序列相关性指对于不同的样本值,随机扰动项之间不再是完全相互独立,而是存在某种相关性. 2. 一阶自相关只的是误差项的当前值只与其自身前一期值之间的相关性. 3. .检验:全称杜宾—瓦森检验,适用于一阶自相关的检验..DW判断的是一阶自相关,一般用差分法(一阶)就可以解决。自相关的解决方法,基本方法是通过差分变换,对原始数据进行变换的方法,使自相关消除.一,差分法,一阶。设Y对x的回归模型为Yt=β1+β1xt+μt(1)μt=ρμt-1+vt式中, vt满足最小平方法关于误差项的全部假设条件。将式(1)滞后一个时期,则有Yt-1=β0+β1xt-1+μt-1(2)μt-1=ρμt-2+vt-1于是, (1)-ρ×(2),得Yt-ρYt-1=β0(1-ρ)+β1(xt-ρxt-1)+νt(3)Yt-ρYt-1=β1(xt-xt-1)+μt-μt-1=β1(xt-xt-1)+vt(4)ρ为自相关系数也就是说,一阶差分法是广义差分法的特殊形式。高阶自相关是用BG检验法,LM=T*R^2服从X^2(p)(kafang)分布,T为样本容量,p为你想检验的自相关阶数,查kafang分布表,置信度为95%也就是阿尔法=,如果T*R^2>查出来的结果即存在你想验证的自相关阶数。修正用广义差分法(AR(p))广义差分方法 对模型: Yt= 0+ 1X t+ut ------(1) ,如果ut具有一阶自回归形式的自相关,既 ut= u t-1 +vt 式中 vt满足通常假定.假定, 已知,则: Y t-1= 0+ 1X t-1+u t-1 两端同乘 得:Y t-1= 0 + 1 X t-1+ u t-1-------(2)