液压伺服系统设计 液压伺服系统设计 在液压伺服系统中采用液压伺服阀作为输入信号的转换与放大元件。液压伺服系统能以小功率的电信号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度。位置控制、速度控制、力控制三类液压伺服系统一般的设计步骤如下: 1)明确设计要求:充分了解设计任务提出的工艺、结构及时系统各项性能的要求,并应详细分析负载条件。 2)拟定控制方案,画出系统原理图。 3)静态计算:确定动力元件参数,选择反馈元件及其它电气元件。 4)动态计算:确定系统的传递函数,绘制开环波德图,分析稳定性,计算动态性能指标。 5)校核精度和性能指标,选择校正方式和设计校正元件。 6)选择液压能源及相应的附属元件。 7)完成执行元件及液压能源施工设计。 本章的内容主要是依照上述设计步骤,进一步说明液压伺服系统的设计原则和介绍具体设计计算方法。由于位置控制系统是最基本和应用最广的系统,所以介绍将以阀控液压缸位置系统为主。 全面理解设计要求 全面了解被控对象 液压伺服控制系统是被控对象—主机的一个组成部分,它必须满足主机在工艺上和结构上对其提出的要求。例如轧钢机液压压下位置控制系统,除了应能够承受最大轧制负载,满足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等要求外,执行机构—压下液压缸在外形尺寸上还受轧钢机牌坊窗口尺寸的约束,结构上还必须保证满足更换轧辊方便等要求。要设计一个好的控制系统,必须充分重视这些问题的解决。所以设计师应全面了解被控对象的工况,并综合运用电气、机械、液压、工艺等方面的理论知识,使设计的控制系统满足被控对象的各项要求。 明角设计系统的性能要求 1)被控对象的物理量:位置、速度或是力。 2)静态极限:最大行程、最大速度、最大力或力矩、最大功率。 3)要求的控制精度:由给定信号、负载力、干扰信号、伺服阀及电控系统零飘、非线性环节(如摩擦力、死区等)以及传感器引起的系统误差,定位精度,分辨率以及允许的飘移量等。 4)动态特性:相对稳定性可用相位裕量和增益裕量、谐振峰值和超调量等来规定,响应的快速性可用载止频率或阶跃响应的上升时间和调整时间来规定; 5)工作环境:主机的工作温度、工作介质的冷却、振动与冲击、电气的噪声干扰以及相应的耐高温、防水防腐蚀、防振等要求; 6)特殊要求;设备重量、安全保护、工作的可靠性以及其它工艺要求。 负载特性分析 正确确定系统的外负载是设计控制系统的一个基本问题。它直接影响系统的组成和动力元件参数的选择,所以分析负载特性应尽量反映客观实际。液压伺服系统的负载类型有惯性负载、弹性负载、粘性负载、各种摩擦负载(如静摩擦、动摩擦等)以及重力和其它不随时间、位置等参数变化的恒值负载等。 拟定控制方案、绘制系统原理图 在全面了解设计要求之后,可根据不同的控制对象,按表6所列的基本类型选定控制方案并拟定控制系统的方块图。如对直线位置控制系统一般采用阀控液压缸的方案,方块图如图36所示。图36 阀控液压缸位置控制系统方块图表6 液压伺服系统控制方式的基本类型伺服系统 控制信号 控制参数 运动类型 元件组成机液电液气液电气液 模拟量数字量位移量 位置、速度、加速度、力、力矩、压力 直线运动摆动运动旋转运动 1.阀控制:阀-液压缸,阀-液压马达2.容积控制:变量泵-液压缸;变量泵-液压马达;阀-液压缸-变量泵-液压马达3.其它:步近式力矩马达 动力元件参数选择 动力元件是伺服系统的关键元件。它的一个主要作用是在整个工作循环中使负载按要求的速度运动。其次,它的主要性能参数能满足整个系统所要求的动态特性。此外,动力元件参数的选择还必须考虑与负载参数的最佳匹配,以保证系统的功耗最小,效率高。 动力元件的主要参数包括系统的供油压力、液压缸的有效面积(或液压马达排量)、伺服阀的流量。当选定液压马达作执行元件时,还应包括齿轮的传动比。 供油压力的选择 选用较高的供油压力,在相同输出功率条件下,可减小执行元件——液压缸的活塞面积(或液压马达的排量),因而泵和动力元件尺寸小重量轻,设备结构紧凑,同时油腔的容积减小,容积弹性模数增大,有利于提高系统的响应速度。但是随供油压力增加,由于受材料强度的限制,液压元件的尺寸和重量也有增加的趋势,元件的加工精度也要求提高,系统的造价也随之提高。同时,高压时,泄漏大,发热高,系统功率损失增加,噪声加大,元件寿命降低,维护也较困难。所以条件允许时,通常还是选用较低的供油压力。 常用的供油压力等级为7MPa到28MPa,可根据系统的要求和结构限制条件选择适当的供油压力。 伺服阀流量与执行元件尺寸的确定 如上所述,动力元件参数选择除应满足拖动负载和系统性能两方面的要求外,还应考虑与负载的最佳匹配。下面着重介绍与负载最佳匹配问题。 (1)动力元件的输出特性 将伺服阀的流量——压力曲线经坐标变换绘于υ-FL平面上,所得的抛物线即为动力元件稳态时的输出特性,见图37。 图37 参数变化对动力机构输出特性的影响a)供油压力变化;b)伺服阀容量变化;c)液压缸面积变化 图中 FL——负载力,FL=pLA; pL——伺服阀工作压力; A——液压缸有效面积; υ——液压缸活塞速度, ; qL——伺服阀的流量; q0——伺服阀的空载流量; ps——供油压力。 由图37可见,当伺服阀规格和液压缸面积不变,提高供油压力,曲线向外扩展,最大功率提高,最大功率点右移,如图37a。 当供油压力和液压缸面积不变,加大伺服阀规格,曲线变高,曲线的顶点A ps不变,最大功率提高,最大功率点不变,如图37b。 当供油压力和伺服阀规格不变,加大液压缸面积A,曲线变低,顶点右移,最大功率不变,最大功率点右移,如图37c。 (2)负载最佳匹配图解法 在负载轨迹曲线υ-FL平面上,画出动力元件输出特性曲线,调整参数,使动力元件输出特性曲线从外侧完全包围负载轨迹曲线,即可保证动力元件能够拖动负载。在图38中,曲线1、2、3代表三条动力元件的输出特性曲线。曲线2与负载轨迹最大功率点c相切,符合负载最佳匹配条件,而曲线1、3上的工作点α和b,虽能拖动负载,但效率都较低。 (3)负载最佳匹配的解析法 参见液压动力元件的负载匹配。 (4)近似计算法在工程设计中,设计动力元件时常采用近似计算法,即按最大负载力FLmax选择动力元件。在动力元件输出特性曲线上,限定 FLmax≤pLA= ,并认为负载力、最大速度和最大加速度是同时出现的,这样液压缸的有效面积可按下式计算: (37) 图38 动力元件与负载匹配图形 按式37求得A值后,可计算负载流量qL,即可根据阀的压降从伺服阀样本上选择合适的伺服阀。近似计算法应用简便,然而是偏于保守的计算方法。采用这种方法可以保证系统的性能,但传递效率稍低。 (5)按液压固有频率选择动力元件 对功率和负载很小的液压伺服系统来说,功率损耗不是主要问题,可以根据系统要求的液压固有频率来确定动力元件。 四边滑阀控制的液压缸,其活塞的有效面积为 (38) 二边滑阀控制的液压缸,其活塞的有效面积为 (39) 液压固有频率ωh可以按系统要求频宽的(5~10)倍来确定。对一些干扰力大,负载轨迹形状比较复杂的系统,不能按上述的几种方法计算动力元件,只能通过作图法来确定动力元件。 计算阀控液压马达组合的动力元件时,只要将上述计算方法中液压缸的有效面积A换成液压马达的排量D,负载力FL换成负载力矩TL,负载速度换成液压马达的角速度 ,就可以得到相应的计算公式。当系统采用了减速机构时,应注意把负载惯量、负载力、负载的位移、速度、加速度等参数都转换到液压马达的轴上才能作为计算的参数。减速机构传动比选择的原则是:在满足液压固有频率的要求下,传动比最小,这就是最佳传动比。 伺服阀的选择 根据所确定的供油压力ps和由负载流量qL(即要求伺服阀输出的流量)计算得到的伺服阀空载流量q0,即可由伺服阀样本确定伺服阀的规格。因为伺服阀输出流量是限制系统频宽的一个重要因素,所以伺服阀流量应留有余量。通常可取15%左右的负载流量作为伺服阀的流量储备。 除了流量参数外,在选择伺服阀时,还应考虑以下因素: 1)伺服阀的流量增益线性好。在位置控制系统中,一般选用零开口的流量阀,因为这类阀具有较高的压力增益,可使动力元件有较大的刚度,并可提高系统的快速性与控制精度。 2)伺服阀的频宽应满足系统频宽的要求。一般伺服阀的频宽应大于系统频宽的5倍,以减小伺服阀对系统响应特性的影响。 3)伺服阀的零点漂移、温度漂移和不灵敏区应尽量小,保证由此引起的系统误差不超出设计要求。 4)其它要求,如对零位泄漏、抗污染能力、电功率、寿命和价格等,都有一定要求。 执行元件的选择 液压伺服系统的执行元件是整个控制系统的关键部件,直接影响系统性能的好坏。执行元件的选择与设计,除了按本节所述的方法确定液压缸有效面积A(或液压马达排量D)的最佳值外,还涉及密封、强度、摩擦阻力、安装结构等问题。 反馈传感器的选择 根据所检测的物理量,反馈传感器可分为位移传感器、速度传感器、加速度传感器和力(或压力)传感器。