent inward current ) 在心肌动作电位后形成迟后除极( delayed after depolarization )而引起心律失常。4.促进自由基形成 细胞内钙超载使钙依赖性蛋白水解酶活性增高,促进黄嘌呤脱氢酶转变为黄嘌呤氧化酶,使自由基生成增多,损害组织细胞。5.使肌原纤维挛缩、断裂,生物膜机械损伤,细胞骨架破坏 其发生机制为:①缺血 - 再灌注使缺血细胞重新获得能量供应,在胞浆存在高浓度 Ca 的条件下,肌原纤维发生过度收缩。这种肌纤维过度甚至不可逆性缩短可损伤细胞骨架结构 ,引起心肌纤维断裂;②再灌注使缺血期堆积的 H 迅速移出,减轻或消除了 H 对心肌收缩的抑制作用。三、白细胞的作用(一)、白细胞增加的机制1.趋化物质的作用 组织缺血使细胞膜受损,再灌注损伤可使膜磷脂降解,花生四烯酸代谢产物增多,其中有些物质,如白三烯具有很强趋化作用,吸引大量的白细胞进入组织或吸附于血管内皮。白细胞与血管内皮细胞粘附后进一步被激活,本身也释放具有趋化作用的炎症介质,如白三稀 B 4 ( LB 4 ),使微循环中白细胞进一步增多。2.细胞粘附分子的作用 粘附分子( adhesion molecule )是指由细胞合成的、可促进细胞与细胞之间、细胞与细胞外基质之间粘附的一大类分子的总称。实验发现,在缺血组织内已有白细胞聚集,其数量可随缺血时间的延长而增加;再灌注早期(数秒 - 数分钟),血管内皮细胞内原先储存的一些蛋白质前体被激活,释放多种细胞粘附分子。(二)、白细胞对组织损伤作用的机制1.对血液流变学的作用 实验证实,在缺血和再灌注早期白细胞即粘附于内皮细胞上,随后有大量血小板沉积和红细胞缗钱状聚集,造成毛细血管阻塞。实验表明,红细胞解聚远较白细胞与内皮细胞粘附的分离容易,提示白细胞粘附是微血管阻塞的主要原因。通过测量缺血和再灌注心肌的血流量,发现呈进行性下降趋势,特别在心内膜层降低更明显。由于血管的阻塞,平均氧弥散的距离增加,局部氧分压可降低到零,一组毛细血管网阻塞,使所支配的细胞处于低氧环境中,造成细胞功能代谢的障碍。此外,缺血再灌注组织可见到无复流现象( no-reflow phenomenon ),是指缺血再灌注时,部分或全部缺血组织不出现血液灌流的现象。影响无复流现象的原因很多,包括缺血时间的长短、缺血程度、梗死灶大小等。无复流现象的可能机制为:①血管障碍及中性粒细胞栓塞;②血小板、血栓堵塞微血管;③细胞肿胀挤压微血管;④血液粘滞性变化等。其中中性粒细胞引起的毛细血管栓塞可能是主要原因,因为用去中性粒细胞的血液灌流,能明显减轻无复流现象。2.产生自由基 白细胞能产生多种自由基,如活性氧,卤氧化合物等,激发细胞膜的脂质过氧化,并损伤细胞内的重要成分。3.颗粒成分( granule constitutes )释出 在缺血损伤区,从白细胞释放酶性颗粒成分能导致细胞组织进一步损伤。中性粒细胞可释放出 20 多种酶,其中 3 种引起组织损伤最大。一种是含丝氨酸蛋白酶的弹性硬蛋白酶( elastase ),另外两种是含金属的蛋白酶即胶原酶( collagenase )和明胶酶( gelatinase )。弹性硬蛋白酶几乎能降解细胞外液基质中的所有成分,裂解免疫蛋白、凝血因子,并攻击完整的未受损的细胞,激活的胶原酶和明胶酶也能降解各种类型的胶原,导致细胞的损伤。4.其他作用 白细胞一旦激活,也可激活磷脂酶 A2,游离出花生四烯酸,导致瀑布效应,产生许多血管活性物质,如白三烯,血小板激活因子等,使血管收缩,通透性增加,促进白细胞对血管壁的粘附等。四、高能磷酸化合物缺乏一些研究表明,心肌短时间缺血后,发生的损伤是可逆的,如果此时得到血液再灌,细胞不至死亡,但心肌收缩功能却不能很快恢复。说明心肌能量代谢障碍。通过实验进一步观察发现,再灌注时心肌的高能磷酸化合物明显缺乏。说明缺血及再灌注损伤的心肌有氧代谢障碍,高能磷酸化合物缺乏。影响了心功能的恢复。1.再灌注时高能磷酸化合物缺乏和总腺苷酸水平减少的原因:(1) 线粒体受损 : 因缺血缺氧,线粒体产生氧自由基增多,再灌注时组织产生自由基也增多。二者均使线粒体膜发生脂质过氧化,使线粒体结构和功能受损, 表现为利用氧能力障碍,同时合成 ATP 减少。(2)ATP 的前身物质减少 : 包括腺苷,肌苷,次黄嘌呤等,在再灌注时被血流冲洗出去,使总腺苷酸水平下降。因此如在再灌注液中补充肌苷或谷氨酸等可促进 ATP 的合成及心功能的恢复。五、内皮素的作用ET 促进心脏缺血再灌注损伤的机制与心肌膜上 ET 受体上调、促进胞内钙超载、 PMN 聚集、粘附、氧自由基释放及内皮细胞自稳态失衡有关。心肌缺血再灌注时,可引起心肌细胞膜上 ET 结合点密度增加。 ET 可通过蛋白 -IP 3 途径导致胞内 Ca 浓度的增高,胞内 Ca 浓度增高,既可导致冠脉强烈收缩,又能激活磷脂酶,使膜磷脂降解,损伤细胞膜。 