一、地球的起源 地球起源问题是同太阳系的起源紧密相联系的,因此探讨地球的起源问题,首先了解目前太阳系的三个主要特征是必要的。概括起来说,它们是: 1.太阳系中的九大行星,都按反时针方向绕太阳公转。太阳本身也以同一方向自转,这个特征称为太阳系天体运动的同向性。 2.上述行星绕太阳公转的轨道面,非常接近于同一平面,并且这个平面与太阳自转赤道面的夹角也不到6°,这个特征称为行星轨道运动的共面性。 3.除水星和冥王星外,其它所有行星的绕日公转轨道都很接近于圆轨道。这个特征称为行星轨道运动的近圆性。关于地球的起源问题,已有相当长的探讨历史了。在古代,人们就曾探讨了包括地球在内的天地万物的形成问题,在此期间,逐渐形成了关于天地万物起源的"创世说"。其中流传最广的要算是《圣经》中的创世说。在人类历史上,创世说曾在相当长的一段时期内占据了统治地位。 自1543年波兰天文学家哥白尼提出了日心说以后,天体演化的讨论突破了宗教神学的桎梏,开始了对地球和太阳系起源问题的真正科学探讨。1644年,笛卡儿()在他的《哲学原理》一书中提出了第一个太阳系起源的学说,他认为太阳、行星和卫星是在宇宙物质涡流式的运动中形成的大小不同的旋涡里形成的。一个世纪之后,布封(. de Buffon)于1745年在《一般和特殊的自然史》中提出第二个学说,认为:一个巨量的物体,假定是彗星,曾与太阳碰撞,使太阳的物质分裂为碎块而飞散到太空中,形成了地球和行星。事实上由于彗星的质量一般都很小,不可能从太阳上撞出足以形成地球和行星的大量物质的。在布封之后的200年间,人们又提出了许多学说,这些学说基本倾向于笛卡尔的"一元论",即太阳和行星由同一原始气体云凝缩而成;也有"二元论"观点,即认为行星物质是从太阳中分离出来的。1755年,著名德国古典哲学创始人康德(I. Kant)提出"星云假说"。1796年,法国著名数学和天文学家拉普拉斯(P. S. Laplace)在他的《宇宙体系论》一书中,独立地提出了另一种太阳系起源的星云假说。由于拉普拉斯和康德的学说在基本论点上是一致的,所以后人称两者的学说为"康德-拉普拉斯学说"。整个十九世纪,这种学说在天文学中一直占有统治的地位。 到本世纪初,由于康德-拉普拉斯学说不能对太阳系的越来越多的观测事实作出令人满意的解释,致使"二元论"学说再度流行起来。1900年,美国地质学家张伯伦(T. C. Chamberlain)提出了一种太阳系起源的学说,称为"星子学说";同年,摩耳顿(F. R. Moulton)发展了这个学说,他认为曾经有一颗恒星运动到离太阳很近的距离,使太阳的正面和背面产生了巨大的潮汐,从而抛出大量物质,逐渐凝聚成了许多固体团块或质点,称为星子,进一步聚合成为行星和卫星。 现代的研究表明,由于宇宙中恒星之间相距甚远,相互碰撞的可能性极小,因此,摩耳顿的学说不能使人信服。由于所有灾变说的共同特点,就是把太阳系的起源问题归因于某种极其偶然的事件,因此缺少充分的科学依据。著名的中国天文学家戴文赛先生于1979年提出了一种新的太阳系起源学说,他认为整个太阳系是由同一原始星云形成的。这个星云的主要成份是气体及少量固体尘埃。原始星云一开始就有自转,并同时因自引力而收缩,形成星云盘,中间部分演化为太阳,边缘部分形成星云并进一步吸积演化为行星。 总的来说,关于太阳系的起源的学说已有40多种。本世纪初期迅速流行起来的灾变说,是对康德-拉普拉斯星云说的挑战;本世纪中期兴起的新的星云说,是在康德-拉普拉斯学说基础上建立起来的更加完善的解释太阳系起源的学说。人们对地球和太阳系起源的认识也是在这种曲折的发展过程中得以深化的。 至此,我们可以对形成原始地球的物质和方式给出如下可能的结论。形成原始地球的物质主要是上述星云盘的原始物质,其组成主要是氢和氦,它们约占总质量的98%。此外,还有固体尘埃和太阳早期收缩演化阶段抛出的物质。在地球的形成过程中,由于物质的分化作用,不断有轻物质随氢和氦等挥发性物质分离出来,并被太阳光压和太阳抛出的物质带到太阳系的外部,因此,只有重物质或土物质凝聚起来逐渐形成了原始的地球,并演化为今天的地球。水星、金星和火星与地球一样,由于距离太阳较近,可能有类似的形成方式,它们保留了较多的重物质;而木星、土星等外行星,由于离太阳较远,至今还保留着较多的轻物质。关于形成原始地球的方式,尽管还存在很大的推测性,但大部分研究者的看法与戴文赛先生的结论一致,即在上述星云盘形成之后,由于引力的作用和引力的不稳定性,星云盘内的物质,包括尘埃层,因碰撞吸积,形成许多原小行星或称为星子,又经过逐渐演化,聚成行星,地球亦就在其中诞生了。根据估计,地球的形成所需时间约为1千万年至1亿年,离太阳较近的行星(类地行星),形成时间较短,离太阳越远的行星,形成时间越长,甚至可达数亿年。 至于原始的地球到底是高温的还是低温的,科学家们也有不同的说法。从古老的地球起源学说出发,大多数人曾相信地球起初是一个熔融体,经过几十亿年的地质演化历程,至今地球仍保持着它的热量。现代研究的结果比较倾向地球低温起源的学说。地球的早期状态究竟是高温的还是低温的,目前还存在着争论。然而无论是高温起源说还是低温起源说,地球总体上经历了一个由热变冷的阶段,由于地球内部又含有热源,因此这种变冷过程是极其缓慢的,直到今天地球仍处于继续变冷的过程中。 