表面活性剂概述: 1.概念: 表面活性剂(surfactant)是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。 2.组成:分子结构具有两亲性 非极性烃链: 8个碳原子以上烃链 极性基团:羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等。 3.吸附性: 溶液中的正吸附:增加润湿性、乳化性、起泡性 固体表面的吸附:非极性固体表面单层吸附, 极性固体表面可发生多层吸附[编辑本段]表面活性剂的分类 表面活性剂的分类方法很多, 根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等; 根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等; 有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。 按极性基团的解离性质分类 1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂: 脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温) 阴离子表面活性剂 1、肥皂类 系高级脂肪酸的盐,通式: (RCOOˉ)n M。脂肪酸烃R一般为11~17个碳的长链,常见有硬脂酸、油酸、月桂酸。根据M代表的物质不同,又可分为碱金属皂、碱土金属皂和有机胺皂。它们均有良好的乳化性能和分散油的能力。但易被破坏,碱金属皂还可被钙、镁盐破坏,电解质亦可使之盐析 。 碱金属皂:O/W 碱土金属皂:W/O 有机胺皂:三乙醇胺皂 2、硫酸化物 RO-SO3-M 主要是硫酸化油和高级脂肪醇硫酸酯类。脂肪烃链R在12~18个碳之间。 硫酸化油的代表是硫酸化蓖麻油,俗称土耳其红油。 高级脂肪醇硫酸酯类有十二烷基硫酸钠(SDS、月桂醇硫酸钠) 乳化性很强,且较稳定,较耐酸和钙、镁盐。在药剂学上可与一些高分子阳离子药物产生沉淀,对粘膜有一定刺激性,用作外用软膏的乳化剂,也用于片剂等固体制剂的润湿或增溶。 3、磺酸化物 R-SO3 - M 属于这类的有脂肪族磺酸化物、烷基芳基磺酸化物和烷基萘磺酸化物。它们的水溶性和耐酸耐钙、镁盐性比硫酸化物稍差,但在酸性溶液中不易水解。 常用品种有:二辛基琥珀酸磺酸钠(阿洛索-OT),十二烷基苯磺酸钠,甘胆酸钠 阳离子表面活性剂 该类表面活性剂起作用的部分是阳离子,因此称为阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。 常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂 这类表面活性剂的分子结构中同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1、卵磷脂:是制备注射用乳剂及脂质微粒制剂的主要辅料 2、氨基酸型和甜菜碱型: 氨基酸型:R-NH+2-CH2CH2COO- 甜菜碱型:R-N+(CH3)2-COO—。 在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用;在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂 1.脂肪酸甘油酯: 单硬脂酸甘油酯; HLB为3~4,主要用作W/O型乳剂辅助乳化剂。 2.多元醇 蔗糖酯:HLB(5~13)O/W乳化剂、分散剂 脂肪酸山梨坦(Span) :W/O乳化剂 聚山梨酯(Tween) : O/W乳化剂 3.聚氧乙烯型:Myrij(长链脂肪酸酯);Brij (脂肪醇酯) 4.聚氧乙烯-聚氧丙烯共聚物: Poloxamer 能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂[编辑本段]表面活性剂的基本性质 1.临界胶束浓度(CMC):表面活性剂分子缔合形成胶束的最低浓度。当其浓度高于CMC值时,表面活性剂的排列成球状、棒状、束状、层状/板状等结构。 2.亲水亲油平衡值(HLB):表面活性剂分子中亲水和亲油基团对油或水的综合亲合力。根据经验,将表面活性剂的HLB值范围限定在0-40,非离子型的HLB值在0-20。 