ET 具有明显地促进 PMN 聚集和粘附的作用,其机制在于 ET-1 能促进 PMN 表面粘附分子 CD11/CD18 的表达,这种作用可被抗 CD18 抗体 ISI/18 阻断 。六、血管紧张素Ⅱ( angiotension Ⅱ)的作用Ang Ⅱ促进交感神经末梢释放儿茶酚胺、收缩血管、刺激醛固酮分泌、促进心肌血管平滑肌增殖和肥厚等生理作用,主要由 AT 1 介导。 Ang Ⅱ与再灌注损伤关系密切。主要表现在再灌注过程中 Ang Ⅱ水平增高, AT 1 受体上调,以及应用 ACE 抑制剂或 Ang Ⅱ受体拮抗剂具有抗再灌注损伤的作用。第三节 缺血 - 再灌注损伤时机体的功能及代谢变化一、心肌缺血再灌注损伤的变化(一)、心肌缺血再灌注损伤的发病机制具体机制为①激活心肌兴奋收缩耦联过程,导致肌原纤维挛缩,不但加速能量的消耗,其挛缩力可使肌纤维膜破裂;② Ca 能以磷酸钙的形式沉积于线粒体,损伤线粒体功能,使 ATP 产生障碍;③激活钙依赖性的酶,进一步损伤细胞膜;④ Ca 能促进血小板粘附、聚集以及释放等反应,促进血栓的形成。(二)、再灌注对心肌电活动的影响心肌细胞急性缺血时的电生理改变为静息电位降低,动作电位上升的速度变慢,时值缩短,兴奋性和传导性均降低,一些快反应细胞转变为慢反应细胞。在心电图上表现为缺血心肌对应部位 ST 段抬高, R 波振幅增加。再灌注使缺血中心区 R 波振幅迅速降低, ST 段高度恢复到原水平, Q 波很快出现,从而出现再灌注性心律失常。心肌缺血后对激动的传导时间延长,自律性增强,都为心律失常创造了条件。再灌注后心脏由窦性心律转变为心室颤动,或出现室性心动过速转变为室颤,这是由规律、迅速、反复的室性异位活动的结果。动物实验发现,缺血再灌注性心律失常失常的发生率可达 50%~70% ,临床上解除冠状动脉痉挛及溶栓疗法后缺血再灌注性心律失常的发生率也高达 50%~70% 。(三)、再灌注对心功能的影响短期缺血后再灌注心功能可得到恢复,若阻断冠脉 1 小时后再灌注,血流动力学常常进一步恶化,早在 70 年代就发现,夹闭狗冠状动脉 15min 并不引起心肌坏死,但缺血 - 再灌注后心肌收缩功能抑制可持续 12h 。这种短期缺血早期恢复灌注时,心肌收缩功能不能迅速恢复,在较长一段时间内(数天到数周),心肌收缩功能低下,甚至处于无功能状态( nonfunction state ),称为心肌顿抑( myocardial stunning )。心肌顿抑是缺血-再灌注损伤的表现形式之一,其发病机制与自由基爆发性生成和钙超载有关。(四)、再灌注对心肌代谢的影响短时间的缺血再灌注,可使心肌代谢迅速改善并恢复正常,但缺血时间较长后再灌注反而使心肌代谢障碍更为严重, ATP/ADP 的比值进一步降低, ATP 和 CP 含量迅速下降,氧化磷酸化障碍,线粒体不再对 ADP 反应。这是因为再灌注时自由基和钙超载等对线粒体的损伤使心肌能量合成减少;加之再灌注血流的冲洗, ADP 、 AMP 等物质含量比缺血期降低,造成合成高能磷酸化合物的底物不足。(五)、再灌注对心肌超微结构的影响缺血 - 再灌注损伤时,超微结构可见细胞水肿,细胞膜损伤加重,细胞挛缩加重,某些线粒体嵴破裂消失,线粒体内 Ca 大量沉积,形成致密颗粒,肌原纤维断裂,节段性溶解和收缩带形成。再灌注也可使毛细血管内皮细胞肿胀加重,胞浆形成突起物伸向管腔,内质网扩张成大小不一的空泡,引起管腔变窄,甚至阻塞,同时血小板、白细胞聚集、聚集、阻塞在微循环中。上述变化使心肌恢复灌流后,可使心肌得不到血液供应,出现无复流现象。二、脑缺血再灌注损伤(一)、对代谢的影响1.代谢障碍 缺血时细胞内 ATP 、 CP 产生严重减少,影响 Na 泵、 Ca 泵的功能。由于钠钾泵功能降低,膜离子梯度不能维持,细胞外钾离子浓度升高,而细胞内钠水潴留。再灌注时,氧自由基产生加重了膜损伤,使细胞肿胀,同时细胞内细胞器也肿胀,影响各种细胞器功能的发挥。由于毛细血管管外水肿压迫,管内细胞的肿胀的堵塞作用,影响了脑微循环,加重脑损伤。2.细胞内酸中毒 缺血时糖酵解增强产生大量乳酸,造成更严重的组织损伤。3.钙稳态破坏 钙超载能触发下列的反应:①突触前兴奋性氨基:谷氨酸及 N- 甲基 -D- 天门冬氨酸( gluthamate and N-methyl-D-aspartate )释放,引起受体依赖性通道中 N 型钙通道释放。在某些神经元上存在 N- 甲基 -D- 天门冬氨酸( NMDA )受体,在有毒的兴奋性氨基酸的作用下,受体兴奋可引起受体依赖的 Ca 内流。②激活磷脂酶 A 2 ,引起膜磷脂降解,游离的花生四烯酸增多,再灌注后,花生四烯酸进一步代谢,生成前列腺素类、白三烯类和血小板激活因子,并在氧自由基的作用下,启动膜脂质过氧化,形成脂性自由基,并进一步促进钙受体通道兴奋性氨基酸的释放。③激活蛋白酶,核酸内切酶,导致神经元降解,微管解聚,细胞骨架破坏。