它们分别用于不同类型的液压伺服系统,作为系统的反馈元件。闭环控制系统的控制精度主要决定于系统的给定元件和反馈元件的精度,因此合理选择反馈传感器十分重要。 传感器的频宽一般应选择为控制系统频宽的5~10倍,这是为了给系统提供被测量的瞬时真值,减少相位滞后。传感器的频宽对一般系统都能满足要求,因此传感器的传递函数可近似按比例环节来考虑。 确定系统方块图 根据系统原理图及系统各环节的传递函数,即可构成系统的方块图。根据系统的方块图可直接写出系统开环传递函数。阀控液压缸和阀控液压马达控制系统二者的传递函数具有相同的结构形式,只要把相应的符号变换一下即可。 绘制系统开环波德图并确定开环增益 系统的动态计算与分析在这里是采用频率法。首先根据系统的传递函数,求出波德图。在绘制波德图时,需要确定系统的开环增益K。 改变系统的开环增益K时,开环波德图上幅频曲线只升高或降低一个常数,曲线的形状不变,其相频曲线也不变。波德图上幅频曲线的低频段、穿越频率以及幅值增益裕量分别反映了闭环系统的稳态精度、截止频率及系统的稳定性。所以可根据闭环系统所要求的稳态精度、频宽以及相对稳定性,在开环波德图上调整幅频曲线位置的高低,来获得与闭环系统要求相适应的K值。 由系统的稳态精度要求确定K 由控制原理可知,不同类型控制系统的稳态精度决定于系统的开环增益。因此,可以由系统对稳态精度的要求和系统的类型计算得到系统应具有的开环增益K。 由系统的频宽要求确定K 分析二阶或三阶系统特性与波德图的关系知道,当ζh和K/ωh都很小时,可近似认为系统的频宽等于开环对数幅值曲线的穿越频率,即ω-3dB≈ωc,所以可绘制对数幅频曲线,使ωc在数值上等于系统要求的ω-3dB值,如图39所示。由此图可得K值。 图39 由ω-3dB绘制开环对数幅频特性a)0型系统;b)I型系统 由系统相对稳定性确定K 系统相对稳定性可用幅值裕量和相位裕量来表示。根据系统要求的幅值裕量和相位裕量来绘制开环波德图,同样也可以得到K。见图40。 实际上通过作图来确定系统的开环增益K,往往要综合考虑,尽可能同时满足系统的几项主要性能指标。 系统静动态品质分析及确定校正特性 在确定了系统传递函数的各项参数后,可通过闭环波德图或时域响应过渡过程曲线或参数计算对系统的各项静动态指标和误差进行校核。如设计的系统性能不满足要求,则应调整参数,重复上述计算或采用校正环节对系统进行补偿,改变系统的开环频率特性,直到满足系统的要求。 仿真分析 在系统的传递函数初步确定后,可以通过计算机对该系统进行数字仿真,以求得最佳设计。目前有关于数字仿真的商用软件,如Matlab软件,很适合仿真分析。
基于 AT89C52 的多周期同步测频技术的实现黄晓峰 上海工程技术大学高职学院,上海 200437 摘 要:论述了传统的频率测量方法的原理及误差。提出了基于 AT89C52 实现多周期同步测频的新方法。 构造了与待测信号同步的多周期闸门时间,实现了时基信号与待测信号的准同步计数,系统只用一个定时/ 计数器 T2 实现了多周期同步测频。该频率测试仪结构简单,成本较低,能够在高低频段范围内实现频率参 数的等精度测量,具有较高的测量精度和较短的系统反应时间。 关键词:频率测量;多周期同步;闸门时间;AT89C52;捕捉方式; 关键词:频率测量;多周期同步;闸门时间;AT89C52;捕捉方式;等精度测量 中图分类号: 中图分类号: 文献标识码: 文献标识码:B 文章编号: 文章编号: Realization of multi-cycle synchronization based on AT89C52 HUANG Xiao-Feng Vocational Technical College, Shanghai University of Engineering Science, Shanghai, 200437 Abstract:The traditional frequency measuring principles and the errors are introduced. The new way of : multi-cycle synchronization based on 89C52 is presented. By structuring multi-cycle gate time synchronistically with the frequency signal, the system use only T2 to acquire under synchronous time base with the frequency signal, and realize the new method of multi-cycle synchronization frequency measuring .With the characteristics of a simple structure ,low cost, high accuracy and short measuring time, this frequency meter can realize equal precision measurement from high frequency to low frequency . Keyword:frequency measurement; multi-cycle synchronization; gate time;AT89C52; capture function;equal : precision measurement 0 引言 频率作为一种最基本的物理量,是电子测量技术中最重要的被测量之一。本文详细论 述了传统频率测量方法及原理, 并对各种方法的测量误差进行了分析。 为保证频率测量精度 和兼顾测量反应时间, 采用多周期同步测频技术, 设计了以 AT89C52 单片机为核心的频率参 数测试仪, 由于充分利用 AT89C52 片内定时器/计数器 T2 所特有的捕捉功能, 使得该频率参 数测试仪的软硬件结构简单, 实现了对高低频段频率参数的等精度测量, 具有较高的测量精 度和较短的系统反应时间。 1 传统测频方法及其误差分析 频率测量的方法主要有 M 法、T 法以及 M/T 法 [1] 。M 法的基本测频原理是在选定的 闸门时间 T 内对被测脉冲信号进行计数,根据计数值 N x 和闸门时间 T 求得所测脉冲信号的 频率。在 M 法中,由于闸门时间 T 由标准频率源决定,而单片机的标准频率源是由晶振频 率分频后获得, 因而保证了闸门时间 T 的精确性。 但由于闸门的启闭与待测计数脉冲不同步, 闸 门开 通时间 通常 不是待 测信 号周期 的整数 倍, 存在 待测脉 冲信号 的计 数量 化误差 ?N x = ±1 。由 M 法的测频原理可知,待测信号频率 1 fx = Nx N ? f0 = x N0 T (1) 设待测脉冲频率的准确值为 f xd , 由于单片机测频系统中的标准频率源通常是由晶振产 生的频率信号分频后得到的, 而晶振的稳定性很高, 只要按测量精度要求选择合适的晶振后, 由标准频率源的不稳定性所造成的测频误差就可以被忽略掉 (文中的误差分析均是在忽略标 准频率源的不稳定性下做出的) 。设 δ Mx 为测量的相对误差 δM x = f xd = 得 δ Mx = f xd ? f x f xd (2) N x + ?N x T = ?N x N x + ?N x ≤ (3) f xd ? f x f xd 1 Nx (4) 由式(4)知, 当待测脉冲信号频率较高时, 在闸门时间 T 内被测信号脉冲的计数值 N x 较 大, δ Mx 很小,M 法能够达到较高的测量精度;而当待测脉冲信号频率较低时,在闸门时间 T 内 N x 较小, δ Mx 很大,测频精度降低。例如,被测信号的频率为 100HZ,则在 1S 内的相对误差 δ M x =1%。 而当待测脉冲信号的频率为 10HZ, f x 在 T =1S 内的相对误差 δ M x =10%。 则 虽然可以通过增大闸门时间 T 来提高测量精度,但闸门时间 T 过长将使系统的测量时间过 长,无法满足实时性的要求。 T 法的基本原理是在待测脉冲的一个周期内对标准频率信号进行计数,根据计数值 N 0 和标准信号的频率 f 0 求得待测脉冲信号的频率。在 T 法中,由于闸门时间 T 由待测脉冲信 号决定,不存在待测脉冲信号计数的量化误差 ?N x 。但由于闸门的启闭与标准频率源不同 步,故存在对标准频率源信号的计数量化误差 ?N 0 = ±1 。由 T 法的测频原理可知,待测信 号频率 f x = 1 N 0T0 = f 0 N 0 其中 T0 为标准频率源信号的周期。同理,可得 (5) δ Tx = f xd ? f x f0 f = ? 