二、地球的演化 地表的基本轮廓可以明显地分为两大部分,即大陆和大洋盆地。大陆是地球表面上的高地,大洋盆地是相对低洼的区域,它为巨量的海水所充填。大陆和大洋盆地共同构成了地球岩石圈的基本组成部分。因此,岩石圈的演化问题,也就是大陆和大洋盆地的构造演化问题。有关地球内部的结构请参见地球各圈层结构一节。 现在,绝大部分地球科学家都确认大陆漂移现象,并一致认为地球上海洋与陆地的结构分布和变化与大陆漂移运动直接相关。比较坚硬的地球岩石圈板块作为一个单元在其之下的地球软流圈上运动;由于岩石圈板块的相对运动,导致了大陆漂移,并形成了今天地球上的海洋和陆地的分布。地球岩石圈可分为大洋岩石圈和大陆岩石圈,总体上,前者的厚度是后者的一半,其中大洋岩石圈厚度很不均匀,最厚处可达80公里。 大部分大型的地球板块由大陆岩石圈和大洋岩石圈组成,但面积巨大的太平洋板块由单一的大洋岩石圈构成。地球上陆地面积约占整个地球面积的30%,其中约70%的陆地分布在北半球,并且位于近赤道和北半球中纬度地区,这很可能与地球自转引起的大陆岩块的离极运动有关。 在全球范围内,分布在大陆附近的大陆壳岛屿几乎全部位于大陆的东海岸一侧,个别一些大陆东部边缘,则被一连串的大陆壳岛屿构成的花彩状岛群所环绕,形成了显著的向东凸出的岛弧。这种全球大陆壳岛屿的分布特征,可以用岩石圈板块的普遍向西运动和边缘海底的扩张理论来加以解释。长期以来,人们就注意到地表上的某些大陆构造能够拼合在一起,这就好像是一个拼板玩具,特别是非洲的西海岸与南美洲的东海岸之间的吻合性最为明显。这种现象可以用大陆岩石圈的直接破裂和大陆岩块体的长期漂移得到解释。这就是我们后面将要介绍的关于杜托特提出的现今的大陆是由北半球的劳亚古陆和南极洲附近的冈瓦纳古陆的破裂后漂移形成的。 1966年,梅纳德(H. W. Menard)等汇集了当时所有的有关海洋深度的探测资料,再度进行了世界海洋深度的统计,得到全球陆地在海平面以上的平均高程为公里,大洋的平均深度为公里。大陆和大洋之间存在为海水所淹没的数拾公里宽的边缘地带,这个地带包括大陆架和大陆坡,两者共占地球表面积的。大陆地壳和大洋地壳的差异非常明显,大陆地壳的化学成份主要是花岗岩质,而大洋盆地下的岩石主要是由玄武岩或辉长岩构成。因此,整个地壳又可以分为大陆硅铝壳和大洋硅镁壳两大类型。 有关大陆的起源问题,地质和地球物理学家杜托特(A. L. Du Toit)于1937年在他的《我们漂移的大陆》一书中提出了地球上曾存在两个原始大陆的模式。如果这个模式成立,那么这两个原始大陆分别被称为劳亚古陆(Lanrasia)和冈瓦纳古陆(Gondwanaland);这实际上就象以前魏格纳等人所主张的那样,把全球大陆只拼合为一个古大陆。杜托特认为,两个原始大陆原来是在靠近地球两极处形成的,其中劳亚古陆在北,冈瓦纳古陆在南,在它们形成以后,便逐渐发生破裂,并漂移到今天大陆块体的位置。 早在19世纪末,地质家学休斯(E. Suess)已认识到地球南半球各大陆的地质构造非常相似,并将其合并成一个古大陆进行研究,并称其为冈瓦纳古陆,这个名称源于印度东中部的一个标准地层区名称(Gondwana)。冈瓦纳古陆包括现今的南美洲、非洲、马达加斯加岛、阿拉伯半岛、印度半岛、斯里兰卡岛、南极洲、澳大利亚和新西兰。它们均形成于相同的地质年代,岩层中都存在同种的植物化石,被称为冈瓦纳岩石。杜托特用以证明劳亚古陆和冈瓦纳古陆的存在和漂移的主要证据,是来自地质学、古生物学和古气候学方面。根据三十多年中积累起来的资料,有力地证明冈瓦纳古陆的理论基本上是正确的。 劳亚古陆是欧洲、亚洲和北美洲的结合体,这些陆块即使在现在还没有离散得很远。劳亚古陆有着很复杂的形成和演化历史,它主要由几个古老的陆块合并而成,其中包括古北美陆块、古欧洲陆块、古西伯利亚陆块和古中国陆块。在晚古生代(距今约3亿年前)这些古陆块逐步靠扰并碰撞,大致在石炭纪早中期至二叠纪(即2亿至2亿7千万年前)才逐步闭合。古地质、古气候和古生物资料表明,劳亚古陆在石炭~二叠纪时期位于中、低纬度带。在中生代以后(即最近的1-2亿年间)劳亚大陆又逐步破裂解体,从而导致北大西洋扩张形成。研究表明,全球新的造山地带的形成和分布,都是劳亚古陆和冈瓦纳古陆破裂和漂移的构造结果。在这过程中,大陆岩块的不均匀向西运动和离极运动的规律十分明显。总的看来,劳亚古陆曾位于北半球的中高纬度带,冈瓦纳古陆则曾一度位于南半球的南极附近;这两个大陆之间由被称为古地中海(也称为特提斯地槽)的区域所分隔开。 在杜托特(1937年)提出劳亚古陆与冈瓦纳古陆理论之前,魏格纳()早在1912年曾提出了地球上曾只有一个原始大陆存在的理论,称为联合古陆。魏格纳认为,它是在石炭纪时期(距今约亿-亿年前)形成的。魏格纳把联合古陆作为他描述大陆漂移的出发点。然而根据人们现在的认识,魏格纳所提出的联合古陆决不是一个原始的大陆。虽然仍有很大一部分人赞同联合古陆观点,但他们所作出的古大陆复原图与魏格纳所提出的复原图相比,已存在很大的差别,相反倒有些接近杜托特的两个古大陆分布的理论。 最近2亿年以来的大陆漂移和板块运动,已得到了确切证明和广泛的承认。然而有人推测,板块运动很可能早在30亿年前就已经开始了,而且不同地质时期的板块运动速度是不同的,大陆之间曾屡次碰撞和拼合,以及反复破裂和分离。