混合加和性:HLB=(HLBa Wa+HLBb /Wb) / (Wa+Wb) 理论计算:HLB=∑(亲水基团HLB值)+∑(亲油基团HLB)-7 表面活性剂的基本性质 3、增溶作用 1)胶束增溶:水不溶性、微溶性药物在胶束溶液中溶解度显著增加 非洛地平吐温-----10倍 (表)亲水基团---亲油基团, (药)极性基团---非极性基团 cmc,“表”的量,胶束,增溶量,最大增溶浓度(MAC)[编辑本段]表面活性剂的应用 1.增溶:C>CMC ( HLB13~18) 增溶体系为热力学平衡体系 CMC越低、缔合数越大,增溶量(MAC)就越高 温度对增溶的影响:温度影响胶束的形成,影响增溶质的溶解,影响表面活性剂的溶解度 Krafft点:离子型表面活性剂的溶解度随温度增加而急剧增大这一温度称为Krafft点, Krafft点越高,其临界胶束浓度越小 昙点:对于聚氧乙烯型非离子表面活性剂,温度升高到一定程度时,溶解度急剧下降并析出,溶液出现混浊,这一现象称为起昙,此温度称为昙点。在聚氧乙烯链相同时,碳氢链越长,浊点越低;在碳氢链相同时,聚氧乙烯链越长则浊点越高。 2.乳化: HLB:3-8 W /O型乳化剂:Tween;一价皂 HLB:8-16 O/W型乳化剂:Span;二价皂 3.润湿:(HLB:7-9) 4.助悬: 5.起炮和消泡 6.消毒、杀菌 7.去污剂[编辑本段]表面活性剂的结构 传统观念上认为,表面活性剂是一类即使在很低浓度时也能显著降低表(界)面张力的物质。随着对表面活性剂研究的深入,目前一般认为只要在较低浓度下能显著改变表(界)面性质或与此相关、由此派生的性质的物质,都可以划归表面活性剂范畴。 无论何种表面活性剂,其分子结构均由两部分构成。分子的一端为非极亲油的疏水基,有时也称为亲油基;分子的另一端为极性亲水的亲水基,有时也称为疏油基或形象地称为亲水头。两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构,因而赋予了该类特殊分子既亲水、又亲油,便又不是整体亲水或亲油的特性。表面活性剂的这种特有结构通常称之为“双亲结构”(amphiphilic structure),表面活性剂分子因而也常被称作“双亲分子”。 根据所需要的性质和具体应用场合不同,有时要求表面活性剂具有不同的亲水亲油结构和相对密度。通过变换亲水基或亲油基种类、所占份额及在分子结构中的位置,可以达到所需亲水亲油平衡的目的。经过多年研究和生产,已派生出许多表面活性剂种类,每一种类又包含众多品种,给识别和挑选某个具体品种带来困难。因此,必须对成千上万种表面活性剂作一科学分类,才有利于进一步研究和生产新品种,并为筛选、应用表面活性剂提供便利。[编辑本段]表面活性剂的历史发展 表面活性剂和合成洗涤剂形成一门工业得追溯到本世纪30年代,以石油化工原料衍生的合成表面活性剂和洗涤剂打破了肥皂一统天下的局面。经过60余年的发展,1995年世界洗涤剂总产量达到4300万吨,其中肥皂900万吨。据专家预测,全世界人口从2000年到2050年将翻一番,洗涤剂总量将从5000万吨增加到12000万吨,净增培,这是一个令人鼓舞的数字。 中国的表面活性剂和合成洗涤剂工业起始于50年代,尽管起步较晚,但发展较快。1995年洗涤用品总量已达到310万吨,仅次于美国,排名世界第二位。其中合成洗涤剂的生产量从1980年的40万吨上升到1995年的230万吨,净增倍,并以年平均增长率大于10%的速度增长。据中国权威部门预测,2000年洗涤用品总量将达到360万吨,其中合成洗涤剂将达到万吨。其中产量超万吨的表面活性剂品种计有:直链烷基苯磺酸钠(LAS)、脂肪醇聚氧乙烯醚硫酸钠(AES)、脂肪醇聚氧乙烯醚硫酸铵(AESA)、月桂醇硫酸钠(K12或SDS)、壬基酚聚氧乙烯(10)醚(TX-10)、平平加O、二乙醇酰胺(6501)硬脂酸甘油单酯、木质素磺酸盐、重烷基苯磺酸盐、烷基磺酸盐(石油磺酸盐)、扩散剂NNO、扩散剂MF、烷基聚醚(PO-EO共聚物)、脂肪醇聚氧乙烯(3)醚(AEO-3)等。 表面活性剂的化学结构与性能的关系 1.亲疏平衡值与性能之间的关系 H·L·B值:表示表面活性剂的亲水疏水性能 (Hydrophile-Lipophile Balance) 表面活性剂要呈现特有的界面活性,必须使疏水基和亲水基之间有一定的平衡。 石蜡HLB值=0(无亲水基) 聚乙二醇HLB值=20(完全亲水) 对阴离子表面活性剂,可通过乳化标准油来确定HLB值。 HLB值 15~18 13~15 8~8 7~9 用途 增溶剂 洗涤剂 油/水型乳化剂 润湿剂 水/油乳化剂 消泡剂 HLB值可作为选用表面活性剂的参考依据。 