0 N 0 + ?N 0 N 0 f xd f0 N 0 + ?N 0 (6) 2 = ?N 0 N 0 ≤ 1 N 0 由于闸门时间 T 是待测脉冲信号周期的整数倍, 当待测脉冲频率较低时, 闸门时间 T 较 长,对标准频率源的计数值 N 0 较大,测量精度高;而当待测脉冲频率较高时,闸门时间 T 过短,甚至与标准频率源信号周期相近,故高频测量时 T 法存在严重的测量误差。 理论分析表明, 无论采取何种补偿措施, 都无法同时消除对待测脉冲和标准信号的计数 量化误差。将 M 法和 T 法结合起来就是 M/T 法,M/T 法结合了 M 法和 T 法各自的优点,在被 测信号频率较高时采用 M 法,频率较低时采用 T 法,这样在高、低频信号测量中都能获得较 高的精度。但由于在 M 法中, ?N x 随着被测信号频率的降低而增大,在 T 法中 ?N 0 随着被 测信号频率的增大而增大, 因此必存在 M 法和 T 法的分界点, 在该点高低频测量的相对误差 相等且达到最大,即 δ max = δ M x = δ T x 。我们将该点的频率称为中界频率 f C ,由式(1)知 N x = f x ? T ,由式(5)得 N 0 = f 0 f x ,则中界频率 f C = f 0 T 。虽然 M/T 法能够在两端获 得高精度,但在中界频率处的误差却总是最大的。本系统采用多周期同步测频原理,利用 AT89C52 片内定时器/计数器 T2 所特有的捕捉方式,实现对信号频率、周期、脉宽以及占空 比的测量。 2 多周期同步测频原理及其误差分析 多周期同步测频技术的基本原理是在待测脉冲的 m 个周期内同时对对待测脉冲和标准 信号计数, 根据待测脉冲的计数值 N x 和标准信号的计数值 N 0 求得被测信号的频率 [2,3] 。 由 于闸门时间 T 为待测脉冲的 m 个周期即闸门时间与待测脉冲同步,从而消除了待测脉冲的 计数量化误差 ?N x 。但由于闸门的启闭与标准信号不同步,故仍存在对标准信号的计数量 化误差 ?N 0 = ±1 。设两个计数器在闸门时间 T 内同时对待测脉冲和标准信号的计数值分别 为 N x 和 N 0 ,则待测信号频率 fx = Nx T f0 = N0 T 消去闸门时间 T ,得 f x = N x ? f 0 N 0 (7) (8) (9) 同理,相对误差 δ = f xd ? f x f xd f0 f ?N ? Nx ? 0 x N + ?N 0 N0 = 0 f0 ? Nx N 0 + ?N 0 (10) = ?N 0 N 0 ≤ 1 N 0 = 1 f 0T 3 由式(10)知, δ 只与标准频率源的频率 f 0 和闸门时间 T 有关,与待测脉冲的频率 f x 无 关,实现了整个测量频段内的等精度测量,使测量精度大大提高。对于标准信号的计数量化 误差 ?N 0 ,虽然可以通过提高标准频率源的频率 f 0 和加大闸门宽度 T 来减小,但需要考虑 标准频率源工作频率的限制,以及加大闸门宽度 T 所带来的系统测量时间的增加。 3 基于 AT89C52 的多周期同步测频技术的实现 AT89C52 片内有 1 个 16 位的定时/计数器 T2,T2 除具备和定时/计数器 T0、T1 相同的 功能外,还具有捕捉方式、16 位自动重装等功能 [4,5] 。所谓捕捉功能就是当 T2 的外部输入 端 T2EX()的输入电平发生负跳变时,就会把 TH2 和 TL2 的内容同时记录到特殊功能寄存 器 RCAP2H 和 RCAP2L 中,并将外部中断标志 EXF2 置位,向 CPU 发出中断申请信号。T2 的 捕捉功能避免了 CPU 在读计数值的高字节时, 低字节还在变化所引起的读数误差, 更重要的 是,T2EX()上输入电平连续两次负跳变的计数差值,就是外部输入脉冲的周期。 依据多周期同步测频技术的原理,将 AT89C52 的定时/计数器 T2 设置为定时器捕捉工 作方式,闸门时间 T 为 m 个待测脉冲周期,被测信号经放大、整形、分频后送入 T2 的外部 输入端 T2EX(),在待测信号产生第一次负跳变时,TH2 和 TL2 中的内容(即时基脉冲计 数值)被同时捕捉至特殊功能寄存器 RCAP2H 和 RCAP2L,并在 T2 外部中断服务程序中记录 待测信号下降沿的数目, 以此实现闸门开启及待测脉冲及和时基脉冲的同时计数, 闸门时间 到时(即 T2 的外部输入端 T2EX 检测到第 m + 1 个待测脉冲下降沿) ,一次测量过程结束。 在此过程中, 当外部待测脉冲的下降沿到来或定时器 T2 产生对时基脉冲的计数溢出时, T2 外部中断标志 EXF2 或 T2 溢出标志 TF2 置位,并向 CPU 发出中断申请信号。CPU 相应中 断后,在 T2 中断服务程序中通过软件判断是 EXF2 还是 TF2 产生的中断,并进行相应的处 理,是 EXF2 产生的中断就记录下待测脉冲下降沿的数目,若是 TF2 就记录下 T2 对时基脉 冲的溢出次数。待测频率具体的计算如下: 设闸门时间 T 内共产生了 m + 1 次 T2 外部中断( m 个待测脉冲)及 N 次 T2 溢出中断, 且设第一个待测脉冲的下降沿到来时 T2 对时基的计数值为 l1 , m + 1 个待测脉冲的下降沿 第 到来时 T2 对时基的计数值为 l2 ,则 T2 对时基的计数过程如下(包括 N 次 T2 溢出中断) 。 l1 L65535 → 0L65535 → 0L65535 → 0LLL0L65535 → 0Ll2 则闸门时间 T = ( l2 ? l1 + 65536 × N ) × T0 = mTx 其中 T0 为单片机时基信号周期, Tx 为待测脉冲信号周期,故被测信号频率为 fx = k ( l2 ? l1 + 65536 × N ) × mT0 (11) 其中 k 为可编程分频器相应的分频数 4 4 系统的软硬件设计 本系统采用多周期同 步 测 频 原 理 [3] , 以 盘 AT89C52 单片机为核心, 显 利用其片内定时器/计数 示 器 T2 所特有的捕捉功能, 器 XTAL2 利用定时器 T2 的捕捉功 复位电路 RESET VSS 能及外部中断,软硬件结 GND 合完成待测信号与闸门信 图1 系统硬件组成框图 号的同步,以及待测信号 与时基信号的同时刻计数,使用一个定时器/计数器 T2 实现多周期同步测频技术,使得频率 测试仪的软硬件结构简单易于实现。系统硬件组成框图如图 1 所示,主要由放大限幅电路、 波形转换与整形电路、可编程分频器电路、单片机最小应用系统及键盘显示器电路组成。输 入的正弦波、 三角波等各种形式的小信号电压经放大限幅后, 通过波形转换电路转换为方波 信号,再利用 7414 整形为 TTL 电平信号,利用可编程分频器来扩展频率测量范围的上限, 这样将经过了放大、整形、分频后的待测脉冲送入单片机最小应用系统的 (T2 的外部 输入端 T2EX) ,通过键盘显示器电路来实现被测频率参数(频率、周期、脉宽和占空比) 的选择与动态显示。 放 大 被测信号 与 限 幅 波 形 变 换 整 形 可 编 程 待测脉冲 分 频 器 +5V VCC XTAL1 键 软件采用自顶向下的模块化设计方法 [6] ,将 T2中断服务程序流程图 N 各个功能分成独立的模块,由系统的监控程序统 一管理执行。整个系统由初始化模块、键输入模 块(用于测量参数的选择)、信号频率测量模块、 数据处理模块、数据显示模块等组成。上电后, 首先进入系统初始化模块,在初始化子程序中完 成对定时/计数器 T2 的定时器及捕捉方式的设置, 并启动 T2。 频率测量模块由 T2 中断服务程序完成, 当外 部待测脉冲的下降沿到来或定时器 T2 产生对时基 脉冲的计数溢出时,T2 向 CPU 发出中断申请。 CPU 响应中断后, 通过软件判断是 EXF2 还使 TF2 产生的中断,并进行相应处理。T2 中断服务程序 流程图如图 2 所示。 5 结束语 本文讨论了传统频率测量方法的原理及误 差。在此基础上,对多周期同步测频技术的原理 及其误差进行了详细分析。由于多周期同步测频 技术的测量精度与被测信号的频率无关,实现了 整个测量频段内的等精度测量,消除了 M 法中对 T2外部中断? Y T2外中断次数加1 T2溢出中断 次数加1 Y 第1个外部 脉冲下降沿? N 第m+1个外部 脉冲下降沿? 捕捉寄存器 内容送时基 计数单元1 Y 捕捉寄存器内容 送时基计数单元2 存外中断次数 外中断次数清零 存T2溢出次数 溢出次数清零 清TF2中断 标志 清EXF2中断标志 中断返回 图2 T2中断服务程序流程图 5 被测脉冲信号的计数量化误差 ?N x = ±1 , 克服了 M/T 法中高低频两端精度高而中界频率附 近测量误差最大的缺陷。 本文提出了基于 AT89C52 实现多周期同步测频方法, 利用 T2 的捕 捉功能和外部中断产生与待测信号同步的闸门时间,通过 T2 的定时功能实现了时基信号与 待测信号的同步计数,使得系统只用一个定时器/计数器 T2 就实现了多周期同步测频技术, 该系统软硬件结构简单,具有较高的测量精度和较短的系统反应时间。 