大陆岩块的多次碰撞形成了褶皱山脉,并连接在一起形成新的大陆,而由大洋底扩张形成新的大洋盆地。因此,要准确复原出大陆在2亿多年前所谓的"漂移前的漂移"是十分困难的。地球的年龄已有46亿年历史,目前已经知道地球上最古老的岩石年龄为37亿年,并且分布的面积相当小。这样,从46亿年到37亿年间,约有9亿年的间隔完全缺失地质资料。此外,地球上25亿年前的地质记录也非常有限,这对研究地球早期的历史状况带来不少困难,因此,直到现在我们还没有一个关于地球早期历史的统一的理论。 大洋的起源与演化 有关大洋的起源和演化研究从本世纪初才开始,在此之前一般认为大洋盆地是地球表面上永存的形态,也即大洋盆地自从贮水形成以来,其位置和分布格局是固定的。随着地球科学的发展,特别是本世纪初以魏格纳为首的大陆漂移这一革命性的学说的提出,对自最近的2亿多年以来大洋的起源和演化有了突破性的认识。 对于大陆漂移学说,并非一开始就得到许多人支持的,因为当时对引起大陆漂移的机制,即力源问题并没有很好解决。1931年,霍姆斯等人提出了地幔对流学说,用于解释大陆漂移的力源,然而这个观点在当时很少受到人们的注意。19世纪后期,有人建立了地球收缩的全球构造学说,用于解释地球上为什么会有如此大规模的造山运动。然而,本世纪50年代以后,随着全球性大洋中裂谷的巨大拉张性证据的发现,收缩学说被普遍放弃了,与此同时,地球膨胀学说很快流行起来。膨胀说认为,地球开始时很小,直径是现今地球的一半。由于地球大幅度膨胀,原始地壳裂开成为现在的大陆,裂开的地方经过不断发展成为现代的大洋盆地。并且,由于地球的大幅度膨胀引起的所谓大陆漂移,表明大陆块基本上是停留在原地的,即各大陆之间和大陆相对于地幔之间并没有发生过显著的移动。由于膨胀说无法解释大陆地壳上广泛发育的褶皱山脉构造特征是怎么形成的,霍姆斯等人的地幔对流说很快再次被重视。60年代初,随着洋底探测资料的迅速积累,赫斯(H. H. Hess)和迪茨(R. S. Dietz)首先把地幔对流方案发展为海底扩张的学说。赫斯在1962年发表了《大洋盆地的历史》一文,提出了大洋起源的新观点,即海底扩张理论。赫斯认为洋底的主要构造就是由地幔对流作用的直接表现。海底扩张理论证明,大陆和洋底是在对流着的地幔上被动地移动着,而不像早期的大陆漂移说所主张的大陆在洋底上主动漂移。海底扩张理论提出后不久,一些别的洋底观测结果,诸如洋底地壳构造、地磁、地震震源和地热流量分布等对这个理论提供了有力证据。这种情况下,使得大部分的学者都转向了关于海底扩张的研究。现在已经普遍确认,可以用海底扩张和板块运动理论解释大洋起源和演化,大洋盆地的固定论看来是过时了。海底扩张和板块构造学说对大洋的起源和演化的理论解释的基础都是地幔对流说。 现代研究证实,大洋最初是在大陆内部孕育的,并开始于大陆岩石圈中的裂谷。大陆在裂谷处破裂并相互分离,从而开始产生新的大洋盆地。魏格纳曾把南大西洋两对岸的吻合作为阐述大陆漂移说的出发点。事实上,把南美洲与非洲两大陆拼合到一起,不仅大陆边沿地形轮廓非常吻合,而且岩石类型和地质构造也可以对接起来。现已证明,大西洋在二叠纪(2亿5千万年前)时还根本不存在,据估计,形成中大西洋的大陆裂谷发生在稍后的三叠纪(约1亿6千万-1亿9千万年前)。至侏罗纪末期(约1亿2千万年前),中大西洋可能已张开达1000公里的宽度;南大西洋的张开大约开始于早白垩纪(约1亿1千万年前),而最初的裂谷发生在晚侏罗纪(约1亿3千万年前);北大西洋张开最晚,大约开始于第三纪初(约6000-7000万年前),与此同时,由北大西洋裂谷向东北延展而伸入格陵兰与欧洲之间,挪威海随之张裂开。从6千万年到2千万年前,挪威海、巴芬海和北大西洋主体都在扩张,但速率和方向均有些变化。综上所述,现今的那些广阔的大洋盆地并不是从来如此,而是长期的地球运动和演化的结果。大洋由狭窄海湾到宽阔盆地的发展,是通过持续发生的大规模海底扩张过程实现的。海底扩张和板块运动的动力都是地幔对流。 由于地球原始地壳自从形成以来,从来没有停止过大规模的地质构造形态的运动。因此,可以肯定地说,现在地球上大洋和陆地的形态就是过去数拾亿年来大规模地壳运动的结果。
地球的起源每过一年,大家都要长大一岁。一年,对我们大家来说是个比较长的时间,可是这在地球的历史上,简直是微不足道的一瞬。地质学家发现:覆盖在原始地壳上的层层叠叠的岩层,是一部地球几十亿年演变发展留下的"石头大书",地质学上叫做地层。地层从最古老的地质年代开始,层层叠叠地到达地表。一般来说,先形成的地层在下,后形成的地层在上,越靠近地层上部的岩层形成的年代越短。地层好比是记录地球历史的一本书,地层中的岩石和化石就像这本书中的文字。用现代科学的方法通过对古老岩石的测定,人们得知地球已经存在46亿年了。那么人们用什么科学方法来推算地球的年龄呢?目前,科学上是用测定岩石中放射性元素和它们蜕变生成的同位素含量的方法,作为测定地球年龄的"计时器"。人们利用放射性元素蜕变的特点,来计算出岩石的年龄。放射性元素在蜕变时,速度很稳定,而且不受外界条件影响。在一定时间内,一定量的放射性元素,分裂多少份量,生成多少新的物质都有个确切数字。例如,一克铀在一年中有七十四亿分之一克裂变为铅和氦。因此,我们可以根据岩石中现在含有多少铀和多少铅,算出岩石的年龄。