④使突出前膜和突出后膜蛋白质过度磷酸化,使线粒体滞留钙作用降低,神经末梢去极化,谷氨酸释放增多,中性蛋白酶激活, Ca 大量内流,线粒体 Ca 浓度缓慢增高,最终导致神经元迟发性死亡。4.铁依赖性脂质过氧化 在脑缺血期,内皮细胞及其他细胞内铁池破裂, Fe 从铁池中释出,使 OH . 形成大大增加,引起脂质过氧化,使细胞受损。(二)、对脑功能的影响脑缺血 - 再灌注也可造成脑功能严重受损。脑缺血时脑细胞生物电发生改变,出现病理性慢波,缺血一定时间后再灌注,慢波持续并加重。如在夹闭双侧椎动脉和双侧颈总动脉的兔脑缺血再灌注损伤模型中发现,颞叶组织内神经递质性氨基酸代谢发生明显变化,即兴奋性氨基酸(谷氨酸和天门冬氨酸)随缺血 - 再灌注时间延长而逐渐降低,抑制性氨基酸(丙氨酸、 γ- 氨基丁酸、牛黄酸和甘氨酸)在缺血 - 再灌注早期明显升高。缺血再灌注损伤时间越长,兴奋性递质含量越低,脑组织超微结构改变越明显。(三)、对超微结构的影响脑缺血再灌注后,线粒体肿胀,有钙盐沉积,并可见线粒体嵴断裂、核染色质凝集、内质网高度肿胀,结构明显破坏、星型细胞肿胀, Nissl 体完整性破坏、胶质细胞、血管内皮细胞肿胀,周围间隙增大并有淡红色水肿液、白质纤维间隙疏松,血管内由微血栓、髓鞘分层变性,呈现不可逆损伤 。三、肺缺血 - 再灌注损伤(一)、对代谢的影响肺缺血再灌注后, ATP 下降明显, ATP/ADP 比值降低,糖原含量下降,乳酸堆积, DNA 合成降低。(二)、对肺功能的影响再灌注后可造成肺动脉高压,非心源性肺水肿,肺淋巴回流增加,低氧血症,肺顺应性降低,肺分流率增加,造成急性呼吸衰竭。(三)、超微结构改变肺缺血再灌注后,线粒体肿胀、嵴消失,内质网扩张,Ⅱ型细胞的板层体消失。内皮细胞和基底膜肿胀,Ⅰ型上皮细胞肿胀,在出血区多数毛细血管肺泡呼吸膜严重破坏,有严重的不可逆性细胞损伤。四、其它器官缺血 - 再灌注损伤的变化肠缺血时液体通过毛细血管滤出而形成间质水肿。再灌注后,肠道毛细血管通透性更加升高,严重肠缺血 - 再灌注损伤的特征为肠粘膜损伤。其特征表现为广泛的上皮与绒毛分离,上皮坏死,固有层破损,出血及溃疡形成。这可导致肠道的吸收功能障碍及粘膜的通透性升高,使大分子溶质得以通过。此外,损伤的肠道还可成为多种有害生物活性物质的来源。肾缺血 - 再灌注时,血清中肌酐含量明显增加,表示肾功能严重受损。缺血 - 再灌注时肾组织学损伤较单纯缺血时更明显,表现为线粒体高度肿胀、变形、嵴减少,排列紊乱,甚至线粒体崩解,空泡形成等,以急性肾小管坏死最为严重,可导致急性肾功能衰竭。此外,骨骼肌缺血-再灌注可导致肌肉微血管和细胞损伤,自由基增多,脂质过氧化增强。
三、白细胞的作用(一)、白细胞增加的机制 1.趋化物质的作用 组织缺血使细胞膜受损,再灌注损伤可使膜磷脂降解,花生四烯酸代谢产物增多,其中有些物质,如白三烯具有很强趋化作用,吸引大量的白细胞进入组织或吸附于血管内皮。白细胞与血管内皮细胞粘附后进一步被激活,本身也释放具有趋化作用的炎症介质,如白三稀 B 4 ( LB 4 ),使微循环中白细胞进一步增多。 2.细胞粘附分子的作用 粘附分子( adhesion molecule )是指由细胞合成的、可促进细胞与细胞之间、细胞与细胞外基质之间粘附的一大类分子的总称。实验发现,在缺血组织内已有白细胞聚集,其数量可随缺血时间的延长而增加;再灌注早期(数秒 - 数分钟),血管内皮细胞内原先储存的一些蛋白质前体被激活,释放多种细胞粘附分子。 (二)、白细胞对组织损伤作用的机制 1.对血液流变学的作用 实验证实,在缺血和再灌注早期白细胞即粘附于内皮细胞上,随后有大量血小板沉积和红细胞缗钱状聚集,造成毛细血管阻塞。实验表明,红细胞解聚远较白细胞与内皮细胞粘附的分离容易,提示白细胞粘附是微血管阻塞的主要原因。通过测量缺血和再灌注心肌的血流量,发现呈进行性下降趋势,特别在心内膜层降低更明显。由于血管的阻塞,平均氧弥散的距离增加,局部氧分压可降低到零,一组毛细血管网阻塞,使所支配的细胞处于低氧环境中,造成细胞功能代谢的障碍。此外,缺血再灌注组织可见到无复流现象( no-reflow phenomenon ),是指缺血再灌注时,部分或全部缺血组织不出现血液灌流的现象。影响无复流现象的原因很多,包括缺血时间的长短、缺血程度、梗死灶大小等。无复流现象的可能机制为:①血管障碍及中性粒细胞栓塞;②血小板、血栓堵塞微血管;③细胞肿胀挤压微血管;④血液粘滞性变化等。其中中性粒细胞引起的毛细血管栓塞可能是主要原因,因为用去中性粒细胞的血液灌流,能明显减轻无复流现象。 2.产生自由基 白细胞能产生多种自由基,如活性氧,卤氧化合物等,激发细胞膜的脂质过氧化,并损伤细胞内的重要成分。3.颗粒成分( granule constitutes )释出 在缺血损伤区,从白细胞释放酶性颗粒成分能导致细胞组织进一步损伤。中性粒细胞可释放出 20 多种酶,其中 3 种引起组织损伤最大。一种是含丝氨酸蛋白酶的弹性硬蛋白酶( elastase ),另外两种是含金属的蛋白酶即胶原酶( collagenase )和明胶酶( gelatinase )。弹性硬蛋白酶几乎能降解细胞外液基质中的所有成分,裂解免疫蛋白、凝血因子,并攻击完整的未受损的细胞,激活的胶原酶和明胶酶也能降解各种类型的胶原,导致细胞的损伤。 4.其他作用 白细胞一旦激活,也可激活磷脂酶 A2,游离出花生四烯酸,导致瀑布效应,产生许多血管活性物质,如白三烯,血小板激活因子等,使血管收缩,通透性增加,促进白细胞对血管壁的粘附等。