3. 疏水基种类与性能 疏水基按应用分四种 (1) 脂肪烃: (2) 芳烃: (3) 混合烃: (4) 带有弱亲水性基 (5) 其他:全氟烃基 疏水性大小:(5)>(1)>(3)>(2)>(4) 3.亲水基的位置与性能 末端:净洗作用强,润湿性差;中间:相反。 4.分子量与性能 HLB值、亲水基、疏水基相同,分子量小,润湿作用好,去污力差; 分子量大,润湿作用差,去污力好。 5.浊点 对非离子表面活性剂来说,亲水性取决于醚键的多少,醚与水分子的结合是放热反应。 当温度↑,水分子逐渐脱离醚建,而出现混浊现象,刚刚出现混浊时的温度称浊点。此时表面活性剂失去作用。浊点越高,使用的温度范围广。
方云夏咏梅(无锡轻工大学化工学院,江苏无锡,214036)
摘要:介绍了两性表面活性剂的流变性、水溶助长性、钙皂分散性和抗硬水性等一般性质。讨论了两性表面活性剂的流变性与表面活性剂浓度之间的关系,并给出了调节混合体系流变性的方法。从混合胶束理论出发,对两性表面活性剂是比其他类型表面活性剂更优秀的钙皂分散剂这一事实,作者提出了新见解。同时,对两性表面活性剂的生态性质,如生物降解性、鱼毒性等也进行了较为详细的介绍。
关键词:两性表面活性剂;流变性;钙皂分散性;生态性质
中图分类号:文献标识码:A文章编号:1001-1803(2000)06-0047-04
1流变性
表面活性剂溶液的粘度随表面活性剂浓度增大而增大,但有时浓度进一步增大时溶液粘度反而会降低。表面活性剂浓度与表面活性剂团簇形状之间的关系已在第二讲中描述,表面活性剂溶液在低浓度时具有球状胶束,其流变性基本类同于牛顿型流体,因此粘度很低。随表面活性剂浓度增加,当球状胶束过渡到变型球状特别是棒状胶束时,粘度急剧增大。预计这是由于非球状胶束重叠使体系自由流动性减小而造成的,此时溶液便表现出非牛顿型流体的流变学特征,或具触变性或具抗流变性。体系浓度进一步增大,则胶束会变型至六角棒状胶束,一般称为进入中间相(M相)。此时由于胶束排列整齐,使胶束间不易滑移,故而体系粘度进一步增大,且抗流变性很强。当溶液浓度很大时,会进入层状相(G相),过渡到层状胶束。由于层状胶束中每层胶束的滑移面运动相对自由,粘度反而比M相有所下降。当然,各种浓度和各种胶束形状下溶液的流变特性随表面活性剂品种不同而不同。
由于两性表面活性剂自身带正、负电荷中心,彼此间的作用使其临界胶束浓度比相应的阴离子或阳离子表面活性剂的低,且达到一定浓度(一般为30%左右)便易形成流变性差的粘滞液体。通过在其中加入第三组分改变其胶束结构,可能改善两性表面活性剂的流变性,使得到浓度更高的两性表面活性剂溶液成为可能。如某种具有良好流变性的两性浓缩物中含5%~40%水,36%~70%两性表面活性剂,5%~45%水溶性非表面活性有机溶剂,可用于个人洗护用品。由于非表面活性有机溶剂的加入使得两性表面活性剂进入G相或L1相,从而有较好的泵送性和自由流动性。
的椰油酰胺丙基甜菜碱与60/40的丙二醇/水混合便可使体系处于G相。在浓度≥40%的甜菜碱两性表面活性剂中加入磺基甜菜碱两性表面活性剂、两性甘氨酸盐、三甲基甘氨酸等也可改善流变性,得到具有很好流动性的液体,并具有贮存稳定性。ChevalierY.研究了两性表面活性剂的分子结构与胶束结构、流变性间的关系。据报道一种新型双长链两性表面活性剂在水溶液中的层状相通过简单稀释能瞬间形成囊泡分散液。
2水溶助长性
水溶助长剂是一类能够阻止液晶相形成和抑制胶束相形成的物质。水溶助长剂常用于在低温下保持表面活性剂溶液的流体状态,提高聚氧乙烯化非离子表面活性剂的浊点,还能降低离子型表面活性剂的临界溶解温度即KP温度。椰油亚氨基二丙酸钠的水溶助长性归因于分子中有两个离子性基团存在,使得分子的亲水性提高。表面活性剂型的水溶助长剂通过与主表面活性剂形成混合胶束而破坏液晶相,它们的强亲水头提高了表面活性剂混合分子间的亲水排斥作用,使液晶转变成球状胶束。两性表面活性剂对皂类而言是一种水溶助长剂,故可提高水溶性。由于皂类和两性表面活性剂在KP温度方面产生的协合效应,混合体系的KP温度能达到两种组分单独存在时都不能达到的低值。图1所示的十六酸皂和十六烷基羟基磺丙基甜菜碱(CHSB)混合体系具有KP温度的正协合效应,体系的最低KP温度为30℃,比十六酸钠皂的KP温度(58℃)和CHSB的KP温度(89℃)都低得多,即使在CHSB的摩尔分数为10%时,混合体系的KP温度也能够降低到大约50℃。
[1]
图1KP的协合作用
3钙皂分散性