地壳是由岩石组成的,这样我们就能得知地壳的年龄。有的人算出为30亿年左右。地壳的年龄还不等于地球的实际年龄,因为在形成地壳以前,一般地球还要经过一段表面处于熔融状态的时期,加上这段时期,地球的年龄估计约有46亿年。这是个很大的数字。但在宇宙中,比地球年龄大的星球还多着哩。地质科学家说地球至少有46亿岁。人类有文字记载的历史只有几千年。那么,我们是怎样知道地球年龄的呢?推算地球年龄,主要有岩层方法、化石方法和放射性元素的蜕变方法等。根据鉴定,地球上最古老的岩石,是在格陵兰岛西部戈特哈布地区发现的阿米佐克片麻岩,年龄约有38亿岁。而太阳系的碎屑,年龄都在45亿年-47亿年之间。因此认为,包括地球在内的太阳系成员大都在同一时期形成。依照人类历史划分朝代的办法,地球自形成以来也可以划分为5个"代",从古到今是:太古代、元古代、古生代、中生代和新生代。有些代还进一步划分为若干"纪",如古生代从远到近划分为寒武纪、奥陶纪、志留纪、泥盆纪、石炭纪和二叠纪;中生代划分为三叠纪、侏罗纪和白垩纪;新生代划分为第三纪和第四纪。这就是地球历史时期的最粗略的划分,我们称之为"地质年代",不同的地质年代人有不同的特征。距今24亿年以前的太古代,地球表面已经形成了原始的岩石圈、水圈和大气圈。但那时地壳很不稳定,火山活动频繁,岩浆四处横溢,海洋面积广大,陆地上尽是些秃山。这时是铁矿形成的重要时代,最低等的原始生命开始产生。距今24亿年-6亿年的元古代。这时地球上大部分仍然被海洋掩盖着。到了晚期,地球上出现了大片陆地。"元古代"的意思,就是原始生物的时代,这时出现了海生藻类和海洋无脊椎动物。距今6亿年-亿年是古生代。"古生代"是意思是古老生命的时代。这时,海洋中出现了几千种动物,海洋无脊椎动物空前繁盛。以后出现了鱼形动物,鱼类大批繁殖起来。一种用鳍爬行的鱼出现了,并登上陆地,成为陆上脊椎动物的祖先。两栖类也出现了。北半球陆地上出现了蕨类植物,有的高达30多米。这些高大茂密的森林,后来变成大片的煤田。距今亿年-亿年的中生代,历时约亿年。这是爬行动物的时代,恐龙曾经称霸一时,这时也出现了原始的哺乳动物和鸟类。蕨类植物日趋衰落,而被裸子植物所取代。中生代繁茂的植物和巨大的动物,后来就变成了许多巨大的煤田和油田。中生代还形成了许多金属矿藏。新生代是地球历史上最新的一个阶段,时间最短,距今只有7000万年左右。这时,地球的面貌已同今天的状况基本相似了。新生代被子植物大发展,各种食草、食肉的哺乳动物空前繁盛。自然界生物的大发展,最终导致人类的出现,古猿逐渐演化成现代人,一般认为,人类是第四纪出现的,距今约有240万年的历史。人类居住的地球就是这样一步一步地一直演化到现在,逐渐形成了今天的面貌。21.太阳系中的九大行星,都按反时针方向绕太阳公转。太阳本身也以同一方向自转,这个特征称为太阳系天体运动的同向性。2.上述行星绕太阳公转的轨道面,非常接近于同一平面,并且这个平面与太阳自转赤道面的夹角也不到6°,这个特征称为行星轨道运动的共面性。3.除水星和冥王星外,其它所有行星的绕日公转轨道都很接近于圆轨道。这个特征称为行星轨道运动的近圆性。关于地球的起源问题,已有相当长的探讨历史了。在古代,人们就曾探讨了包括地球在内的天地万物的形成问题,在此期间,逐渐形成了关于天地万物起源的"创世说"。其中流传最广的要算是《圣经》中的创世说。在人类历史上,创世说曾在相当长的一段时期内占据了统治地位。自1543年波兰天文学家哥白尼提出了日心说以后,天体演化的讨论突破了宗教神学的桎梏,开始了对地球和太阳系起源问题的真正科学探讨。1644年,笛卡儿()在他的《哲学原理》一书中提出了第一个太阳系起源的学说,他认为太阳、行星和卫星是在宇宙物质涡流式的运动中形成的大小不同的旋涡里形成的。一个世纪之后,布封(. de Buffon)于1745年在《一般和特殊的自然史》中提出第二个学说,认为:一个巨量的物体,假定是彗星,曾与太阳碰撞,使太阳的物质分裂为碎块而飞散到太空中,形成了地球和行星。事实上由于彗星的质量一般都很小,不可能从太阳上撞出足以形成地球和行星的大量物质的。在布封之后的200年间,人们又提出了许多学说,这些学说基本倾向于笛卡尔的"一元论",即太阳和行星由同一原始气体云凝缩而成;也有"二元论"观点,即认为行星物质是从太阳中分离出来的。1755年,著名德国古典哲学创始人康德(I. Kant)提出"星云假说"。1796年,法国著名数学和天文学家拉普拉斯(P. S. Laplace)在他的《宇宙体系论》一书中,独立地提出了另一种太阳系起源的星云假说。由于拉普拉斯和康德的学说在基本论点上是一致的,所以后人称两者的学说为"康德-拉普拉斯学说"。整个十九世纪,这种学说在天文学中一直占有统治的地位。到本世纪初,由于康德-拉普拉斯学说不能对太阳系的越来越多的观测事实作出令人满意的解释,致使"二元论"学说再度流行起来。1900年,美国地质学家张伯伦(T. C. Chamberlain)提出了一种太阳系起源的学说,称为"星子学说";同年,摩耳顿(F. R. Moulton)发展了这个学说,他认为曾经有一颗恒星运动到离太阳很近的距离,使太阳的正面和背面产生了巨大的潮汐,从而抛出大量物质,逐渐凝聚成了许多固体团块或质点,称为星子,进一步聚合成为行星和卫星。