(一)、细胞内钙超载的发生机制 1. Na+ /Ca2+ 交换异常 生理条件下, Na+/Ca2+ 交换蛋白转运方向是将细胞内 Ca2+ 运出细胞,与细胞膜钙泵共同维持心肌细胞静息状态的低钙浓度。 Na+ /Ca2+ 交换蛋白以 3 个 Na+ 交换 1 个 Ca2+ 的比例对细胞内外 Na+ 、 Ca2+ 进行双相转运。 Na+ /Ca2+ 交换蛋白的活性主要受跨膜 Na+ 浓度的调节,此外还受 Ca2+ 、 ATP 、 Mg2+ 、H+ 浓度的影响。已有大量的资料证实, Na+/Ca2+ 交换蛋白是缺血- 再灌注损伤和钙超载时钙离子进入细胞的主要途径。 (1) 细胞内高 Na+ 对 Na+ /Ca2+ 交换蛋白的直接激活作用:缺血使细胞内 ATP 含量减少,钠泵活性降低,造成细胞内钠含量增高。再灌注时缺血的细胞重新获得氧及营养物质供应,细胞内高 Na+ 除激活钠钾泵外,还迅速激活 Na+ /Ca2+ 交换蛋白,以加速 Na+ 向细胞外转运,同时将大量 Ca2+ 转入细胞内,造成细胞内 Ca2+ 超载。 (2) 细胞内高 H+ 对 Na+ /Ca2+ 交换蛋白的间接激活作用:质膜 Na+ /H+ 交换蛋白主要受细胞内 H+ 浓度的变化,以 1:1 的比例将细胞内的 H+ 排出胞外,而将 Na+ 摄入细胞,这是维持细胞内 PH 稳定的重要机制。缺血缺氧期,由于细胞的无氧代谢增强使 H+ 生成增加,组织间液和细胞内液 PH 明显降低。再灌注使组织间液 H+ 浓度迅速下降,而细胞内 H+ 浓度很高,形成跨膜 H+ 浓度梯度。细胞膜两侧 H+ 浓度差可激活心肌 Na+ /H+ 交换蛋白,促进细胞内 H+ 排出,而使细胞外 Na+ 内流。如果内流的 Na+ 不能被钠泵充分排出,细胞内高 Na+ 可继发性激活 Na+ /Ca2+ 交换蛋白,促进 Ca2+ 内流,加重细胞钙超载。 (3) 蛋白激酶 C ( PKC )活化对 Na+/Ca2+ 交换蛋白的间接激活作用:生理条件下,心功能主要受 β 肾上腺素能受体调节, α1 肾上腺素能受体的调节作用较小。但缺血 - 再灌注损伤时,内源性儿茶酚胺释放增加, α 1 肾上腺素能受体的调节相对起重要作用。 α1 肾上腺素能受体激活 G 蛋白 - 磷脂酶 C ( PLC )介导的细胞信号转导通路,促进磷脂酰肌醇分解,生成三磷酸肌醇( IP3 )海二脂( DG ),促进细胞内 Ca2+ 的释放; DG 经激活 PKC 促进 Na+ /H+ 交换,进而促进 Na+/Ca2+ 交换,使胞浆 Ca2+ 浓度增加。2.生物膜损伤(1) 细胞膜损伤:生理情况下,细胞膜外板和糖被膜( glycocalyx )由 Ca2+ 紧密联结在一起。①当 Ca2+ 反常时,可使细胞糖被膜受损;②当细胞缺血缺氧时可导致细胞膜受损、破裂;③心肌缺血缺氧时,一方面使交感 - 肾上腺髓质系统兴奋,血中儿茶酚胺含量增加。儿茶酚胺能产生氧自由基,从而损伤细胞膜;另一方面,心肌缺血部位 α 肾上腺素能受体上调, α 肾上腺素能受体兴奋可导致 Ca2+ 内流增加。 (2) 线粒体及肌浆网膜损伤: 自由基增加和膜磷脂分解增强可造成肌浆网膜损伤,钙泵功能抑制使肌浆网摄 Ca2+ 减少,胞浆 Ca2+ 浓度升高。线粒体损伤抑制氧化磷酸化过程,使 ATP 生成减少,细胞膜和肌浆网膜钙泵能量供应不足,促进钙超载的发生。(二)、钙超载引起再灌注损伤的机制 1.线粒体功能障碍 再灌注后,胞浆中Ca2+浓度大量增加,可刺激线粒体和肌浆网的钙泵摄取钙,使胞浆中的 Ca2+ 向线粒体和肌浆网中转移 。这在再灌注早期具有一定的代偿意义,可减少胞浆中钙超载的程度。但细胞内钙增多使肌浆网及线粒体消耗大量 ATP ;同时,线粒体内的 Ca2+ 离子与含磷酸根的化合物反应形成磷酸钙,干扰线粒体氧化磷酸化,使能量代谢障碍, ATP 生成减少。二者均使细胞能量供应不足。 2.激活磷脂酶 细胞内 Ca2+ 超载可激活多种磷脂酶,促进膜磷脂的分解,使细胞膜及细胞器膜均受到损伤。此外,膜磷脂的降解产物花生四烯酸、溶血磷脂等增多,增加了膜的通透性,进一步加重膜的功能紊乱。3.