阴离子型和两性表面活性剂中的一些品种能防止皂类在硬水中形成皂垢悬浮物,具有这种功能的物质称作钙皂分散剂。一些两性表面活性剂的钙皂分散值是目前所能达到的最低值,钙皂分散值的数值低于2%甚至难以测出。烷基甜菜碱在硬水中具有一定的钙皂分散力,但磺基甜菜碱的钙皂分散性比其更好,象酰胺丙基磺基甜菜碱的钙皂分散值低达2%。Parris[2~5]报道了许多磺基甜菜碱、酰胺基磺基甜菜碱和硫酸基甜菜碱的钙皂分散力值,并指出硫酸基甜菜碱和酰胺基磺基甜菜碱的钙皂分散性比磺基甜菜碱好。双酰胺基甜菜碱具有很强的降低表面张力的能力,其钙皂分散力良好。方云合成了分子中酰胺氮上带聚氧乙烯基团的羟基磺基甜菜碱
:
[6]
从表2可见磷酸基甜菜碱的钙皂分散力比磺基甜菜碱更强。
皂类的两大缺点是低温溶解度小和抗硬水能力差,上面已经提到离子型或两性型表面活性剂作为水溶助长剂,可以降低其KP温度,提高其低温水溶性。此外,阴离子型和两性表面活性剂中的一些品种还能防止皂类在硬水中形成皂垢悬浮物。
最早提出的钙皂分散机理认为钙皂分散剂对钙皂只是简单的分散作用,但用这种机理很难解释为什么钙皂分散剂的添加时间不同则获得的钙皂分散效果便不一样的实验事实。后来提出的钙皂分散机理认为是钙皂分散剂插入皂类胶束中形成混合胶束。典型的皂类胶束是在软水中形成的,一旦有钙、镁离子加入其中,皂类胶束便会发生反转,导致出现钙皂沉淀或悬浮
当p=1或2时,钙皂分散力均为2%,不带聚氧乙烯的相应物其钙皂分散力为3%。
朱水平[7]报道了在疏水基中引入聚氧乙烯链的羟基磺基甜菜碱物。但是如果有钙皂分散剂存在,并与皂类形成混合胶束,则肥皂的羧基被钙皂分散剂彼此分隔远离,不足以形成不溶性钙、镁皂而使胶束发生反转。
将钙皂分散的混合胶束机理与混合胶束可能产生的协合效应或复配效应这两者结合起来考虑,可以解释为什么两性表面活性剂是比阴离子或非离子型表面活性剂更优秀的钙皂分散剂。从第三讲(见《日化工业》2000年》)表2列出的混合体系的分子间相互作用
其钙皂分散力为3%。而疏水链碳原子数为18,但
不含-O-键的类似物,其钙皂分散力为5%。覃善木[8]报道的锍
型甜菜碱的钙皂分散力见表1。何元君[9]报道
了磷酸基甜菜碱的钙皂分散力,见表2
。参数B的数值可以看出,阴离子-阴离子表面活性剂混合体系的B<-1,阴离子-非离子表面活性剂混合体系的B=-1~-5,而阴离子-两性表面活性剂混合体系的B=-5~-15。在形成混合胶束的分子间相互作用
第6期2000年12月
方云等:两性表面活性剂(四)两性表面活性剂的一般性质
方面,显然以阴离子-两性表面活性剂混合体系最强。其原因是两性表面活性剂中的阳离子基团能与阴离子表面活性剂中的阴离子基团发生类似于阴离子-阳离子表面活性剂的强相互作用,同时两性表面活性剂中携带的阴离子基团又能维持相互作用后复合体系的水溶性。第三讲中还证明阴离子-两性表面活性剂混合体系能产生降低cmc的协合作用或明显的复配效应。正是由于这种分子间的强相互作用,使得皂类与磺基甜菜碱两性表面活性剂混合胶束的cmc值降低。而临界胶束浓度的降低意味着溶液中皂类的单体减少,即皂类与钙、镁离子相互作用的机率减少,因而两性表面活性剂的钙皂分散力更高。
表3列出了椰油基磺丙基甜菜碱(CoSB)两性表面活性剂作为钙皂分散剂的成功应用实例。将CoSB加入到商标名为“象牙”的香皂中,观察在皂浓度为时在100mgCaCO3/L硬水中的钙皂沉淀情况。实验结果表明极少量的CoSB两性表面活性剂便能有效抑制钙皂沉淀,并改善了肥皂在硬水中的发泡性。类似的应用实例在文献中报道很多。
表3“象牙”皂添加CoSB后在硬水中的结果
“象牙”皂(w/%)
CoSB(w/%)
比例
结果沉淀,无泡
50÷120÷110÷1
无沉淀,中等泡沫无沉淀,大量泡沫无沉淀,大量泡沫
中,羧基甜菜碱近似于定量地失去可溶性有机碳,形成大量的CO2,因而推知其发生了完全的生物降解。经Sturm试验和Fisher闭瓶试验,羧基甜菜碱的结果均优于已被接受认可为具有生物降解性的直链烷基苯磺酸盐(LAS)。甜菜碱和酰胺丙基甜菜碱均属于易生物降解类表面活性剂。这类产品中含有的有机物质,在密封瓶实验中BOD28/DOC值至少达到60%,在改良法
椰油酰胺OECD筛选试验中至少可以除去70%DOC。