现代的研究表明,由于宇宙中恒星之间相距甚远,相互碰撞的可能性极小,因此,摩耳顿的学说不能使人信服。由于所有灾变说的共同特点,就是把太阳系的起源问题归因于某种极其偶然的事件,因此缺少充分的科学依据。著名的中国天文学家戴文赛先生于1979年提出了一种新的太阳系起源学说,他认为整个太阳系是由同一原始星云形成的。这个星云的主要成份是气体及少量固体尘埃。原始星云一开始就有自转,并同时因自引力而收缩,形成星云盘,中间部分演化为太阳,边缘部分形成星云并进一步吸积演化为行星。总的来说,关于太阳系的起源的学说已有40多种。本世纪初期迅速流行起来的灾变说,是对康德-拉普拉斯星云说的挑战;本世纪中期兴起的新的星云说,是在康德-拉普拉斯学说基础上建立起来的更加完善的解释太阳系起源的学说。人们对地球和太阳系起源的认识也是在这种曲折的发展过程中得以深化的。至此,我们可以对形成原始地球的物质和方式给出如下可能的结论。形成原始地球的物质主要是上述星云盘的原始物质,其组成主要是氢和氦,它们约占总质量的98%。此外,还有固体尘埃和太阳早期收缩演化阶段抛出的物质。在地球的形成过程中,由于物质的分化作用,不断有轻物质随氢和氦等挥发性物质分离出来,并被太阳光压和太阳抛出的物质带到太阳系的外部,因此,只有重物质或土物质凝聚起来逐渐形成了原始的地球,并演化为今天的地球。水星、金星和火星与地球一样,由于距离太阳较近,可能有类似的形成方式,它们保留了较多的重物质;而木星、土星等外行星,由于离太阳较远,至今还保留着较多的轻物质。关于形成原始地球的方式,尽管还存在很大的推测性,但大部分研究者的看法与戴文赛先生的结论一致,即在上述星云盘形成之后,由于引力的作用和引力的不稳定性,星云盘内的物质,包括尘埃层,因碰撞吸积,形成许多原小行星或称为星子,又经过逐渐演化,聚成行星,地球亦就在其中诞生了。根据估计,地球的形成所需时间约为1千万年至1亿年,离太阳较近的行星(类地行星),形成时间较短,离太阳越远的行星,形成时间越长,甚至可达数亿年。至于原始的地球到底是高温的还是低温的,科学家们也有不同的说法。从古老的地球起源学说出发,大多数人曾相信地球起初是一个熔融体,经过几十亿年的地质演化历程,至今地球仍保持着它的热量。现代研究的结果比较倾向地球低温起源的学说。地球的早期状态究竟是高温的还是低温的,目前还存在着争论。然而无论是高温起源说还是低温起源说,地球总体上经历了一个由热变冷的阶段,由于地球内部又含有热源,因此这种变冷过程是极其缓慢的,直到今天地球仍处于继续变冷的过程中。
产生四季的变化 地球公转 The Earth revolution around sun 地球公转的特性 像地球的自转具有其独特规律性一样,地球的公转也有其自身的规律。这些规律从地球轨道、地球轨道面和黄赤交角、地球公转的周期和地球公转速度等几个方面表现出来。 1.地球公转轨道和方向 地球在公转过程中,所经过的路线上的每一点,都在同一个平面上,而且构成一个封闭曲线。这种地球在公转过程中所走的封闭曲线,叫做地球轨道。如果我们把地球看成为一个质点的话,那么地球轨道实际上是指地心的公转轨道。 严格地说,地球公转的中位位置不是太阳中心,而是地球和太阳的公共质量中心,不仅地球在绕该公共质量中心在转动,而且太阳也在绕该点在转动。但是,太阳是太阳系的中心天体,地球只不过是太阳系中一颗普通的行星。太阳的质量是地球质量的33万倍,日地的公共质量中心离太阳中心仅450千米。这个距离与约为70万千米的太阳半径相比,实在是微不足道的,与日地亿千米的距离相比,就更小了。所以把地球公转看成是地球绕太阳(中心)的运动,与实际情况是十分接近的。 地球轨道的形状是一个接近正圆的椭圆,太阳位于椭圆的一个焦点上。椭圆有半长轴、半短轴和半焦距等要素,分别用a、b、c表示,其中a又是短轴两端对于焦点(F1、F2)的距离。 半焦距与半长轴和平短轴之间存在着这样的关系: 即 c2=a2-b2 半焦距c与半长轴a的比值c/a,是椭圆的偏心率,用e表示,即e=c/a, 偏心率是椭圆形状的一种定量表示,e的数值大于0而小于1。椭圆越接近于圆形,则e的数值就越小,即接近于0;反之,椭圆越扁,e的数值就越大。经过测定,地球轨道的半长轴a为149600000千米,半短轴b为149580000千米。根据这个数据计算出地球轨道的偏心率为: 可见,地球轨道非常接近于圆形。 由于地球轨道是椭圆形的,随着地球的绕日公转,日地之间的距离就不断变化。地球轨道上距太阳最近的一点,即椭圆轨道的长轴距太阳较近的一端,称为近日点。在近代,地球过近日点的日期大约在每年一月初。此时地球距太阳约为147100000千米,通常称为近日距。地球轨道上距太阳最远的一点,即椭圆轨道的长轴距太阳较远的一端,称为远日点。在近代,地球过远日点的日期大约在每年的7月初。此时地球距太阳约为152100000千米,通常称为远日距。近日距和远日距二者的平均值为149600000千米,这就是日地平均距离,即1个天文单位。 根据椭圆周长的计算公式: L=2πα(×e2) 计算出地球轨道的全长是940000000千米。 地球的公转方向与自转方向一致,从黄北极看,是按逆时针方向公转的,即自西向东。这与太阳系内其它行星及多数卫星的公转方向是一致的(如图3-17)。 