参考文献: 参考文献: [1] 尹克荣.智能仪表中的频率测量方法[J].长沙电力学院学报,2002, 17(1):74-76 [2] 章军,张平,于刚.多周期同步测频测量精度的提高[J].电测与仪表,2003,40(6):16-18 [3] 王连符.测频系统测量误差分析及其应用[J].中国科技信息,2005,(18A):94-94 [4] 李全利.单片机原理及应用技术[M].北京:高等教育出版社,2001 [5] 李群芳 黄建.单片微型计算机与接口技术[M].北京:电子工业出版社,2002 [6] 孙传友,孙晓斌,汉泽西等,测控系统原理与设计[M].北京:北京航空航天大学出版社,2002 作者简介: 作者简介: 黄晓峰(1969-),男,甘肃省甘谷县人,副教授,硕士,研究方向为检测技术及智能仪器仪表、计算机控制。 E-mail: 电话: 6 基于 MCS_51单片机的直流电机转速测控系统设计摘要: 给出了一种基于89C51单片机以及 PWM 控制思想的高精度、高稳定、多任务直流电机转速测控系 统的硬件组成及关键单元设计方法。实验结果表明该系统能实时、有效地对直流电机转速进行监测与控制, 而且输出转速精度高、稳定性好。 0 引言 目前使用的电机模拟控制电路都比较复杂,测量范围与精度不能兼顾, 且采样时间较长, 难以测得 瞬时转速。本文介绍的电机控制系统利用 PWM 控制原理, 同时结合霍尔传感器来采集电机转速, 并经 单片机检测后在显示器上显示出转速值, 而单片机则根据传感器输出的脉冲信号来分析转速的过程量, 并 超限自动报警。本系统同时设置有按键操作仪表, 可用于调节电机的转速。 1 系统方案的制定 直流电机控制系统主要是以 C8051单片机为核心组成的控制系统, 本系统中的电机转速与电机两端的 电压成比例, 而电机两端的电压与控制波形的占空比成正比, 因此, 由 MCU 内部的可编程计数器阵列 输出 PWM 波, 以调整电机两端电压与控制波形的占空比, 从而实现调速。本系统通过霍尔传感器来实 现对直流电机转速的实时监测。系统的设计任务包括硬件和软件两大部分,其中硬件设计包括方案选定、 电路原理图设计、PCB 绘制、线路调试; 软件设计包括内存空间的分配, 直流电机控制应用程序模块的 设计, 程序调试、软件仿真等。 2 硬件设计 C8051是完全集成的混合信号系统级 MCU 芯片, 具有64个数字 I/O 引脚, 片内含有 VDD 监视器、 看门狗定时器和时钟振荡器, 是真正能独立工作的片上系统, 并能快捷准确地完成信号采集和调节。同 时也方便软件编程、干扰防制、以及前向通道的结构优化。 本单片机控制系统与外部连接可实时接收到外部信号, 以进行对外部设备的控制, 这种闭环系统可 以较准确的实现设计要求, 从而制定出一个合理的方案, 图1所示是电机测控系统框图。 图1 电机测控系统框图。 本系统先由单片机发出控制信号给驱动电机, 同时通过传感器检测电机的转速信号并传送给单片机, 单片机再通过软件将测速信号与给定转速进行比较, 从而决定电机转速, 同时将当前电机转速值送 LED 显示。此外, 也可以通过设置键盘来设定电机转速。系统中的转速检测装置由霍尔传感器组成, 并通过 A/D 转换将转速转换为电压信号, 再以脉冲形式传给单片机。这种设计方法具有频率响应高(响应频率达 20 kHz 以上)、输出幅值不变、抗电磁干扰能力强等特点。其中霍尔传感器输入为脉冲信号, 十分容易与 微处理器相连接, 也便于实现信号的分析处理。单片机的 T0口可对该脉冲信号进行计数。 设计时, 可通过单片机的 ~ 五个接口来完成键盘的输入, 口可完成鸣叫和报警, 接电机, ~接显示器的位选, P0口为显示器段选码, 其硬件连接电路如图2所示。 图2 硬件连接电路图。 本系统的脉冲宽度调制(Pulse Width Modulation)原理是: 脉冲宽度调制波由一列占空比不同的矩形脉 冲构成, 其占空比与信号的瞬时采样值成比例。该系统由一个比较器和一个周期为 Ts 的锯齿波发生器组 成。脉冲信号如果大于锯齿波信号, 比较器输出正常数 A, 否则输出0。图3所示为脉冲宽度调制系统的 调制原理和波形图。 图3 脉宽调制过程。 设样本 τk 为均匀脉冲信号, 它的第 k 个矩形脉冲可以表示为: 其中, x {t} 是离散化信号; Ts 是采样周期,τ0是未调制宽度, m 是调制指数。现假设脉冲幅度为 A, 中心在 t=kTs 处, τk 在相邻脉冲间变化缓慢, 那么, 其 Xp (t) 可表示为: 其中, 为电机角速度,结合式(2) 可见, 脉冲宽度信号可由信 号 x (t)加上一个直流成分以及相位调制波构成。当 τ0<<> 因此, 脉冲宽度调制波可以直接通过低通滤波器进行解调。C8051单片机有2个12位的电压方式 DAC, 每个 DAC 的输出摆幅为0 V~VREF, 对应的输入码范围是0x000~0xFFF。通过交叉开关配置可将 CEX0~CEX4 配置到 P2 端口, 这样, 改变 PWM 的占空比就可以调整电机速度。 LED 显示采用动态扫描方式, 并用单片机 I/O 接口扩展输出, 再由三极管驱动各显示器的位选端并 放大电流。独立式按键采用查询方式, 按键输入均采用低有效, 上拉电阻可用于保证在按键断开使其 I/O 口为高电平。单片机的 I/O ()引脚所扩展的5个按键分别定义为: 设置、启动、移位、开始、+1 功能。硬件电路确定以后, 电机转速控制的主要功能将依赖于软件来实现。 3 软件设计 本系统的软件程序的设计可分为5个步骤: 分别是综合分析并确定算法; 设计程序流程图;合理选择和分配内存单元以及工作寄存器; 编写程 序; 上机调试运行程序。 应用软件的设计可采用模块化结构设计, 其优点是每个模块的程序结构相对简单, 且任务明确, 易 于编写、调试和修改; 其次是程序可读性好, 对程序的修改可局部进行, 而其他部分可以保持不变, 这 样便于功能扩充和版本升级; 另外, 对于使用频繁的子程序, 可以建立子程序库, 以便于多个模块调 用; 最后是便于分工合作, 多个程序员可同时进行程序的编写和调试工作, 故可加快软件研制进度。 本程序采用8051单片机的 C 语言编程来实现。 在系统的程序设计中, 可采用模块化编程实现。 整个软件由主程序模块、转速测量模块、时钟模块、数据通信模块、动态显示模块等组成。各模块均 采用结构化程序设计思想设计, 因而具有较强的通用性; 而采用模块化程序结构则可使软件易于调试、 维护和移植。 系统软件可根据硬件电路的功能与 AT89C51各管脚的连接情况对软件进行设计。以便明确各引脚所要 完成的功能, 从而方便进行程序设计和内存地址的分配, 最终完成程序模块化设计。 本系统为直流电机测控系统。根据系统性能要求, 除复位电路外, 还应该设置一些功能键: 包括启动键、设置键、确定键、移位键、加1键等。由于本系统中的单片机还有闲置的 I/O 口线,而系 统要求所设置的按键数量也不多, 因此, 可以采用独立式按键结构。 根据直流电机控制系统的结构, 该电机转速控制系统为一简单的应用系统, 可以采用顺序的设计方 法。这种设计由主程序和若干个中断服务程序构成, 整个电机转速测控系统可分成六大模块, 每个模块 完成一定的功能。图4所示是根据电路图确定的程序设计模块图。 图4 直流电机控制软件设计模块图。 其中主程序模块主要设置主程序的起始地址、中断服务程序的起始地址、有关内存单元及相关部件的 初始化和一些子程序调用等。其主程序流程图如图5所示。 图5 主程序流程图。 对于定时器 T1 (1s) 子程序的设计,其实在单片机中,定时功能既可以由硬件(定时/计数器) 实现,也 可以通过软件定时程序来实现。软件延时程序要占用 CPU 的时间, 因而会降低 CPU 的利用率。而硬件定 时则通过单片机内的定时器来定时, 而且, 定时器启动以后可与 CPU 并行工作, 故不占用 CPU 的时间, 从而可使 CPU 具有较高的工作效率。 本系统采用硬件定时和软件定时并用的方式, 即用 T1溢出中断功能来实现10 ms 定时, 而通过软件 延时程序实现1 ms 定时。其中 T1定时器中断服务程序的功能主要实现转速值的读入、检测与缓存处理。 对于定时器 T1的计数初值计算, 由于本系统采用的是6 MHz 的时钟频率, 所以, 一个机器周期时 间是2 ?s。这样, 根据 T1定时器产生500 ?s 的定时, 便可以计算出计数初值。 本文设计的转速测控系统的工作方式寄存器 TMOD=00010000B, T1定时器以工作方式2来完成定时。 4 程序调试 程序调试可在伟福仿真软件上进行编制, 该软件支持脱机运行, 纯软件环境可模拟单步、跟踪、全 速、 断点; 源文件仿真、 汇编等, 并可支持多文件混合编程。 仿真调试后的目标程序可以固化到 EPROM, 然后用专门的程序烧写器对89C51单片机进行程序烧写。 5 结束语 本设计采用 C51进行编程, 程序占用存储器单元少, 执行速度快, 并能够准确掌握执行时间, 实 现精细控制。同时由于采用89C51为 CPU,并利用噪声抵抗能力较强的 PWM 控制技术、串行口扩展显示 器接口和 I/O 口扩展键盘, 因而可省去片外 RAM, 而且体积小, 功能全, 小巧灵活,操作方便, 又 可安装在工作现场单独工作。因而具有较大的实用价值和良好的应用前景。