丙基甜菜碱在OECD301D试验中BOD28值达到93%。Fernley[10]采用Fischer,Sturm和OECD试验过程,对烷基甜菜碱、磺基甜菜碱的生物降解性进行研究。在OECD试验中,羟基磺基甜菜碱的初级生物降解作用是很快的,而且很完全,降解度达到96%,验证实验达到。然而,磺基甜菜碱在Fischer和Sturm实验中不能直接降解。烷基甜菜碱在Sturm试验中产生的CO2量是理论量的81%(C14~15甜菜碱)及91%(C12甜菜碱),而十二烷基磺基甜菜碱和十六烷基磺基甜菜碱分别为49%和56%。这可能是因为生成了相当稳定的中间体。在同样的试验中,甜菜碱失去DOC初值的93%~99%,这表明其完全生物降解而无难分解的中间体形成。在Fischer密闭瓶实验中,甜菜碱吸收的氧占理论氧的比例也比磺基甜菜碱和羟基磺基甜菜碱高,证实了前述结果。
用BOD5/COD方法测试的结果证明两性咪唑啉是生物降解性好的品种,对20mg/L烷基两性羧基甘氨酸盐溶液用河道涅灭(RiverDie)试验测试,根据其表面活性降低判断生物降解性也证实了上述结论。Re-wo公司的报告由DIN38412测得两性咪唑啉的生物降解度为77%,属于易生物降解类物质。Henkel公司的报告也认为两性咪唑啉生物降解迅速。试验方法包括:根据OECD分级,闭瓶试验中BOD28/COD至少在60%以上,或在改良OECD筛选试验中至少达到70%
符合上述要求的有机组分均被认可为易DOC去除率。于生物降解。
所有表面活性剂,包括两性表面活性剂在内,其水生毒性均相似,具有大致相同的、典型的LC50值(鱼类和Daphnia毒性)为1mg/L~15mg/L。急性鱼毒以LC50的方式报道,为1mg/L~10mg/L(金鱼:DIN38412T15法,或斑马鱼:ISO7346法)。烷基甜菜碱的急性鱼毒LC50(金鱼:DIN38412T15或斑鱼:ISO7346)数值范围在10mg/L~100mg/L。采用同样的方法测定酰胺丙基甜菜碱的LC50为1mg/L~10mg/L。椰油酰胺甜菜碱的LC50(96h,OECD203)是。
酰胺丙基甜菜碱的急性和慢性细菌毒性已得到研究,急性毒性EC50(,耗氧实验)数值大于
4抗硬水性能
两性离子表面活性剂的结构特征决定了其具有较强的耐电解质能力,因而也耐硬水。表面活性剂的抗硬水性能主要体现在两个方面,即对钙皂的分散力以及自身对钙、镁硬离子的耐受能力。许多甜菜碱两性表面活性剂对钙、镁离子均表现出非常好的稳定性,Lin-field研究小组对甜菜碱两性表面活性剂的钙离子稳定性进行了考察,发现大部分磺基甜菜碱两性表面活性剂的钙离子稳定性均在1800mgCaCO3/L以上,属于具有最好抗硬水能力的表面活性剂之列。而相应的仲胺基化合物的钙离子稳定性值却要低得多。方云[8]报道在酰基羟基磺基甜菜碱的酰胺氮上引入聚氧乙烯基团后,其钙离子稳定性仍可达到1800mgCaCO3/L以上,证明这一类物质自身对水硬度不敏感。文献报道C8~16系列N-(3-烷氧基-2-羟基丙基)甜菜碱的钙离子稳定性亦大于1800mgCaCO3/L,并且有很好的钙皂分散性能。
5生态性质
由两性表面活性剂的化学结构可以推知它们是生物降解性能好的品种。在SturmCO2试验和DOC试验
100mg/L,与慢性毒性(,抑制生长试验)的藻类生长抑制试验得EC50(72h,OECDEC50值相同。201)数值是。
牛油基三丙四胺五羧甲基钠(TN4A5)是一种很好的两性表面活性剂,已经对其生态安全性质进行了考察,结果见表4和表5。在表5中,试验物被暴露于由耦合试验(OECD303A)(参见表4)的生物降解产物中,生物降解试验开始时TN4A5的起始浓度为71mg/L,总生物降解率达80%左右。直接用TN4A5进行的鱼毒试验表明EC50(48h,Daphnia)为14mg/L,LC50(48h,河鲑鱼)为。
表4TN4A5的生物降解性
试验方法
1.闭瓶试验(OECD301D,5天)2.改良SCAS试验(OECD302A)3.耦合单元试验(OECD303A)
模拟试验
>
由HPLC测得的初级生物降解值
内在生物降解
表示为DOC值
试验性质Ready生物降解
试验结果(%)
评价简易生物降解
表6所列的数据可以看出,含12%左右表面活性剂的洗衣粉的总有机碳(TOC)是116g/kg,而固含量为46%左右的液体洗涤剂的TOC则达到336g/kg,因而TOC值高成为液体洗涤剂的一大缺点。TN4A5在液体洗涤剂中的推荐用量为10%~15%,这种两性表面活性剂基的液体洗涤剂的TOC值只有大约107g/kg,这对推广液体洗涤剂具有重要意义。
表6TOC数据
洗衣粉液体洗涤剂
TOC(g/kg)
116
336
两性表面活性剂基液体洗涤剂
107
参考文献:
[1]方云.克拉夫点(KP)与cmc、PMAX的关系[J].日用化学工业,1991(1):20-24.