通过 Na+/Ca2+ 交换蛋白形成一过性内向离子流( transicent inward current ) 在心肌动作电位后形成迟后除极( delayed after depolarization )而引起心律失常。 4.促进自由基形成 细胞内钙超载使钙依赖性蛋白水解酶活性增高,促进黄嘌呤脱氢酶转变为黄嘌呤氧化酶,使自由基生成增多,损害组织细胞。 5.使肌原纤维挛缩、断裂,生物膜机械损伤,细胞骨架破坏 其发生机制为:①缺血 - 再灌注使缺血细胞重新获得能量供应,在胞浆存在高浓度 Ca2+ 的条件下,肌原纤维发生过度收缩。这种肌纤维过度甚至不可逆性缩短可损伤细胞骨架结构 ,引起心肌纤维断裂;②再灌注使缺血期堆积的 H+ 迅速移出,减轻或消除了 H+ 对心肌收缩的抑制作用。三、白细胞的作用(一)、白细胞增加的机制 1.趋化物质的作用 组织缺血使细胞膜受损,再灌注损伤可使膜磷脂降解,花生四烯酸代谢产物增多,其中有些物质,如白三烯具有很强趋化作用,吸引大量的白细胞进入组织或吸附于血管内皮。白细胞与血管内皮细胞粘附后进一步被激活,本身也释放具有趋化作用的炎症介质,如白三稀 B 4 ( LB 4 ),使微循环中白细胞进一步增多。 2.细胞粘附分子的作用 粘附分子( adhesion molecule )是指由细胞合成的、可促进细胞与细胞之间、细胞与细胞外基质之间粘附的一大类分子的总称。实验发现,在缺血组织内已有白细胞聚集,其数量可随缺血时间的延长而增加;再灌注早期(数秒 - 数分钟),血管内皮细胞内原先储存的一些蛋白质前体被激活,释放多种细胞粘附分子。 (二)、白细胞对组织损伤作用的机制 1.对血液流变学的作用 实验证实,在缺血和再灌注早期白细胞即粘附于内皮细胞上,随后有大量血小板沉积和红细胞缗钱状聚集,造成毛细血管阻塞。实验表明,红细胞解聚远较白细胞与内皮细胞粘附的分离容易,提示白细胞粘附是微血管阻塞的主要原因。通过测量缺血和再灌注心肌的血流量,发现呈进行性下降趋势,特别在心内膜层降低更明显。由于血管的阻塞,平均氧弥散的距离增加,局部氧分压可降低到零,一组毛细血管网阻塞,使所支配的细胞处于低氧环境中,造成细胞功能代谢的障碍。此外,缺血再灌注组织可见到无复流现象( no-reflow phenomenon ),是指缺血再灌注时,部分或全部缺血组织不出现血液灌流的现象。影响无复流现象的原因很多,包括缺血时间的长短、缺血程度、梗死灶大小等。无复流现象的可能机制为:①血管障碍及中性粒细胞栓塞;②血小板、血栓堵塞微血管;③细胞肿胀挤压微血管;④血液粘滞性变化等。其中中性粒细胞引起的毛细血管栓塞可能是主要原因,因为用去中性粒细胞的血液灌流,能明显减轻无复流现象。 2.产生自由基 白细胞能产生多种自由基,如活性氧,卤氧化合物等,激发细胞膜的脂质过氧化,并损伤细胞内的重要成分。3.颗粒成分( granule constitutes )释出 在缺血损伤区,从白细胞释放酶性颗粒成分能导致细胞组织进一步损伤。中性粒细胞可释放出 20 多种酶,其中 3 种引起组织损伤最大。一种是含丝氨酸蛋白酶的弹性硬蛋白酶( elastase ),另外两种是含金属的蛋白酶即胶原酶( collagenase )和明胶酶( gelatinase )。弹性硬蛋白酶几乎能降解细胞外液基质中的所有成分,裂解免疫蛋白、凝血因子,并攻击完整的未受损的细胞,激活的胶原酶和明胶酶也能降解各种类型的胶原,导致细胞的损伤。 4.其他作用 白细胞一旦激活,也可激活磷脂酶 A2,游离出花生四烯酸,导致瀑布效应,产生许多血管活性物质,如白三烯,血小板激活因子等,使血管收缩,通透性增加,促进白细胞对血管壁的粘附等。四、高能磷酸化合物缺乏一些研究表明,心肌短时间缺血后,发生的损伤是可逆的,如果此时得到血液再灌,细胞不至死亡,但心肌收缩功能却不能很快恢复。说明心肌能量代谢障碍。 通过实验进一步观察发现,再灌注时心肌的高能磷酸化合物明显缺乏。说明缺血及再灌注损伤的心肌有氧代谢障碍,高能磷酸化合物缺乏。影响了心功能的恢复。 1.再灌注时高能磷酸化合物缺乏和总腺苷酸水平减少的原因: (1) 线粒体受损 : 因缺血缺氧,线粒体产生氧自由基增多,再灌注时组织产生自由基也增多。二者均使线粒体膜发生脂质过氧化,使线粒体结构和功能受损, 表现为利用氧能力障碍,同时合成 ATP 减少。 (2)ATP 的前身物质减少 : 包括腺苷,肌苷,次黄嘌呤等,在再灌注时被血流冲洗出去,使总腺苷酸水平下降。因此如在再灌注液中补充肌苷或谷氨酸等可促进 ATP 的合成及心功能的恢复。五、内皮素的作用ET 促进心脏缺血再灌注损伤的机制与心肌膜上 ET 受体上调、促进胞内钙超载、 PMN 聚集、粘附、氧自由基释放及内皮细胞自稳态失衡有关。心肌缺血再灌注时,可引起心肌细胞膜上 ET 结合点密度增加。 ET 可通过蛋白 -IP 3 途径导致胞内 Ca2+ 浓度的增高,胞内 Ca2+ 浓度增高,既可导致冠脉强烈收缩,又能激活磷脂酶,使膜磷脂降解,损伤细胞膜。 ET 具有明显地促进 PMN 聚集和粘附的作用,其机制在于 ET-1 能促进 PMN 表面粘附分子 CD11/CD18 的表达,这种作用可被抗 CD18 抗体 ISI/18 阻断 。六、血管紧张素Ⅱ( angiotension Ⅱ)的作用 Ang Ⅱ促进交感神经末梢释放儿茶酚胺、收缩血管、刺激醛固酮分泌、促进心肌血管平滑肌增殖和肥厚等生理作用,主要由 AT 1 介导。 Ang Ⅱ与再灌注损伤关系密切。主要表现在再灌注过程中 Ang Ⅱ水平增高, AT 1 受体上调,以及应用 ACE 抑制剂或 Ang Ⅱ受体拮抗剂具有抗再灌注损伤的作用。