LM331的内部资源如下:1号管脚为脉冲电流输出端。2号管脚为输出脉冲电流的幅度调节,其外接电阻越大,输出的电流就越小。5号管脚为单稳态提供外接时间常数。6号管脚为脉冲输入管脚,低于7号管脚电压触发有效。7号管脚为比较器提供基准电压。输入脉冲信号经过有电阻和电容组成的微分电路转变为窄脉冲然后再输入LM331里的单稳态触发器。这个微分电路可以消除输入脉冲信号低电平宽度太大而对单稳态电路的正常工作所带来的影响。输出部分采用低通滤波器电路,在取得较好的动态特性时保持较好的滤波效果。通过反馈电阻来调整整个电路的灵敏度,使得输出电压幅值和阻抗能与后端的控制电路相匹配。图3-6 F/V转换电路 PID控制器PID控制器问世至今已有将近70年历史。PID控制器性能可靠、稳定性好、结构简单、易被人们熟悉和掌握、控制效果好。在实际工业控制中,PID控制器是连续系统中技术最成熟、应用最广泛的一种调节方式。其调节的实质是根据输入的误差值,利用比例、积分、微分的函数关系进行运算,计算出的控制量用于输出控制。PID控制器是一种线性控制器。其将给定值r(t)与实际输出值c(t)的偏差的比例(P)积分(I)微分(D)通过线性组合构成控制量,对控制对象进行控制。1、PID调节器的微分方程:式中e(t)=r(t)c(t)2、PID调节器的传输函数:PID控制器各校正环节的作用:1、比例环节指成比例控制系统的误差信号e(t)当产生误差时控制器立即投入控制作用以减小误差。当Kp增大,系统响应加快,静差减小,但系统振荡增强,稳定性下降。2、积分环节主要是用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数Ti。当Ti增大,系统超调减小,振荡减弱,但系统静差的消除也随之减慢。3、微分环节能反应误差信号的变化速率,在误差信号值变得太大之前。在系统中引入一个有效的早期修正的信号,从而提高系统快速性,减小调节时间。当Td增大,调节时间减小,快速性增强,系统振荡减弱,稳定性增强,但系统对扰动的抑制能力减弱。图3-7 模拟PID控制系统原理框图 TCA785移相触发电路TCA785晶闸管单片移相触发集成芯片是德国西门子公司研发的。TCA785芯片能比较可靠识别零点,移相范围较宽,适用温度范围较宽,输出的脉冲稳定整齐等特点。TCA785的输出脉冲宽度可以进行手动调节,因此适应范围很宽广。TCA785芯片的5管脚是外接同步信号端,用来检测交流电压过零点。通过不同的电阻可接不同的同步电压,在应用中接正反向并联的二极管限幅电路进行保护。10管脚为片内产生的同步锯齿波,锯齿波斜坡的最大、最小值由9、10两管脚的外接电阻与电容所决定。通过与11管脚的控制电压相比较,在15和14管脚输出同步脉冲信号。这两个管脚可输出宽度变化、相位互差180°的脉冲。可以通过改变11管脚的控制电压进而进行移相控制,脉冲的宽度则由12管脚的外接电容所决定。图3-8 TCA785移相触发电路 功率调节电路功率调节电路部分主要由两个LM7805为光电耦合器提供电源以及两个双向可控硅组成。通过TCA785移相触发器通过15和14管脚输出相位互差180°同步脉冲信号。然后分别作用于两个光电耦合器,通过光电耦合器将弱电系统与强电系统隔离开来。隔离强电系统所造成的干扰,保持系统稳定工作,提高系统的抗干扰能力。霍尔电压电流传感器测量负载电路中的电压电路,然后通过电能计量芯片采样可以计算出电压电流值和有功功率。可以通过单片机读取并且通过液晶显示,同时输出与功率成正比的脉冲信号。经过频率/电压转换电路转换为电压输出。输出电压与设定功率相对应的电压得出误差信号,然后经过PID控制器作用于TCA785移相触发器。移相触发器的输出作用于光电耦合器,光电耦合器输出信号直接控制两个双向可控硅的门极。然后就能控制双向可控硅的导通和关断来控制负载电路中的电压、电流值。进而使电路中的功率恒定,即使当负载发生变化时也能通过控制可控硅的导通和关断来恒定电路功率。整个调功系统构成一个闭环控制,通过提高控制精度与速率来提高合成金刚石的产量和质量。双向可控硅内包含有三个PN结,是一个三端接口元件。可以把双向可控硅看成由两个单向可控硅反向并联组合而成,并且只要一个门极就能控制可控硅。双向可控硅可以通过触发来控制其导通。但是不论双向可控硅出于正向还是反向电压,只要向门极施加一个正或负极性的脉冲触发信号,双向可控硅就能够导通。在双向可控硅导通的状态下,如果没有触发脉冲信号,双向可控硅能维持导通而不被关断。如果双向可控硅两极的电流变到比维持电流小时双向可控硅被关断或者当在没有触发脉冲信号得情况下双向可控硅两极电压的极性发生变化时双向可控硅被关断。 数模转换器(D/A)数模转换器将离散形式的二进制表示的数字信号转换成为连续的模拟信号。D/A转换器通常用来作为微机控制的输出通道,然后与被控执行对象相连接。以实现某些系统的的自动控制以及输出信号。本调功系统采用串行数模转换芯片DAC101S101为PID控制器提供参考电压。该D/A转换芯片的分辨率达到千分之一,保证了系统控制精度。通过单片机控制D/A转换器并向D/A中写入数据以输出电压信号。这个电压与设定的有功功率成正比,即一个有功功率有自己对应的电压信号,这个电压信号作为PID控制器提供参考电压。电能计量芯片CS5460A输出与有功功率成正比的脉冲信号经过频率/电压转换电路转换成相应的电压信号与D/A输出经过比例放大后的电压信号相比较,得到一个误差信号。然后对调功系统进行PID控制把误差消除,以达到恒功的目的。 显示和按键电路本系统采用LCD1602液晶来显示电压、电流和功率值。通过三个弹性按键来设定功率,操作简单方便。选取LCD1602液晶作为显示界面。因为其体积小,编程简单而且能够满足本系统的要求。1602液晶能分为两列显示32个数字、符号和字母字符,每列显示16个。LCD1602液晶内包含有5x11或5x7点阵型模块,每个字符的显示都由点阵型模块来实现。1602液晶有16个管脚,其内部含有128个字符的ASCLL字符库。通过并行向1602中写入数据,可以通过可调电阻控制背光的亮度。弹性按键是机械弹性的开关,可以通过压按来控制线路的导通与关断,进而完成对系统的控制与设定。该弹性按键一端接地并作为STC89C52单片机的I/O口的输入信号,当按键被按下为闭合。然后单片机I/O口与地相连接变为低电平。单片机可以通过检测与按键相连I/O的电平高低来判断按键是否被按下。然后就能通过程序执行某些指令,达到自动控制的目的。第四章系统软件设计 主程序模块本调功系统软件由主程序模块、电能计量芯片CS5460A子程序模块、LCD1602液晶显示子程序模块、D/A子程序模块、按键子程序模块等组成。它们是整个调功系统的核心部分,整个硬件系统都要靠程序来执行操作。主程序模主要任务是调功系统上电启动之后对各个元件进行初始化操作和构建整体调功系统的软件框架。元件初始化主要为STC89C52单片机初始化、1602液晶初始化、D/A初始化、电能计量芯片CS5460A等。然后设置中断,单片机判断弹性按键是否被按下设定有功功率参数,运行调功系统。然后可以执行相关模块的调用,持续控制调功软件系统直到系统运行停止。 电能计量芯片CS5460A子程序模块电能计量芯片CS5460A通过SPI串行接口与单片机进行通信,只需要用四根线就能控制和读取CS5460A芯片寄存器里的数据。CS5460A主要有三类寄存器:数据寄存器、校准寄存器和控制寄存器。通过这些寄存器可以采用读取电压电流和功率值。CS5460A的具体使用操作如下:1、功率测量芯片CS5460A含有多个控制命令。要使CS5460A完成对电压电流以及功率的计算就必须先要写入控制命令字。然后就可以执行相应操作,控制命令字如下:(1)启动转换命令,即0xe8对功率测量芯片CS5460A写入0xe8控制命令字,功率测量芯片启动A/D转换,然后可以输出计算后的结果。一般是在功率测量芯片进行复位后输入时写入这个控制命令,使得功率测量芯片CS5460A 能够正常的工作。(2)同步控制命令1(0xff)和同步控制命令0(0xfe)在写入读写控制命令前要执行同步控制命令对串行通信接口进行复位。(3)上电和停止控制(0xa0)在芯片系统校准电压电流前写入这个控制命令,可以停止功率测量芯片在执行某些操作时候,然后运行系统校准控制命令。