[2]ParrisN.,(V)[J]..
[3]ParrisN.,(XVIII)[J]..[4]ParrisN.,(XII)[J]..
[5]ParrisN.,PierceC.,(XII)[J]..[6]方云.无锡轻工业学院硕士学位论文:合成新型磺基甜菜碱两性表面活性剂[D].1985.
[7]朱水平,夏纪鼎,等.新型烷氧化磺基甜菜碱两性表面活性剂的合成[J].日用化学工业,1995(1):4-8.
[8]覃善木.无锡轻工业学院硕士学位论文:新型含硫两性表面活性剂的合成与性能研究[D].1985.
[9]何元君.华东理工大学硕士学位论文:新型磷酸酯甜菜碱两性表面活性剂研究[D].1994.
[10][J]..
表5TN4A5的生物降解产物的鱼毒性试验方法
1.口服毒性(OECD202)2.口服毒性(OECD203)
试验对象Daphniamagna
斑马鱼(Brachydaniorerio)
EC50(48h)(mg/L)
>71
优良的生物降解性和很低的鱼毒性使得TN4A5具有很好的应用前景,可以成为洗涤剂和个人洗护用品中的绿色化学成分。如果再结合其给配方带来的低TOC值,则上述结论就变得更有意义。近年来对洗衣粉及液体洗涤剂的生态效应已进行了广泛的讨论,从
AmphotericSurfactantsⅣ
GeneralPropertiesofAmphotericSurfactants
FangYunXiaYong-mei
(SchoolofChemicalandMaterialEngineering,WuxiUniversityofLightIndustry,Wuxi214036,China)
Abstract:Generalpropertiesofamphotericsurfactantswereintroducedsuchasrheologicalproperty,hydrotropicproper-ty,.
Keywords:amphotericsurfactant;rhologicalproperty;limesoapdispersingability;environmentaspect
《表面活性剂》论文 表面活性剂的分类及应用 摘要: 表面活性剂的应用范围涵盖了人们生活和工作的各个方面,在20事迹90年代人们已经开始系统的研究表面活性剂。可以说没有表面活性剂就没有现在干净的我们,现在我们对表面活性剂的认识只是停留在表面没有更深入的研究,下面是对表面活性剂一些基础认识。 关键词: HLB值,分类,应用 一、 HLB 值 ----HLB值越大代表亲水性越强,HLB值越小代表亲油性越强,一般而言HLB值从1 ~ 40之间。亲水亲油转折点HLB为10。HLB小于10为亲油性,大于10为亲水性。 1~--3作消泡剂 3~--6作W/O型[乳化剂 司盘(脱水山梨醇脂肪酸酯)是w/o型乳化剂,具有很强的乳化、分散、润滑作用,可与各类表面活性剂混用,尤其适应与吐温-60, HLB值。 7~--9作润湿剂; 8~--18作O/W型乳化剂,也叫吐温型乳化剂, 为司盘(Span,山梨醇脂肪酸酯)和环氧乙烷的缩合物,为聚氧乙烯山梨醇脂肪酸酯的一类非离子型去污剂;常作为水包油(O/W)型, 药用: (1)可作某些药物的增溶剂。 (2)有溶血作用,以吐温-80作用最弱。 (3)水溶液加热后可产生混浊,冷后澄明,不影响质量。 (4)在溶液中可干扰抑菌剂的作用 13~-18作增溶剂。 二、分类及常用 : 1、阴离子表面活性剂 :硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂: 脂肪酸甘油酯, 脂肪酸山梨坦(司盘), 聚山梨酯(吐温) 阴离子表面活性剂: 1 、肥皂类 :碱金属皂:O/W ,碱土金属皂:W/O 有机胺皂:三乙醇胺皂 2 、硫酸化物 :硫酸化蓖麻油,俗称土耳其红油。 十二烷基硫酸钠(SDS、月桂醇硫酸钠) 3 、磺酸化物 :二辛基琥珀酸磺酸钠(阿洛索-OT) 十二烷基苯磺酸钠 甘胆酸钠 阴离子表面活性剂 阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。 