丹酚酸B 【别 名】丹参酸B,丹参酚酸B,丹酚酸乙 【化 学 名】2-[(2R,3S)-4-[(E)-2-[(1R)-1-carboxy-2-(3,4-dihydroxyphenyl)ethoxy]carbonylethenyl]-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydrobenzofuran-3-carbonyl]oxy-3-(3,4-dihydroxyphenyl)propanoic acid 【C A S 号】115939-25-8 【来 源】为唇形科植物丹参Salvia Miltiorrhiza Bge.的根及根茎提取而得。其他来源[1] 卡拉巴丹参 Skarabachensis 根,[2]甘西鼠尾草(红秦艽) Salvia prezwalskii Maxim.。 【物理性质】本品为棕黄色干燥粉末,纯品为类白色粉末;味微苦、涩,具引湿性。。可溶于水,乙醇、甲醇。丹参酸B是由3分子的丹参素和1分子的咖啡酸缩合形成的,具有两个羧基,是以不同的盐的形式存在的(K+,Ca2+,Na+,NH4+等复合形式),在煎煮、浓缩过程中,少部分水解生成紫草酸和丹参素,一部分丹参素在酸性条件下变为迷迭香酸;丹酚酸A,C在溶液中可以互变等。 【分子式及相对分子量】C36H28O16, 【规 格】>5%,>10%,>50%,>70%,>98% 【提取工艺】丹参药材粉碎,置提取罐中,加8倍量/L盐酸浸泡过夜后,以14倍量水渗漉。渗漉提取的溶液过AB-8型大孔树脂柱进行纯化,先用/L盐酸洗脱除去不被吸附的杂质,再用25%乙醇洗脱除去极性较大的杂质,最后将40%乙醇洗脱液减压浓缩回收乙醇后冻干即得到纯度大于80%的丹参总酚酸。 【鉴 别】取本品1g,研细,加乙醇5ml,充分搅拌,滤过,取滤液数滴,点于滤纸条上,干后,置紫外光灯(365nm)下观察,显蓝灰色荧光,将滤纸悬挂在浓氨溶液瓶中(不接触液面),20分钟后取出,置紫外灯(365nm)下观察,显亮蓝绿色荧光。 酸度 取澄清度项下的水溶液,pH值应为~(中国药典1977年版附录)。 【含量测定】照高效液相色谱法(中国药典2000年版一部附录Ⅵ D)测定。 色谱条件与系统适用性试验 用十八烷基硅烷键合硅胶为填充剂;甲醇-乙腈-甲酸-水(30:10:1:59)为流动相;检测波长为286nm。理论板数按丹酚酸B峰计算应不低于2000。 对照品溶液的制备 精密称取丹酚酸B对照品适量,加水制成每1ml含10μg的溶液,即得。 供试品溶液的制备 取本品约,精密称定,置50ml量瓶中,加甲醇适量,超声处理20分钟,放冷,加水至刻度,摇匀,滤过,精密量取续滤液1ml,置25ml量瓶中,加水至刻度,摇匀,即得。 四川广汉市本草植化有限公司 测定法 分别精密吸取对照品溶液与供试品溶液各20μl,注入液相色谱仪,测定,即得。 【药理药效】丹酚酸B为三分子丹参素与一分子咖啡酸缩合而成,是目前研究较多的丹酚酸之一,对心、脑、肝、肾等器官均具有重要药理作用。 1 抗氧化作用 丹酚酸B具有很强的抗氧化作用,体内外实验证明,丹酚酸B能清除氧自由基、抑制脂质过氧化反应,其作用强度高于维生素C、维生素E、甘露醇,是目前已知的抗氧化作用最强的天然产物之一. 药理学研究表明,注射用丹参酚酸具有明显的抗氧化作用,抑制血小板聚集,及抑制血栓形成的作用,并能延长缺氧条件下动物的存活时间。试验表明,注射用丹参酚酸(60~15mg/kg)能明显改善脑缺血再灌损伤大鼠的神经功能缺陷,表现为改善行为障碍,明显缩小脑梗死面积,高、中剂量(60、30mg/kg)有统计学差异;注射用丹参酚酸在药后1、2、24hr明显改善FeCl3所致的大鼠脑缺血造成的动物神经功能损伤,表现为行为障碍的改善,并能缩小脑梗死面积;注射用丹参酚酸40mg/kg明显抑制ADP、花生四烯酸、胶原诱导的家兔血小板的聚集反应,抑制率分别为%、%、%。注射用丹参酚酸60、30mg/kg明显抑制大鼠血栓的形成;注射用丹参酚酸60、30mg/kg明显延长小鼠在缺氧条件下的存活时间。 2 对心脏的保护作用 2.1 对心肌缺血再灌注损伤的保护作用 急性心肌缺血后正常血液的再灌注可导致缺血心肌的进一步损害,其表现为再灌注后的早期可出现严重的细胞损害、顽固性心律失常和明显的心功能减退,成为急性心肌缺血再灌注损伤。