(4)校准控制住命令通过写入不同的控制命令完成某些要求的系统校准。最低位O可以选择是否运行偏置校准;G位可以选择是否运行增益校准;R位可以在DC和AC校准之间选择;VI两位可以选择电压电流通道。2、控制寄存器K[3:0]通过这四位设置MCLK主频一倍、二分之一和四分之一倍分频为功率测量芯片的DCLK内部时钟。IHPF位为选择电流通道是否运行高通滤波器。VHPF位为选择电压通道是否运行高通滤波器。RS位控制复位CS5460A芯片复位控制位。DL[1:0]选择EOUT和EDIR通用输出口以及输出电平。EOD为允许EDIR,EOUT的控制位。SI[1:0]为设置中断信号方式,电平有效还是沿边有效。GI位设置电流的增益。PC[6:0]通过调节这这个寄存器实现相位补偿。3、CS5460A芯片启动和设置对CS5460A芯片进行复位操作,复位信号的脉宽至少为10ms。然后写入同步控制命令。再将设定的校准值写入校准寄存器当中,通过控制寄存器设定相关的寄存器参数。启动CS5460A芯片A/D转换,读取A/D的转换值然后计算出电流电压以及功率值。CS5460A芯片校准CS5460A可以通过校准控制寄存器执行增益校准和偏置校准。然后校准信号就可以对电流、电压输入通道进行操作。当系统执行系统校准时候A/D不能执行转换,可以通过寄存器停止你转换操作。 LCD1602子程序 LCD1602子程序模块本调功系统采用1602液晶显示电压电流值以及有功功率值。1602液晶为16引脚,有八个数据口。在对1602液晶写入数据前要先进行初始化设置,即设置显示模式、光标的开关和左右移设置。然后写入操作时序将数据指针定位,先写命令,再写入数据。 D/A子程序数模转换器将离散形式的二进制表示的数字信号转换成为连续的模拟信号。只需要调整输入的数字信号,D/A就能通过模拟输出端输出一个对应于数字信号的模拟信号。但是数字信号变化频率不能超过数模转换器的最高转换速率。在编写D/A程序时要先对其进行初始化,然后再启动转换。通过一个标志位可以判断数模转换器是否转换完成。 按键子程序该弹性按键一端接地并作为STC89C52单片机的I/O口的输入信号。当按键被按下为闭合,然后单片机I/O口与地相连接变为低电平。单片机可以通过检测与按键相连I/O的电平高低来判断按键是否被按下。然后就能通过程序执行某些指令,达到自动控制的目的。在编写按键程序的时候要考虑抖动现象,为了简化电路设计。本系统选择通过软件延时的方法来消抖,不需要增加专用的消抖电路就能实现。程序执行检测按键是否被按下,当被按下时延时几个毫秒之后再检测按键是否被按下。当确认被按下时等待按键被释放,被释放之后就可以执行相应的程序代码。系统仿真与调试 系统仿真系统仿真通过某些仿真软件完成电路的仿真分析。省略电路板制作的过程以及节省元件减低了做板成本。还可以从仿真软件中选用虚拟的电子元件和仪表等虚拟工具搭建成仿真电路。可以直观的测到元件输出波形以及如何设定参数,还可以把程序加载到仿真电路,验证程序是否正确。系统的了解电路的工作原理以及可以通过仿真电路找到电路设计的缺陷与不足,大大提高了设计电路的效率。 仿真软件介绍本调功系统选择Proteus仿真软件对系统电路进行仿真验证以及了解其工作原理。Proteus软件是由英国的Lab Center Electronics公司研发的一款EDA仿真软件。Proteus仿真软件不只含有其他EDA仿真软件的功能,这个仿真软件还可以对单片机和外围电路进行仿真。Proteus仿真软件广泛运用于单片机及外围电路的仿真,其虽在国内起步较晚。但是由于其操作方便、功能强大受到单片机相关学习以及工作人员的好评。 系统仿真结果本系统采用Proteus软件进行电路仿真。但部分元件如CS5460A在仿真软件里没有相应虚拟元件,而且用仿真软件仿真时其是带有一定理论性。因此只对调功系统的一部分电路模块进行仿真,仿真所得的结果为设计电路提供参考。做出板子后调试逐渐完善电路。通过一个高阻值的电阻将交流回路电压信号引入移相触发芯片TCA785的外接同步信号端,用来检测交流电压过零点。并且并联正反向的二极管限幅电路进行保护。经过芯片内部电路的检测以及计算,然后在片内形成一个同步锯齿波。锯齿波的幅值可以由9、10两管脚的外接电阻电容值调节。同步锯齿信号与11管脚的输入控制电压进行比较,在15和14管脚输出相位互差180°的同步脉冲信号触发可控硅。11管脚输入的电压信号就可以控制移相触发角的大小,12管脚的外接电容决定输出的同步脉冲信号的脉冲宽度。输出的触发角ϕ范围为0°~180°。 电路板制作在设计本系统电路原理图以及画PCB电路时使用Altium Designer Winter 09软件。这个软件功能强大,含有比较完整的库资源为用户提供一体化的电子设计环境。在PCB布线时PCB尺寸太大阻抗会变大,信噪比减小,但太小时散热不足,容易受到相邻线路的干扰。根据电路功能分模块整齐放置元件进行布局,尽量按照信号流方向布局各电路模块使其信号方向一致。对于高频元件应该尽量缩短连线距离,以减小电磁干扰。对于电压相差很大的线路和元件,布线的时候应该相应的远离,防止放电而造成短路的情况。画线路时在拐弯处应该尽量避免尖角,否则会给电路造成干扰。当布双面板时,底层和顶层线路尽可能不要平行走线降低产生寄生耦合。数字地和模拟地应该分开进行布线操作,最后才相连接到一个点上。在制作电路板的过程中,没有相应的设备,靠手工制作。先用专用纸将PCB打印出来,用砂纸擦磨裁剪好的铜板,将其表面的氧化层去掉。然后将PCB纸对准铜板,用熨斗按压加热PCB纸使油墨粘贴到铜板上,铜板上的线路有损时可以用油笔修补。修补好的铜板就可以进行腐蚀,先放水,然后再加浓盐酸和浓双氧水。水、浓盐酸、浓双氧水的比例为3:1:2。腐蚀液不能太浓否则容易将板子腐蚀坏,由于腐蚀液具有强腐蚀性,在腐蚀过程操作要注意安全。腐蚀完成后进行擦洗和转孔,可以在线路上涂一些松香油防止铜板被氧化和焊接方便减少虚焊。做好PCB板之后,再将元件安装并焊接到板子上,放置之前要验证元件是否有损坏或不能正常工作,正确放置元件有极性的要对照PCB放置。放置元件先时应该先放置体积较小,再放置体积大的,先低后高的顺序放置。焊接时候要小心虚焊,对于管脚较多的贴片芯片,先焊接对角的两个管脚这样就能固定住芯片,然后再进行其他引脚的焊接。 系统硬件调试焊接完成之后要进行硬件电路进行检查调试,硬件调试是设计电路很重要的环节,可以通过不断的调试电路发现设计缺陷和不足。电路调试步骤如下:(1)查看电路:检查电路是否有虚焊、漏焊、连锡、错焊、毛刺等焊接缺陷;看芯片方向和极性元件方向是否焊接正确。(2)上电观察:调整好供电电源后按正确接法接到系统电路上,初步判断电路是否有短路现象。同时做好随时断电准备,如有冒烟、发出气味、元件发烫等异常现象马上断开电源,然后寻找故障原因并解决。(3)静态调试:在没有输入信号得情况下,测量电路电源电压、纹波是否正常和集成芯片、元件引脚电流电压值测量。调试晶体是否起振、频率、占空比、幅值是否满足芯片正常工作要求,调试主要通道电气特性是否正常。初步判定各芯片及电路是否能正常工作,电路是否有错。(4)动态调试:对系统电路施加输入信号,借助仪器测量芯片电路的输出信号波形、幅值等能否满足要求。并且做好调试记录,为后续调试提供依据和参考数据。调整电路的电容和电阻多次试验直到参数符合要求。(5)性能指标调试:通过静动态调试对系统电路进行调试系统正常后,对系统所要求的指标进行调试。记录并分析测试得到的数据,多次试验后得出调试总结并对比性能指标是否满足系统设计的要求。如达不到预期效果,找出问题所在并修改部分甚至整个电路以完善设计。 系统软件调试软件调试即把编写好的的程序下载到系统硬件中运行,编译系统程序进行调试。根据调试时所发现的错误情况进行程序语法和时序修正。仔细阅读芯片技术手册,把相关的寄存器操作、读写以及控制时序弄懂。当系统运行出错时要找出出错代码,逐行检查,可以通过标志位反应出程序运行情况。软件调试有两种方法:(1)静态调试:将寄存器以及相关部分的内容输出,这样可以直接读取指标是否满足要求,通过测试找出问题所在。读取主要变量值,测试变量值在程序运行过程是否和预期值相同。(2)动态调试:通过专业调试软件分析程序执行过程的动态情况。运用Keil软件对程序进行调试,可以进行多种设置如单步、全速以及跳出或进入函数内部等等。可以查看变量在执行程序时发生的改变以及可以知道执行代码的所花的时间。 调试结果本调功系统用50W白炽灯作为电路负载,在系统运行过程中可以实现恒功率控制。在电路中接入一盏白炽灯待系统稳定后记录电流、电压以及功率值,然后再在电路中并联接入另一盏白炽灯。接入瞬间系统功率发生变化,调功系统及时作出反应,通过采样回路中的电流电压计算出功率值,然后相应的芯片输出信号。信号经过处理电路处理之后生产触发脉冲信号,并且作用于双向可控硅。通过双向可控硅的导通和关断操作改变电路中的电压,以达到恒功控制的目的。