常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂 同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1 、卵磷脂 :是制备注射用乳剂及脂质微粒制剂的主要辅料 2 、氨基酸型和甜菜碱型 : 氨基酸型 甜菜碱型: 在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用; 在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂 1. 脂肪酸甘油酯 :单硬脂酸甘油酯;HLB为3~4主用作W/O型乳剂辅助乳化剂。 2.多元醇 蔗糖酯:HLB(5~13)O/W乳化剂、分散剂 脂肪酸山梨坦(Span) :W/O乳化剂 聚山梨酯(Tween) : O/W乳化剂 3. 聚氧乙烯型 :Myrij(卖泽类,长链脂肪酸酯);Brij (脂肪醇酯) 4. 聚氧乙烯 - 聚氧丙烯共聚物 : 能耐受热压灭菌和低温冰冻,静脉乳剂的乳化剂 应用 表面活性剂一般是低分子量分散剂。表面活性剂分子具有改性作用,特别是降低颜料和树脂溶液间表面张力。 表面活性剂结构上含有两种溶解性或极性相反的基团,使表面活性增加。在水性体系中,极性基团是一些亲水基,非极性的则是憎水基或亲油基。在非水性体系中,极性基团是憎油基,非极性的为亲油基。表面活性剂按其化学结构分类,特别是极性基团包括:阴离子、阳离子、电中性粒子和非离子。 聚合物分散剂作用下效力由以下因素确定: 颜料表面极性基团的吸附作用。锚固基团可以是氨基、羧酸、磺酸、磷酸及其盐。 介质中围绕在微粒周围的非极性链段的行为。分子的一些部分(脂肪族或脂肪族-芳香族片断)必须与粘接剂体系高度的相容。 类似表面活性剂的分散剂的稳定机理是静电稳定:围绕颜料粒子的极性基团形成了双层带电的结构。由于布朗运动,液体介质中颜料粒子时常碰撞在一起,因此在其减速进程中具有强烈的重絮凝趋势。 根据其化学结构(如:低的分子量)和静电稳定理论,表面活性剂有以下缺陷: ·水敏感性:表面活性剂通常使最终涂层产生水敏感性,不适于室外应用。 ·易产生泡沫:许多表面改性剂会产生泡沫,在涂层上产生缺陷(如鱼眼、凹坑)。如果泡沫在研磨进程出现,则导致生产能力的下降。 ·干扰涂层间的粘接。 经过多年发展,特殊的表面活性剂得到改进,使涂层缺陷最大程度地降低,并且某些还能使涂层具有一些别的优点,如消泡/抗腐蚀能力或使基材难以润湿。 用于颜料分散作用的最常用表面活性剂有如下品种: 脂肪酸衍生物,磷酸酯,聚丙烯酸钠/聚丙烯酸,乙炔二醇和大豆卵磷脂。表面活性剂发展方向 1.烷基磷羧酸盐(AEC)工业化制造 随着科技飞速发展和现代文盟的不断进步,人们对表面活性剂使用要求也越来越高,即温和、易生物降解和多功能性,强调使用安全、生态保护和提高效率。烷基醇醚羧酸盐(AEC)是8O年代以来,发达国家积极研究开发的优质表面活性剂热点品种,它与烷基多苷和醇醚磷酸单酯同被称为“表面活性剂90年代的绿色品种”。 烷基醚羧酸盐的生产。一般采用以脂肪醇或烷基酚为原料,经乙氧基化和羧甲基化,制备AEC和APEC。烷基醚羧酸盐在化学结构上与皂类似,在疏水基和亲水基之间,嵌入一定加成数环氧乙烷,从而使其兼有阴离子和非离子表面活性剂中许多优良性能,成为多功能性品种。它在金属加工用方面,效果比相应的醇(酚)醚表面活性剂更好,它具有: (1)对皮肤和眼的刺激性很小。 (2)清洗性能,受pH值和温度影响较小。 (3)对酸、碱、氯较为稳定。 (4)生物降解性能优异。 图1 表面活性剂结构示意图 烷基醚羧酸盐国内的应用市场还远远落后于发达国家,随着环保意识的不断加强和人民物质文化水平的不断提高,这类集温和、易生物降解和多功能性于一身的表面活性剂,在金属加工领域内,将发挥更大作用。 2.新一代表面活性剂Gemini 目前已经合成的低聚表面活性剂有二聚体、三聚体和四聚体等,其中最引人注目的是二聚体,结构示意图见图1,二聚表面活性剂最早被合成于1971年[4-5],后因其结构上的特点而被形象地命名为Gemini(英文是双子星之意)表面活性剂。 表面活性剂Gemini(或称dimeric)是由两个单链单头基普通表面活性剂在离子头基处通过化学键联接而成,因而阻抑了表面活性剂有序聚集过程中的头基分离力,极大地提高了表面活性。与当前为提高表面活性而进行的大量尝试,如添加盐类、提高温度或将阴离子表面活性剂与阴离子表面活性剂混合相比较,Gemini表面活性剂是概念上的突破,因而被誉为新一代的表面括性剂。 