心肌缺血再灌注时,大量自由基产生,细胞膜脂质过氧化反应增强,膜流动性和通透性发生变化,导致电生理活动异常,诱发和促进心律失常的产生;心肌细胞脂质过氧化反应增强,致使心肌缺血区的过氧化产物丙二醛(MDA) 含量增多、冠脉流出液中乳酸脱氢酶(LDH)、肌酸磷酸激酶(CPK)升高、心肌组织中超氧化物岐化酶 (SOD)减少。动物实验研究显示丹酚酸B能减 轻缺血再灌注损伤模型动物的心肌缺血程度,减小心肌梗死范围,减少LDH 、CPK从胞体的溢出、降低缺血心肌组织中MDA的含量,提高SOD的活力,对抗氧自由基对心肌细胞的毒害作用,保护心肌细胞. 2.2 对心脏微血管内皮细胞的延迟保护作用 心肌预先反复缺血后,可增强对后续较长时间缺血的耐受性,称为缺血预处理,是一种内源性保护机制,其心肌保护作用在预处理后即刻出现,持续2 ~ 4小时消失,24小时后重现,持续数日,后者称为延迟保护作用。心肌缺血预处理的发生机制主要是机 体内源性物质激活中间环节,引发终末效应物质的活化进而产生保护作用。 内皮细胞除在血管内外物质交换、维持凝血和抗凝血的平衡中起着重要作用外,并可产生和分泌多种生物活性物质,在调节血管舒缩运动及维持血细胞的 正常功能方面具有无可替代的生物学效应,冠状动脉内皮细胞还有调节心肌收缩力的作用. 肿瘤坏死因子a(TNF_a)是由激活的巨噬细胞分泌的一类具有多种生物学效应的细胞因子。病理状态下TNF-a可损伤心功能,诱导心肌细胞凋亡,而且TNF-a血清水平的变化与多种心脏疾病有关 。 心脏缺血缺氧时,心脏微血管内皮细胞首先和最易损伤。实验研究表明丹酚酸B预处理可抑制大鼠 心肌缺血再灌注损伤过程中的钙离子超载、减少内皮 素(ET)及肿瘤坏死因子a(TNF-a)的释放、改善血栓素/前列环素(TXA2/PGI2)系统的平衡状态、降低缺氧/复氧损伤后内皮细胞细胞间粘附分子的表达,起到保护内皮细胞的作用. 预处理保护心肌的过程涉及多种因素的参与,蛋白激酶C(PKC)作为一种细胞内信息传递的主要物质和媒介,在心脏预处理保护心肌过程中起着关键作用。PKC的激活可引发底物蛋白质磷酸化、细胞内钙稳态、离子通道、腺苷、缓激肽、受体的信息传递等一系列变化,调控着预处理过程。通过对大鼠缺氧/复氧的心脏微血管内皮细胞损伤模型,采用分子生物学方法,观察到丹酚酸B预处理能增强蛋白激酶 CmRNA、热休克蛋白70 mRNA的表达,具有与缺氧预适应相类似的细胞保护效应,可增强细胞对随后较长时间缺氧/复氧损伤的耐受性,这可能是丹酚酸B预处理的细胞保护机制。 2.3 对动脉粥样硬化的防治作用 低密度脂蛋白(LDL)氧化修饰是动脉粥样硬化发生的一个重要原因,氧化修饰的LDL(OX—LDL)具 有细胞毒性作用,易于被巨噬细胞识别并大量摄取形成泡沫细胞,影响单核细胞的迁移,从而促使动脉粥样硬化的发生发展。实验研究发现丹酚酸B能有效抑制Cu抖诱导的LDL氧化修饰,对防治动脉粥样硬化有重要意义,其作用机制可能与清除自由基、螯合Cu有关。 泡沫细胞是动脉粥样硬化斑块内出现的特征性病理细胞。血管内皮生长因子(VEGF)也称血管通透性因子(VPF),是一种高度特异的、强烈的血管内皮促分裂因子和血管生成因子。体内的动脉粥样硬化斑块中VEGF表达显著升高,以斑块中泡沫细胞的表达最为明显。在体外培养的U937泡沫细胞模型中,丹酚酸B和银杏叶提取物一样可呈剂量依赖性的抑制泡沫细胞VEGF的表达,对动脉粥样硬化有预防和治疗作用. 溶血磷脂酰胆碱(LPC)是由OX-LDL或质膜的磷脂酰胆碱(PC)经磷脂酶A2(PLA2)水解或脂质氧化而来,是OX-LDL的主要活性成分,能模拟OXLDL 的主要作用,因此LPC与动脉粥样硬化的发生 密切相关。丹酚酸B能抑制LPC刺激内皮细胞产生基质金属蛋白酶-2(MMP-2)、抑制内皮细胞表达血管内皮生长因子,防治动脉粥样硬化。另有研究显示丹酚酸B能减少动脉粥样硬化家兔血浆血栓 素(TXB2)、ET浓度,增加前列腺素Fla(6-keto- PGFI~)浓度,具有明确的内皮细胞保护效应. 2.4 对细胞凋亡的影响 在血管成形术的兔子模型中,丹酚酸B能诱导新血管内膜细胞凋亡,而凋亡在再狭窄中对细胞的数量起到稳定作用。 为考察抗氧化剂能否影响血管细胞的凋亡,Hung HH 等测定了动脉粥样硬化和胆固 醇喂养的兔子再狭窄损害模型中凋亡细胞死亡的频率。结果发现用丹酚酸B处理的一组兔子的凋亡细胞的百分率显著高于其他组。同时丹酚酸B能显 降低新血管内膜的厚度,这与凋亡细胞的数量一致。这些结果表明,丹酚酸B能诱导新血管内膜 细胞的凋亡,从而可以防止新血管内皮的增厚。 2.5预适应的心脏细胞保护作用。 3 对脑的保护作用 3.1 对脑缺血损伤的保护作用 血管内皮生长因子(VEGF)是内皮细胞特异性 的有丝分裂原,具有促进内皮细胞增殖,提高血管通透性等生物学特性。