还可以通过按键设置功率的设定值,使得系统可以控制一定范围的恒功值。经过多次实验并记录测量结果,统计后进行分析误差均保持在2%左右,符合系统设计要求。 误差分析不管直接或间接测量电流电压值,都会存在误差。因为算法、传感器、仪器和外部干扰等因素都会产生误差,设计电路时找出误差所在尽量减小误差。如下为引起误差的环节:(1)传感器产生的测量误差。本系统采用霍尔电压、电流传感器测量电路中的电压和电流,但是还是会有误差存在。霍尔传感器会受到温漂的影响而产生温差电势,导致引进误差。同时霍尔传感器工作在交流电,因为霍尔极不能做到相同,所以一直存在一个微小的输出值而产生感应零位电势。材料的不均匀和生产工艺的原因也会产生一定的误差。(2)电能计量芯片CS5460A存在自身性能误差和采样误差。CS5460A在对霍尔电流、电压传感器的输出信号进行采样,将连续的模拟信号转变为离散的数字信号,但是这些误差都是很微小的,对系统的影响不大。(3)测量仪器误差。由于测量仪器设计、制造、精度等级等会存在一定的测量误差。仪器的使用也会发生老化从而引进误差,但这些不是系统设计而引进的误差。(4)由环境因素所引起的误差。比如环境的湿度、温度、海拔以及电磁干扰等因素都会引起误差。结论本次设计以STC89C52单片机为核心控制元件,完成了金刚石合成调功系统的设计与实现。通过双向可控硅控制系统,并使系统保持功率恒定。系统学习了通过仿真软件调试为硬件系统设计提供参考依据,调节参数。运用模块化编写程序,可读性强,调试方便,当程序有误时易于找到出错语句。通过不断的调试,逐步完善系统,完成了相应的功能和指标。同时也学习到了设计一个产品的流程,先了解设计的相关背景,查找相关资料,从而总体了解了设计的核心内容。然后确定系统设计方案,所用元件的选型,并且要熟悉芯片的工作原理。在画原理图和PCB的时候要仔细认真,因为没一点小错误都会导致设计的缺陷,例如封装不正确可能就要重新作板。金刚石合成调功系统的主要内容如下:(1)本系统以STC89C52单片机为核心控制元件,以霍尔电流、电压传感器为系统输入通道。功率测量芯片CS5460A采样霍尔传感器输出的电流电压信号,经过转换并处理之后通过单片机读取。并且通过1602液晶显示电流、电压以及功率值。可以通过按键设置功率值,并且经过D/A将对应的数字信号转换为模拟信号,作为单片机输出的控制信号,间接控制双向可控硅。以双向可控硅作为最终的输出通道,通过控制可控硅的导通和关断达到功率恒定的目的。(2)采用功率测量芯片CS5460A采样霍尔传感器输出的电流电压信号,经过计算处理后,单片机通过SPI接口读取电流、电压以及功率值。同时CS5460A输出一个与功率成正比的脉冲信号,经过频率/电压转换电路转换成电压信号。再与D/A输出正比于设定功率的电压信号相比较,得出一个误差信号。误差信号经过PID控制电路控制移相触发电路输出相应的触发角控制可控硅。同时对触发电路与双向可控硅之间进行光电隔离,防止干扰调功系统。(3)本系统运用PID闭环控制,通过PID控制电路反馈控制信号。不断的调整系统,使得输出功率稳定在设定值不变。即使当负载变化引起功率瞬时变化时,系统能及时作出反应并且稳定功率到设定值。(4)选择C语言编写系统程序,与汇编相比C可读性强,可以模块化编程,调试方便。使用Keil软件编写程序,同时还可以进行仿真调试。
以下均可参考,从参考网址进入,合适的话,给我加分!谢谢1.基于labVIEW虚拟滤波器的设计与实现 2.双闭环直流调速系统设计3.单片机脉搏测量仪 4.单片机控制的全自动洗衣机毕业设计论文电梯控制的设计与实现 6.恒温箱单片机控制7.基于单片机的数字电压表 8.单片机控制步进电机毕业设计论文9.函数信号发生器设计论文 变电所一次系统设计11.报警门铃设计论文 单片机交通灯控制13.单片机温度控制系统 通信系统中的接入信道部分进行仿真与分析15.仓库温湿度的监测系统 16.基于单片机的电子密码锁17.单片机控制交通灯系统设计 18.基于DSP的IIR数字低通滤波器的设计与实现19.智能抢答器设计 20.基于LabVIEW的PC机与单片机串口通信设计的IIR数字高通滤波器 22.单片机数字钟设计23.自动起闭光控窗帘毕业设计论文 24.三容液位远程测控系统毕业论文25.基于Matlab的PWM波形仿真与分析 26.集成功率放大电路的设计27.波形发生器、频率计和数字电压表设计 28.水位遥测自控系统 毕业论文29.宽带视频放大电路的设计 毕业设计 30.简易数字存储示波器设计毕业论文31.球赛计时计分器 毕业设计论文 数字滤波器的设计毕业论文机与单片机串行通信毕业论文 34.基于CPLD的低频信号发生器设计毕业论文变电站电气主接线设计 序列在扩频通信中的应用37.正弦信号发生器 38.红外报警器设计与实现39.开关稳压电源设计 40.基于MCS51单片机温度控制毕业设计论文41.步进电动机竹竿舞健身娱乐器材 42.单片机控制步进电机 毕业设计论文43.单片机汽车倒车测距仪 44.基于单片机的自行车测速系统设计45.水电站电气一次及发电机保护 46.基于单片机的数字显示温度系统毕业设计论文47.语音电子门锁设计与实现 48.工厂总降压变电所设计-毕业论文49.单片机无线抢答器设计 50.基于单片机控制直流电机调速系统毕业设计论文51.单片机串行通信发射部分毕业设计论文 52.基于VHDL语言PLD设计的出租车计费系统毕业设计论文53.超声波测距仪毕业设计论文 54.单片机控制的数控电流源毕业设计论文55.声控报警器毕业设计论文 56.基于单片机的锁相频率合成器毕业设计论文57.基于Multism/protel的数字抢答器 58.单片机智能火灾报警器毕业设计论59.无线多路遥控发射接收系统设计毕业论文 60.单片机对玩具小车的智能控制毕业设计论文61.数字频率计毕业设计论文 62.基于单片机控制的电机交流调速毕业设计论文63.楼宇自动化--毕业设计论文 64.车辆牌照图像识别算法的实现--毕业设计65.超声波测距仪--毕业设计 66.工厂变电所一次侧电气设计67.电子测频仪--毕业设计 68.点阵电子显示屏--毕业设计69.电子电路的电子仿真实验研究 70.基于51单片机的多路温度采集控制系统71.基于单片机的数字钟设计 72.小功率不间断电源(UPS)中变换器的原理与设计73.自动存包柜的设计 74.空调器微电脑控制系统75.全自动洗衣机控制器 76.电力线载波调制解调器毕业设计论文77.图书馆照明控制系统设计 78.基于AC3的虚拟环绕声实现79.电视伴音红外转发器的设计 80.多传感器障碍物检测系统的软件设计81.基于单片机的电器遥控器设计 82.基于单片机的数码录音与播放系统83.单片机控制的霓虹灯控制器 84.电阻炉温度控制系统85.智能温度巡检仪的研制 86.保险箱遥控密码锁 毕业设计变电所的电气部分及继电保护 88.年产26000吨乙醇精馏装置设计89.卷扬机自动控制限位控制系统 90.铁矿综合自动化调度系统91.磁敏传感器水位控制系统 92.继电器控制两段传输带机电系统93.广告灯自动控制系统 94.基于CFA的二阶滤波器设计95.霍尔传感器水位控制系统 96.全自动车载饮水机97.浮球液位传感器水位控制系统 98.干簧继电器水位控制系统99.电接点压力表水位控制系统 100.低成本智能住宅监控系统的设计101.大型发电厂的继电保护配置 102.直流操作电源监控系统的研究103.悬挂运动控制系统 104.气体泄漏超声检测系统的设计105.电压无功补偿综合控制装置 型无功补偿装置控制器的设计电机调速 频段窄带调频无线接收机109.电子体温计 110.基于单片机的病床呼叫控制系统111.红外测温仪 112.基于单片微型计算机的测距仪113.智能数字频率计 114.基于单片微型计算机的多路室内火灾报警器115.信号发生器 116.基于单片微型计算机的语音播出的作息时间控制器117.交通信号灯控制电路的设计 118.基于单片机步进电机控制系统设计119.多路数据采集系统的设计 120.电子万年历 121.遥控式数控电源设计 降压变电所一次系统设计 变电站一次系统设计 124.智能数字频率计 125.信号发生器126.基于虚拟仪器的电网主要电气参数测试设计 127.基于FPGA的电网基本电量数字测量系统的设计 128.风力发电电能变换装置的研究与设计 129.电流继电器设计 130.大功率电器智能识别与用电安全控制器的设计 131.交流电机型式试验及计算机软件的研究 132.单片机交通灯控制系统的设计 133.智能立体仓库系统的设计 134.智能火灾报警监测系统 135.基于单片机的多点温度检测系统 136.单片机定时闹钟设计 137.湿度传感器单片机检测电路制作 138.智能小车自动寻址设计--小车悬挂运动控制系统 139.探讨未来通信技术的发展趋势 140.音频多重混响设计 141.单片机呼叫系统的设计 142.