2.太阳周年视运动 地球公转是从太阳的周年视运动中发现的。为了说明太阳的周年视运动,我们首先用一个动点与一个定点的关系来进行分析。 假如,动点A在绕定点B做圆周运动,方向如图3-18。则在定点B看上去,A点的轨迹是一个圆形,A点的运动方向是逆时针的。这种情况,与从动点A看定点B的运动特征是完全相同的,B点的运动轨迹也是圆形的,运动方向也是逆时针的。但是,A绕B的运动是一种真运动,而B绕A的运动则是一种视运动,它是A绕B运动的一种直观反映。 地球的绕日公转和在地球上的观测者见到的太阳视运动的特点与上述情况相同。如图3-19,尽管实际情况是地球绕日公转,但是作为地球上的观测者,只能感到太阳相对于星空的运动,这种运动的轨迹平面与地球轨道平面是重合的,方向、速度和周期都与地球的相同。太阳相对星空的运动,是一种视运动,称为太阳周年视运动。太阳周年视运动实际上是地球公转在天球上的反映。 3.地球轨道面和黄赤交角 如前所述,地球在其公转轨道上的每一点都在相同的平面上,这个平面就是地球轨道面。地球轨道面在天球上表现为黄道面,同太阳周年视运动路线所在的平面在同一个平面上。 地球的自转和公转是同时进行的,在天球上,自转表现为天轴和天赤道,公转表现为黄轴和黄道。天赤道在一个平面上,黄道在另外一个平面上,这两个同心的大圆所在的平面构成一个23°26′的夹角,这个夹角叫做黄赤交角(如图3-20)。 黄赤交角的存在,实际上意味着,地球在绕太阳公转过程中,自转轴对地球轨道面是倾斜的。由于地轴与天赤道平面是垂直的,地轴与地球轨道面交角应是90°——23°26′,即66°34′。地球无论公转到什么位置,这个倾角是保持不变的。 在地球公转的过程中,地轴的空间指向在相当长的时期内是没有明显改变的。目前北极指向小熊星座α星,即北极星附近,这 就是天北极的位置。也就是说,地球在公转过程中地轴是平行地移动的,所以无论地球公转到什么位置,地轴与地球轨道面的夹角是不变的,黄赤交角是不变的。 黄赤交角的存在,也表明黄极与天极的偏离,即黄北极(或黄南极)与天北极(或天南极)在天球上偏离23°26′。 我们所见到的地球仪,自转轴多数呈倾斜状态,它与桌面(代表地球轨道面)呈66°34′的倾斜角度,而地球仪的赤道面与桌面呈23°26′的交角,这就是黄赤交角的直观体现。 4.地球公转周期及岁差 地球绕太阳公转一周所需要的时间,就是地球公转周期。笼统地说,地球公转周期是一“年”。因为太阳周年视运动的周期与地球公转周期是相同的,所以地球公转的周期可以用太阳周年视运动来测得。地球上的观测者,观测到太阳在黄道上连续经过某一点的时间间隔,就是一“年”。由于所选取的参考点不同,则“年”的长度也不同。常用的周期单位有恒星年、回归年和近点年。 地球公转的恒星周期就是恒星年。这个周期单位是以恒星为参考点而得到的。在一个恒星年期间,从太阳中心上看,地球中心从以恒星为背景的某一点出发,环绕太阳运行一周,然后回到天空中的同一点;从地球中心上看,太阳中心从黄道上某点出发,这一点相对于恒星是固定的,运行一周,然后回到黄道上的同一点。因此,从地心天球的角度来讲,一个恒星年的长度就是视太阳中心,在黄道上,连续两次通过同一恒星的时间间隔。 恒星年是以恒定不动的恒星为参考点而得到的,所以,它是地球公转360°的时间,是地球公转的真正周期。用日的单位表示,其长度为日,即365日6小时9分10秒。 地球公转的春分点周期就是回归年。这种周期单位是以春分点为参考点得到的。在一个回归年期间,从太阳中心上看,地球中心连续两次过春分点;从地球中心上看,太阳中心连续两次过春分点。从地心天球的角度来讲,一个回归年的长度就是视太阳中心在黄道上,连续两次通过春分点的时间间隔。 春分点是黄道和天赤道的一个交点,它在黄道上的位置不是固定不变的,每年西移50〃.29,也就是说春分点在以“年”为单位的时间里,是个动点,移动的方向是自东向西的,即顺时针方向。而视太阳在黄道上的运行方向是自西向东的,即逆时针的。这两个方向是相反的,所以,视太阳中心连续两次春分点所走的角度不足360°,而是360°—50〃.29即359°59′9〃.71,这就是在一个回归年期间地球公转的角度。因此,回归年不是地球公转的真正周期,只表示地球公转了359°59′9〃.71的角度所需要的时间,用日的单位表示,其长度为日,即365日5小时48分46秒。 地球公转的近日点周期就是近点年。这种周期单位是以地球轨道的近日点为参考点而得到的。在一个近点年期间,地球中心(或视太阳中心)连续两次过地球轨道的近日点。由于近日点是一个动点,它在黄道上的移动方向是自西向东的,即与地球公转方向(或太阳周年视运动的方向)相同,移动的量为每年11〃,所以,近点年也不是地球公转的真正周期,一个近点年地球公转的角度为360°+11〃,即360°0′11〃,用日的单位来表示,其长度日,即365日6小时13分53秒。 只有恒星年才是地球公转的真正周期。在下面章节中,我们将学习到回归年是地球寒暑变化周期,即四季变化的周期,它与人类的生活生产关系极为密切。回归年略短于恒星年,每年短20分24秒,在天文学上称为岁差。 为什么春分点每年西移50〃.29而造成岁差现象呢?这是地轴进动的结果。 地轴的进动同地球的自转、地球的形状、黄赤交角的存在以及月球绕地球公转轨道的特征,有着密切的联系。 