脑缺血后,低氧可激活VEGF 及其受体(VEGFR)系统,促使半影区VEGF表达, VEGF诱导大量新生血管形成,促进血管增生,增加受累组织的血流灌注和供氧量,减少神经元的凋亡和死亡,减轻脑损伤程度 。实验研究显示丹酚酸B 与冰片、三七等配伍可显著提高VEGFmRNA表达, 促进新生血管形成,并能较好地抑制VEGF诱导血管通透性增加的作用,这些作用对缺血性中风的治疗具有非常重要的积极意义。 丹酚酸可通过血脑屏障,具有改善脑血流量而无窃血,抗血小板聚集,抗血栓,抑制细胞内钙含量增高,清除自由基,促进脑血管生成等作用,可以认为丹参总酚酸是一个比较理想的有抗脑缺血作用的药物, 3.2 对学习记忆功能的影响 采用大鼠、小鼠等动物脑缺血实验模型研究证明,丹酚酸B静脉注射对大鼠、小鼠脑缺血和缺血再 灌注引起的脑损伤具有保护作用,可缩小缺血区面积,减少脑组织中MDA"含量,缓解由于脑缺血引起的行为学障碍,对由此引起的记忆功能障碍有明显的改善作用。作用机制可能与丹酚酸B的抗氧化作用有关。 4 抗肝脏纤维化作用 肝星状细胞(HSC)的激恬是肝纤维化形成的核心环节,转化生长因子-131(TGF-131)是最重要的促 HSC活化与肝纤维化形成的细胞因子。肝贮脂细胞 (FSC)是一种肝脏实质细胞,在病理条件下被激活后大量增殖,同时产生细胞外基质的能力增长数十倍, 因此,FSC在肝纤维化形成过程中也起到了重要作用。丹酚酸 B能抑制TGF-I的HSC胞内信号转导及 其受体蛋白的表达,从而拮抗TGF-B1的促HSC活化,并能抑制活化FSC增殖,抑制FSC生成细胞外基质而减少胶原纤维在肝内的沉积。另有研究表明,丹酚酸 B镁盐具有抗脂质过氧化抗肝损害的作用, 有减轻肝组织纤维化程度的功能,临床用于治疗慢性乙型肝炎肝纤维化取得满意效果. 肝纤维化是肝脏对各种慢性损伤的修复应答过程,HSC获得增殖能力并活化为肌成纤维细胞样细胞,被认为是肝纤维化形成的关键,丹酚酸的抗肝纤维化效果与γ干扰素的结果相似,体外研究发现它可抑制传一代培养的HSC的增殖,抑制转化生长因子-β1(TGF-β1)在HSC中的信号转导。 5 抗肿瘤作用 研究证明丹酚酸B不仅可以通过抗氧化作用保护神经细胞,而且可以通过减少NO 的释放,改善J3-淀粉样蛋白对神经元的毒性作用 ,并能增强老化红细胞提高T淋巴细胞分泌IL-238 ,具有抗衰老、抗肿瘤作用。 体内、体外实验表明丹酚酸B镁盐对多种肿瘤细胞株的生长具有较好的抑制作用。体外MTT实验中,丹酚酸B镁盐对人肾癌(786-0)、小鼠乳腺癌(C127)、人乳腺癌(MCF-7)、人肝癌(Hep G2)、小鼠黑色素瘤(B16)、人胃癌(SGC-7901,AGS)、人食管癌(Eca-109)等细胞株的最大抑制率皆达到40%以上,其中对肝癌细胞株HepG2的最大抑制率可达到90%以上。中空纤维实验进一步证实丹酚酸B镁盐对于裸鼠体内生长的Hep G2细胞也具有较好的抑制率,其最大抑制率可达到。 丹酚酸B(500μg/ml)具有抗前列腺肿瘤的作用,其作用从6h左右变得非常明显,台盼蓝拒染实验和MTT结果均显示细胞活力大大减少,P<;流式细胞仪检测到丹酚酸B作用12、24h的BPH1-C5细胞的凋亡率分别高到和,在流式细胞图中形成明显的凋亡峰。据此推测,丹酚酸B可能通过诱导前列腺肿瘤细胞的凋亡起到抗肿瘤的作用。 6 其他作用 骨髓基质细胞是一类具有多向分化潜能的组织干细胞,体外培养的骨髓基质细胞已被广泛应用于组织损伤疾病的治疗。取大鼠股骨及胫骨骨干骨髓基质细胞培养,保留贴壁细胞进行传代纯化,一组加入诱导剂(5-氮胞苷),一组在加入诱导剂基础上加入丹酚酸B,诱导骨髓基质细胞向心肌样细胞转化。结果显示加入丹酚酸B组与未诱导组及加入5-氮胞苷诱 导组比较,长方形及多角形细胞增多,细胞凋亡数量减少,证明丹酚酸B能促进体外诱导骨髓基质细胞向心肌样细胞转化,可作为细胞外科的一种良好细胞 来源,为细胞性心肌成形术探索一条新的途径。 影响钠钾ATP酶、H+、K+-ATP酶活性 此外,丹酚酸B镁盐还可用于预防或治疗肾炎、 肾衰竭、脉管炎、静脉栓塞、老年性痴呆疾病、抗衰老、影响钠钾ATP酶、H+、K+-ATP酶活性等 。 【临床应用】本品具有活血化瘀,通经活络之功效,主治因瘀血阻滞经络所致缺血性中风,症见半身肢体麻木,虚弱无力,拘挛疼痛,或运动不遂,口眼歪斜等。 【贮藏】 密闭,在阴凉干燥处保存。 【有效期】二年。
347 浏览 3 回答
322 浏览 4 回答
200 浏览 7 回答
204 浏览 3 回答
356 浏览 2 回答
297 浏览 3 回答
84 浏览 3 回答
84 浏览 4 回答
255 浏览 3 回答
203 浏览 6 回答
201 浏览 5 回答
211 浏览 4 回答
92 浏览 6 回答
331 浏览 8 回答
289 浏览 5 回答