基于FPGA和锁相环4046实现波形发生器 143.基于FPGA的数字通信系统 144.基于单片机的带智能自动化的红外遥控小车 145.基于单片机AT89C51的语音温度计的设计 146.智能楼宇设计 147.移动电话接收机功能电路 148.单片机演奏音乐歌曲装置的设计 149.单片机电铃系统设计 150.智能电子密码锁设计 151.八路智能抢答器设计 152.组态控制抢答器系统设计 153.组态控制皮带运输机系统设计 154..基于单片机控制音乐门铃 155.基于单片机控制文字的显示 156.基于单片机控制发生的数字音乐盒 157.基于单片机控制动态扫描文字显示系统的设计 158.基于LMS自适应滤波器的MATLAB实现 功率放大器毕业论文 160.无线射频识别系统发射接收硬件电路的设计 161.基于单片机PIC16F877的环境监测系统的设计 162.基于ADE7758的电能监测系统的设计 163.智能电话报警器 164.数字频率计 课程设计 165.多功能数字钟电路设计 课程设计 166.基于VHDL数字频率计的设计与仿真 167.基于单片机控制的电子秤 168.基于单片机的智能电子负载系统设计 169.电压比较器的模拟与仿真 170.脉冲变压器设计 仿真技术及应用 172.基于单片机的水温控制系统 173.基于FPGA和单片机的多功能等精度频率计 174.发电机-变压器组中微型机保护系统 175.基于单片机的鸡雏恒温孵化器的设计 176.数字温度计的设计 177.生产流水线产品产量统计显示系统 178.水位报警显时控制系统的设计 179.红外遥控电子密码锁的设计 180.基于MCU温控智能风扇控制系统的设计 181.数字电容测量仪的设计 182.基于单片机的遥控器的设计 电话卡代拨器的设计 184.数字式心电信号发生器硬件设计及波形输出实现 185.电压稳定毕业设计论文 186.基于DSP的短波通信系统设计(IIR设计) 187.一氧化碳报警器 188.网络视频监控系统的设计 189.全氢罩式退火炉温度控制系统 190.通用串行总线数据采集卡的设计 191.单片机控制单闭环直流电动机的调速控制系统 192.单片机电加热炉温度控制系统 193.单片机大型建筑火灾监控系统 接口设备驱动程序的框架设计 195.基于Matlab的多频率FMICW的信号分离及时延信息提取 196.正弦信号发生器 197.小功率UPS系统设计 198.全数字控制SPWM单相变频器 199.点阵式汉字电子显示屏的设计与制作 200.基于AT89C51的路灯控制系统设计 200.基于AT89C51的路灯控制系统设计 201.基于AT89C51的宽范围高精度的电机转速测量系统 202.开关电源设计203.基于PDIUSBD12和K9F2808简易USB闪存设计 204.微型机控制一体化监控系统205.直流电机试验自动采集与控制系统的设计 206.新型自动装弹机控制系统的研究与开发 207.交流异步电机试验自动采集与控制系统的设计208.转速闭环控制的直流调速系统的仿真与设计209.基于单片机的数字直流调速系统设计210.多功能频率计的设计信息移频信号的频谱分析和识别212.集散管理系统—终端设计213.基于MATLAB的数字滤波器优化设计214.基于AT89C51SND1C的MP3播放器215.基于光纤的汽车CAN总线研究216.汽车倒车雷达217.基于DSP的电机控制218.超媒体技术219.数字电子钟的设计与制作220.温度报警器的电路设计与制作221.数字电子钟的电路设计222.鸡舍电子智能补光器的设计223.高精度超声波传感器信号调理电路的设计224.电子密码锁的电路设计与制作225.单片机控制电梯系统的设计226.常用电器维修方法综述227.控制式智能计热表的设计228.电子指南针设计229.汽车防撞主控系统设计230.单片机的智能电源管理系统231.电力电子技术在绿色照明电路中的应用232.电气火灾自动保护型断路器的设计233.基于单片机的多功能智能小车设计234.对漏电保护器安全性能的剖析235.解析民用建筑的应急照明236.电力拖动控制系统设计237.低频功率放大器设计238.银行自动报警系统
NO。I can not 。
虚拟经纱张力测试仪技术 前言 虚拟仪器技术是测试技术和计算机技术相结合的产物,是两门学科最新技术的结晶,融合了测试理论、仪器原理和技术、计算机接口技术、高速总线技术以及图形软件编程技术于一体。 虚拟仪器是由计算机硬件资源和用于数字分析与处理、过程通讯以及图形界面的软件组成的测控系统,它把仪器生产厂家定义仪器功能的方式转变为由用户自己定义仪器功能,也就是说传统测试中使用厂家生产的仪器,仪器的性能及功能在出厂时已被厂家定义,用户只能根据自己的要求和需要选择和使用;而虚拟仪器是在一定的硬件基础上,用户可根据测试的需求,编写软件定义自己的仪器功能。同样的硬件配置可开发出不同的仪器,例如在仪器面板上显示采集信号在时域的波形,那么该仪器为虚拟示波器;如果在程序中对采集信号进行FFT变换,那么该仪器就是虚拟频谱分析仪。笔者则用LabWindows/CVI来开发虚拟经纱张力测试仪,用来测试织机在工作时经纱张力的变化情况。 1 经纱张力传感器 织机在织造过程中,经纱动态张力对织造的,顺利进行有着很大的影响,张力过大,易引起断头,影响织造效率;张力不足易造成梭口不清,形成三跳疵点,使布面及纹路不够清晰。当经纱穿过轴时,经纱对两侧传力杆有压力,通过传力杆将压力传给弹性梁,使之产生应变,利用应变片将其应变转化为电阻的变化,然后再通过转化电路将电阻的变化转化为电压的变化,测量出电压值,根据传感器的标定就可求出相应的经纱张力。 2 虚拟经纱张力测试仪系统 2.1 系统结构 虚拟经纱张力测试仪的测试系统由传感器、数据采集卡、接口总线、硬件驱动程序和开发的测试软件构成,数据采集卡采用6024E,LabWindows/CVI平台开发测试软件,在Windows98操作系统下运行。 2. 2 信号采集 由于要测出经纱张力与主轴转角的关系,所以用了3个传感器。传感器1是经纱张力传感器,把经纱张力物理信号转化为电信号;传感器2是光电脉冲传感器,用来测量主轴转角;传感器3是霍尔传感器,将霍尔电压作为测量触发信号。各个传感器输出的信号都要经过一个信号调理电路对信号进行处理(如滤波、放大等),从混合信号中取出待测的有用信号,送人数据采集卡,并要适合数据采集卡的电压范围,通过总线结构送进计算机进行处理。 数据采集借助软件来控制整个DAQ系统,包括采集原始数据、分析数据等,调理后的信号经多路开关在软件设定采样率的控制下,巡回采集并放大,再经采样与保持及A/D转换器单元被量化成数字信号,成为计算机可以处理的信号,由虚拟仪器软件对测试信号进行计算、分析、显示,并储存结果。 3 虚拟经纱张力测试仪的设计 3.1 经纱张力测试仪的面板结构 虚拟经纱张力测试仪的面板右边的七个文本框输入内容,是用户根据实际测量的需求以及与采集卡的连接通道在开始测试前设定的。测量时,打开测试仪器开关,仪器就可以工作;按下采集数据,稍等几秒,面板上就会显示出经纱张力的波形图。保存数据就是对测量的原始数据、信号处理后的数据以及需要提供给用户的数据存取;读数据是读取事先已经测量的数据,然后在仪器面板上绘出曲线,这有利于事后分析;关闭仪器则退出测试状态。 3.2 虚拟经纱张力测试仪的软件 面板上的数据采集、关闭仪器、保存数据等命令按钮通过回调函数来实现各自的功能,整个源代码中数据采集的回调函数caiji是程序的关键。 4 虚拟经纱张力测试仪的应用 用所设计的虚拟经纱张力测试仪系统对YC—425型喷气织机测试,织机主轴每转一转,经纱张力周期变化一次,在0°附近,经纱张力最大,有利于打纬,最小张力出现在280°附近。在理论上来讲,下一个最大值出现在开口满开的位置,且一般只有两个峰值,在曲线上除了打纬点外,还有两个峰值,这说明在后梁装有张力缓解机构。最小张力也就是经纱的上机张力曲线的重复性不很好,说明织机工作状况不够稳定。 5 结束语 虚拟仪器是今后仪器仪表、测试控制研究与发展的方向,用NI公司的LabWindows/CVI作为软件开发平台,比常用的面向对象软件编程难度大大降低,使得软件开发效率高,界面友好,功能强大,且扩展性好,对采集到的数据可用于高级分析库进行信号处理,也可以为了使所得测试曲线符合实际情况,进行拟合处理。总之,虚拟仪器有强大的功能,它强调“软件就是仪器”,用软件代替硬件,易开发、易调试,可有效节约资金。
200 浏览 3 回答
211 浏览 5 回答
328 浏览 3 回答
168 浏览 4 回答
179 浏览 4 回答
285 浏览 3 回答
140 浏览 4 回答
353 浏览 7 回答
249 浏览 3 回答
328 浏览 3 回答
107 浏览 6 回答
315 浏览 4 回答
303 浏览 3 回答
302 浏览 3 回答
306 浏览 4 回答