地轴的进动类似于陀螺的旋转轴环绕铅垂线的摆动。当急转的陀螺倾斜时,旋转轴就绕着与地面垂直的轴线,画圆锥面,陀螺轴发生缓慢的晃动。这是因为地球引力有使它倾倒的趋势,而陀螺本身旋转运动的惯性作用,又使它维持不倒,于是便在引力作用下发生缓慢的晃动。这就是陀螺的进动。 地球的自转,就好像是一个不停地旋转着的庞大无比的大“陀螺”,由于惯性作用,地球始终在不停地自转着。地球自身的形状类似于一个椭球体,赤道部分是凸出的,即有一个赤道隆起带。同时,由于黄赤交角的存在,太阳中心与地球中心的连线,不是经常通过赤道隆起带的。所以,太阳对地球的吸引力,尤其是对于赤道隆起带的吸引力,是不平衡的。另外,月球绕地球公转的轨道平面,与黄道面和天赤道面都不重合,与黄道面呈5°9′的夹角,也就是说,地球中心与月球中心的连线,也不是经常通过赤道隆起带。所以,月球对地球的吸引力,尤其是对赤道隆起带的吸引力,也是不平衡的。据万有引力定律,F1>F2。 日月的这种不平衡吸引力,力图使赤道面与地球轨道面相重合,达到平衡状态。但是,地球自转的惯性作用,使其维持这种倾斜状态。于是,地球就在月球和太阳的不平衡的吸引力共同作用下产生了摆动,这种摆动表现为地轴以黄轴为轴做周期性的圆锥运动,圆锥的半径为23°26′,即等于黄赤交角。地轴的这种运动, 称为地轴进动。地轴进动方向为自东向西,即同地球自转和公转方向相反,而陀螺的进动方向与自转方向是一致的。 这是因为陀螺有“倾倒”的趋势,而地轴有“直立”的趋势。 地轴进动的速度非常缓慢,每年进动50〃.29,进动的周期是25800年。 由于地轴的进动,造成地球赤道面在空间的倾斜方向发生了改变,引起天赤道相应的变化,致使天赤道与黄道的交点——春分点和秋分点,在黄道上相应地移动。移动的方向是自东向西的,即与地球公转方向相反,每年移动的角度为50〃.29。因此,年的长度,以春分点为参考点周期单位要比以恒定不动的恒星为参考点的周期单位略短,这就是产生岁差的原因。 由于地轴的进动,造成地球的南北两极的空间指向发生改变,使天极以25800年为周期绕黄极运动。所以,天北极和天南极在天球上的位置也是在缓慢地移动着。如图3-24,北极星在公元前3000年曾是天龙座α星,目前的北极星在小熊座α星附近,到了公元7000年,移到仙王座α星附近,到公元14000年,织女星将成为北极星。 由于地轴进动造成天极和春分点在天球上的移动,以其为依据而建立起来的天球坐标系也必然相应地变化。对赤道坐标系来说,恒星的赤经和赤纬要发生变化,对黄道坐标系来说,恒星的黄经要发生改变。但是,地轴的进动不改变黄赤交角,即地轴在进动时,地轴与地球轨道面的夹角始终是66°34′。 在这里还要说明一下,由于地轴进动而造成的天极、春分点的移动角度相对来讲是很微小的,在较长的时间里不会有很大的移动。所以,我们仍然可以说天极和春分点在天球上的位置不变,恒星的赤经、赤纬和黄经也可以粗略地认为是不变的,以此为依据而建立的星表、星图仍是可以长期使用的。 5.地球公转速度 地球公转是一种周期性的圆周运动,因此,地球公转速度包含着角速度和线速度两个方面。如果我们采用恒星年作地球公转周期的话,那么地球公转的平均角速度就是每年360°,也就是经过日地球公转360°,即每日约0°.986,亦即每日约59′8〃。地球轨道总长度是940000000千米,因此,地球公转的平均线速度就是每年亿千米,也就是经过日地球公转了亿千米,即每秒钟千米,约每秒30千米。 依据开普勒行星运动第二定律可知,地球公转速度与日地距离有关。地球公转的角速度和线速度都不是固定的值,随着日地距离的变化而改变。地球在过近日点时,公转的速度快,角速度和线速度都超过它们的平均值,角速度为1°1′11〃/日,线速度为千米/秒;地球在过远日点时,公转的速度慢,角速度和线速度都低于它们的平均值,角速度为57′11〃/日,线速度为千米/秒。地球于每年1月初经过近日点,7月初经过远日点,因此,从1月初到当年7月初,地球与太阳的距离逐渐加大,地球公转速度逐渐减慢;从7月初到来年1月初,地球与太阳的距离逐渐缩小,地球公转速度逐渐加快。 我们知道,春分点和秋分点对黄道是等分的,如果地球公转速度是均匀的,则视太阳由春分点运行到秋分点所需要的时间,应该与视太阳由秋分点运行到春分点所需要的时间是等长的,各为全年的一半。但是,地球公转速度是不均匀的,则走过相等距离的时间必然是不等长的。视太阳由春分点经过夏至点到秋分点,地球公转速度较慢,需要186天多,长于全年的一半,此时是北半球的夏半年和南半球的冬半年;视太阳由秋分点经过冬至点到春分点,地球公转速度较快,需要179天,短于全年的一半,此时是北半球的冬半年和南半球的夏半年。由此可见,地球公转速度的变化,是造成地球上四季不等长的根本原因。
