针对径向基函数(Radial basis function,RBF)神经网络的结构设计问题,提出一种结构动态优化设计方法.利用敏感度法(Sensitivity analysis,SA)分析隐含层神经元的输出加权值对神经网络输出的影响,以此判断增加或删除RBF神经网络隐含层中的神经元,解决了RBF神经网络结构过大或过小的问题,并给出了神经网络结构动态变化过程中收敛性证明;利用梯度下降的参数修正算法保证了最终RBF网络的精度,实现了神经网络的结构和参数自校正.通过对非线性函数的逼近与污水处理过程中关键参数的建模结果,证明了该动态RBF具有良好的自适应能力和逼近能力,尤其是在泛化能力、最终网络结构等方面较之最小资源神经网络(Minimal resource allocation networks,MRAN)与增长和修剪RBF神经网络(Generalized growing and pruning radial basis function,GGAP-RBF)有较大提高.[1] 朱文莉. 一类具有时滞的神经网络的稳定性分析[J]. 电子科技大学学报. 2000(05)[2] 廖晓昕,傅予力,高健,赵新泉. 具有反应扩散的Hopfield神经网络的稳定性[J]. 电子学报. 2000(01)[3] 张菊亮,章祥荪. 一个新的解线性规划的神经网络(英文)[J]. 运筹学学报. 2001(02)[4] 罗公亮. 从神经网络到支撑矢量机(上)[J]. 冶金自动化. 2001(05)[5] 蒋德云,张弓. 谷物识别中对神经网络的优化(英文)[J]. 农业工程学报. 2002(05)[6] 王芳荣,周德义,郑咏梅,王鼎,张铁强. 生物表面光谱特性识别的神经网络方法[J]. 吉林大学学报(信息科学版). 2002(03)[7] 宋光雄,何胜锋,曹辉,张峥,钟群鹏. 基于Hopfield神经网络的腐蚀失效模式识别[J]. 金属热处理学报. 2003(01)[8] 王学武,谭得健. 神经网络的应用与发展趋势[J]. 计算机工程与应用. 2003(03)[9] 刘斌,刘新芝,廖晓昕. 脉冲Hopfield神经网络的鲁棒H-稳定性及其脉冲控制器设计(英文)[J]. 控制理论与应用. 2003(02)[10] 刘国良,强文义,麻亮,陈兴林. 基于粗神经网络的仿人智能机器人的语音融合算法研究[J]. 控制与决策. 2003(03)