在Gemini表面活性剂中,两个离子头基是靠联接基团通过化学键而连接的,由此造成了两个表面活性剂单体离子相当紧密的连接,致使其碳氢链间更容易产生强相互作用,即加强了碳氢链问的疏水结合力,而且离子头基间的排斥倾向受制于化学键力而被大大削弱,这就是Gemlrd表面活性剂和单链单头基表面括性剂相比较,具有高表面括性的根本原因。另一方面。在两个离子头基问的化学键联接不破坏其亲水性,从而为高表面活性的C~mini表面活性剂的广泛应用提供了基础。通过化学键联接方法提高表面活性和以往通常应用的物理方法不同,在概念上是一个突破。 图2 炔醇类Gemini表面活性剂 Genfini表面活性剂的优良性质: 实验表明,在保持每个亲水基团联接的碳原子数相等条件下,与单烷烃链和单离子头基组成的普通表面活性剂相比,离子型Gemini表面活性剂具有如下特征性质: (1)更易吸附在气/液表面,从而更有效地降低水溶液表面张力。 (2)更易聚集生成胶团。 (3)Gemini降低水溶液表面张力的倾向远大于聚集生成胶团的倾向,降低水溶液表面张力的效率是相当突出的。 (4)具有很低的Krat~相转移点。 (5)对水溶液表面张力的降低能力和降低效率而言,Gemini和普通表面活性剂尤其是和非离子表面活性剂的复配能产生更大的协同效应。 (6)具有良好的钙皂分散性质。 (7)在很多场台,是优良的润湿剂。 从理论上讲,在极性头基区的化学键台阻抑了原先单链单头基表面活性荆彼此头基之间的分离力,因而必定增强碳链之间的结台。实验证明这是提高表面活性的一个重要突破,而且为实际应用开辟了新的途径 另一方面,由于键台产生的新分子几何形状的改变,带来了若干新形态的分子聚集体,这大大丰富了两亲分子自组织现象,通过揭示新分子结构和自组织行为间的联系有助于深刻认识两亲分子自组织机理。为此Gemini表面活性剂正在成为世界胶体和界面科学领域各主要小组的研究方向。 型嵌段高分子表面活性剂 涂料中颜填料的分散先后使用过聚磷酸盐、硅酸盐、碳酸盐等无机分散剂,传统小分子表面活性剂和聚羧酸盐、聚丙酸酸盐等高分子化合物。高分子化合物主要利用空间位阻使颜填料颗粒稳定,效果好于小分子表面活性剂的静电排斥作用。研究表明,在众多类型的高分子分散剂中,效果最好、效率最高的是AB型嵌段高分子表面活性剂。从分子结构上看,AB型嵌段高分子就是超大号的表面活性剂,A嵌段和B嵌段分别类似于表面活性剂的亲水头基和疏水尾链。AB嵌段高分子表面活性剂在颜填料表面采取尾型吸附形态,A嵌段是亲颜料的锚固基团,B嵌段是亲溶剂的溶剂化尾链。A嵌段可以是酸、胺、醇、酚等官能团,通过离子键、共价键、配位键、氢键及范德华力等相互作用吸附在颗粒表面,由于含有多个吸附点,可以有效地防止分散剂分子脱附,使吸附紧密且持久。B嵌段可以是聚醚、聚酯、聚烯烃、聚丙烯酸酯等基团,分别适用于极性和非极性溶剂。典型的AB嵌段型高分子表面活性剂结构如图3所示。稳定颗粒主要依靠B嵌段形成的吸附层产生的空间位阻作用,所以对作为溶剂化尾链的B嵌段的长度和均一性有极高的要求,希望可以形成厚度适中且均一的吸附层,如果B段过长,可能会起架桥作用,引起分散体系黏度增加,甚至絮凝沉淀。通常认为位阻层的厚度为20nm时,可以达到最好的稳定效果。 图3 AB嵌段型高分子表面活性剂 合成分子结构明确和相对分子质量可控的AB型嵌段高分子表面活性剂是涂料分散助剂的发展方向,这需要用到受控聚合技术。基团转移聚合(GTP)、原子转移游离基聚合(ATRP)、硝酰基聚合(NMP)和可逆加成分裂链段转移聚合(RAFT)是当今最常用的受控聚合技术,利用这些技术,选用合适的方法和设备可得到想要的聚合物结构,可以选择不同的单体,按设计的次序进行排列,最终合成特定结构、相对分子质量分布窄、近单分散的聚合物,如果采用常规的方法,即使花大量的时间、精力、材料也无法做到这样。目前仅有BYK、Ciba、Rhodia等少数几个公司拥有受控聚合技术。深圳海川公司正在开发的新型分散剂也是AB型嵌段高分子表面活性剂。
223 浏览 3 回答
175 浏览 2 回答
278 浏览 3 回答
197 浏览 3 回答
317 浏览 3 回答
248 浏览 3 回答
288 浏览 2 回答
322 浏览 3 回答
297 浏览 3 回答
171 浏览 4 回答
156 浏览 3 回答
191 浏览 3 回答
245 浏览 3 回答
210 浏览 3 回答
246 浏览 4 回答