我们居住的星球——地球,是我们赖以生存的家园,因此从有人类的那一天这个星球就令人敬畏,受人敬仰,无论被当时的人叫做什么,人类对地球的感情从未改变过。但地球在宇宙中却是一颗最普通不过的星球,甚至在太阳系都是如此。在地球存在的太阳系中,一共有九大行星,按体积计算地球排在第五位,按照距离太阳的距离地球排第三位,距离太阳的平均距离为亿km,在地球内侧是水星和金星;地球的密度是5515千克每立方米,与太阳系其它行星相同的是地球在绕太阳公转的时候同时也在进行自转。因为我们居住的地球是我们最熟悉的星球,因此我们称其它八大星球为类地行星。从这个角度看我们的家园地球是颗在普通不过的星球,但为什么太阳系中只有地球上有人类居住呢? 其实在这普普通通的特性中也蕴含着不普通,正是地球自身的一些特殊性造就了地球上丰富多彩的世界。从位置角度讲,地球与太阳的距离适中,温度适宜,而且从太阳系诞生到地球上开始有原始的生命痕迹,太阳没有明显的变化,在这种稳定的光照条件下,地球上孕育生命成为了可能;另外一个方面,地球与其它行星互相之间的位置比较合理,绕日公转方向一致及公转轨道处于同一平面都决定了地球的演变不受其它行星的干扰;地球本身是一个特殊的物理化学系统,这一点也有别于太阳系其他行星,地球的体积和质量决定了地球物理化学形态的演变,同时液态水圈和氮-氧形成的大气圈,还有固体地圈的板块运动都让地球渐渐变的不再普通。基于以上这些地球特有的特征,水在地球的地质作用力和原始大气圈的影响下开始形成原始的海洋,而生命的起源就在这片蓝色的世界中开始了
主要分两大派。一派认为太阳系是由一团旋转的高温气体逐渐冷却凝固而成的,称为渐变派,以康德(,1755)和.拉普拉斯(1796)为代表。另一派认为太阳系是由 2个或 3个恒星发生碰撞或近距离吸引而产生的,称为灾变派。这派的代表最早是布丰(),以后是张伯伦()和摩耳顿(),还有金斯()Sir H.杰弗里斯(1918)等人。早期的地球起源假说主要是企图解释一些天文现象,如:① 轨道规律性大行星的轨道都几近圆形,轨道平面和太阳赤道面很接近。相似的情况也存在于有规律的卫星系。② 两类行星行星的性质明显地分成两类:内行星(水、金、地、火)的质量小、密度大、卫星少;外行星(木、土、天、海)的质量大、密度小、卫星多。③ 角动量的分布对太阳系来说,太阳的质量占全系质量的99%以上,但它的角动量却还不到全系的1%。以单位质量所具有的角动量而论,行星的比太阳的大得多。通过怎样一种作用才能使一个原来大致均匀的统一体系变成这样一个系统,是太阳系起源假说所必须回答的问题。早期的两派假说各有许多变种,但都不能全部满意地解释上述的观测事实。如拉普拉斯的星云假说认为太阳系起源于一团高温、旋转的气体星云,因冷却而收缩,所以越转越快。快到一定程度后,就由它的外缘抛出一个物质环。星云继续收缩,以后又可抛出一个物质环。如此继续,以后这些物质环便都各自聚成行星。有规则的卫星系也是经过类似的过程形成的。这样,太阳系轨道的规律性便得到自然的解释。无论这样形成的物质环能否聚成行星,但由计算表明,即使将所有行星现有的角动量都转移到太阳上,太阳所增加的角动量也不足以使物质从它表面上抛出去。另一方面,如果行星物质来自太阳,它们单位质量的角动量应当和太阳的差不多,但实际它们相差很大。灾变论者将一部分的角动量归因于另外一个恒星,从而绕过了行星角动量过大的困难。在金斯和杰弗里斯的潮引假说中,他们设想有另外一个恒星从太阳旁边掠过或发生边缘碰撞,因而从太阳吸引出一股物质条带,并同时给它一定的角动量。恒星掠过后,这个条带分裂成若干块,以后各自成为行星。因为太阳与恒星起初是互相接近,碰撞后又彼此分离,所以吸引出的条带是两头小,中间大,并且它的物质是来自太阳的不同深处。这样,这个假说似乎可以解释太阳系的前两个特点,不过卫星系的产生就很难再采用同样的办法了。但这个假说其实并未真正克服角动量的困难。计算表明,恒星所能给与物质条带的角动量远不能将它抛到太阳系的边缘。即使这样能产生行星,它们离太阳最远也不超过几个太阳半径。此外,如果带状物质是从太阳内部引出来的,它的温度可能不下于一千万度。它将像大爆炸一样,很快向太空散去,不可能聚成行星。关于地球起源的理论或假说,假说认为地球是在太阳系内形成的。依据形成地球的物质来源分为三派:A、分出说也叫灾变说[1] 。在这一学派中,有的认为是另外一颗恒星碰到太阳,碰出了物质,这些碰出的物质形成了行星。有的认为:太阳曾经出现过巨大规模的变动,例如太阳的自转快度变快,由一个恒星分裂为两个恒星,后来因为某种原因,其中一个离开了,离开时所留下的物质形成行星。有的认为:太阳原来是一对双星,其中一颗子星被另外靠近的一颗大星拉走了或俘获了。在子星被拉走或俘获时所留下来的物质形成了太阳系的行星。也有的认为:太阳的伴星爆发成超新星,留下的物质形成了行星。另外还有的观点认为是太阳自身抛射出来的物质形成了行星。B、俘获说。这一学派的共同看法认为是太阳先形成的。太阳形成后俘获了周围的或宇宙空间里的其它星际物质,而由这些物质形成了行星。C、共同形成说。形形色色的各类星云说都是属于这一学派。这一学派认为:太阳系是由一个星云形成的。尽管各学者对太阳系内的星球形成和自转及公转有各自的见解,但他们都共同认为太阳系是由一个原始星云逐渐演化而形成的,或者说形成行星的物质来源于太阳或与太阳有关系的其它星球。
233 浏览 3 回答
110 浏览 7 回答
317 浏览 6 回答
300 浏览 4 回答
145 浏览 3 回答
129 浏览 3 回答
349 浏览 3 回答
220 浏览 3 回答
280 浏览 5 回答
200 浏览 5 回答
166 浏览 5 回答
91 浏览 4 回答
157 浏览 4 回答
104 浏览 2 回答
166 浏览 3 回答