高效的重金属去除聚合物纳米保湿由铁(3):行为和XPS研究氧化物 文摘:本研究开发了一种聚合物混合吸着剂(HFO-001)为高效的重金属去除(如铅(2)、Cd、铜(II),(2)]不可逆转的浸渍水合氧化(铁(III)在cation-exchange HFO)粒子(R-SO3Na D-001树脂),这种现象的潜在机制的基础上揭示x射线光电子能谱(XPS)的研究。HFO-001结合了出色的处理,和摩擦阻力流量特性,传统的cation-exchange树脂与特定的关系入手,对重金属HFOs阳离子。D-001相比,吸附选择性的HFO-001对铅(II)、铜(二)、(2)Cd大大提高从Ca(II)中更大的浓度。结果表明,柱吸附能力的工作是4-6 HFO-001 D-001倍以上三方面的重金属去除从模拟电镀水(pH ~ )。同样,HFO-001尤为有效杀灭多种微量铅(II)和Cd(2)从模拟自然水域达到饮用水标准,以治疗量高于D-001数量级。性能优越的HFO-001归因于Donnan膜效应所举办D-001以及纳米粒子交互作用的特殊HFO浸渍对重金属阳离子作为进一步证实,由XPS研究吸附铅。更有吸引力,疲惫的HFO-001串珠可以有效地解决由HCl-NaCl再生(pH值(3),没有任何有意义的能力的重复使用的损失。 1。简介:重金属注入受纳水体环境问题仍然是重要的,现在正在日益规范作为新的法规限制金属废水推进亿欧元(合ppb),甚至更低(美国EPA,2004年的水平,中国2008年美国环保署)。在现有技术、碱性降水重金属去除历来是首选的技术会议,(ppm)管理水平为微量铅(如第(二)、(二)、Cd等。]在direct-discharge废水点源,然而,这技术通常是限于≥污水浓度百万分之一的有限溶解无定形的金属氢氧化物阶段和效率低下的商业固液分离装置(代尔等,1998年,2003年)。离子交换树脂,利用strong-acid cation-exchange是另一个高效的技术,为有效去除工业废水中重金属的(Dabrowski等,2004,康等,2004;Kurniawan等,2006)或污染地下水(Vilensky等,2002;Dabrowski等,2004年)。然而,一个简单的交换过程中只被静电相互和非特异性为重金属去除(Demirbas等,2005;Carmona等,2008年)。
断层摄影术的和在一个液体-固体起床者中的粒子追踪研究Shantanu Roy, Jinwen 陈, Sailesh B. Kumar , M. H. Al-Dahhan,* 和M. P. Dudukovic ′化学的反应工程实验室 (CREL) ,化学工程部, 华盛顿大学,圣路易斯, 密苏里 63130一种液体-固体流通液化床是对潜在反应者的兴趣的多种工业的像精炼的石油这样的程序, 和在好化学药品的综合中, 石化的,而且食品。 这些程序的坚硬催化剂的迅速惰性化使再生和固体的再循环进入起床者区段之内在哪一个主要的反应是完成的。 在这一项研究,我们表示计算机-自动化放射性的粒子追踪(CARPT) 能用来在起床者和固体的那 backflow 中获得固体速度式样在被测试的液体速度存在。 ?-光线计算断层摄影术 (CT) 些微地更高显示专栏的中心的固体集中。 这是与瓦斯-固体的起床者反应者相反在哪固体的集中在墙壁比较高。介绍液体-固体流通液化床快速地得到如选择的反应者的名声在多种工业的程序喜欢好化学药品的综合而且石化的和在精炼的石油 (两 etal。,1995)。 给与动机的程序需求那如此反应者的使用是液体的出现-状态反应物, 典型地是在高度下面的碳化氢压力和低的温度 (汤姆斯,1970), 和一固体-状态催化剂, 快速地拿解除动员(Corma 和 Martinez,1993). 主要的反应是完成的在高 L/D 比的垂直起床者专栏中(在哪一个固体被液化而且传送被液体逐步运行). 再生那解除动员催化剂在一个分开的程序被做, 被加倍对在起床者中的主要反应藉由流通那不断地在一个关闭环的固体。设计和 scaleup 如此的连续-流程液体-固体系统需要流程的知识每时期和状态劫盗的式样分配。 这一个工作的目标将实验式地学习速度和固体的劫盗分配逐步实施实验室-刻度寒冷的流程模型的起床者循环液体-固体的系统。实验的区段一概要的实验室-刻度液体-固体循环液化-床装备在图 1 被显示. 那起床者区段是 15 cm(6 在.) 直径普列克斯玻璃专栏, 藉由大约 210 cm 的高度 (7 ft.)。 玻璃珠子 (直径 毫米) 与平常的轻打一起液化在起床者区段中的水和流通返回那经过漏斗和喷射器的系统。 固体在起床者的块流出被藉由控制维护那液体流程评估过喷射器 (是 precalibrated因为固体流动如一个运动水的功能比率流动比率). 全部的被需要的固体/液体流动比被藉由穿越供应剩余的液体获得经销商在专栏的底部镀金。 一常数高度在专栏中流动比率和水的头而且在喷射器插入物被藉由流通它维护经过一个泵和储藏箱, 在一个关闭环中。实验被运行使用 CARPT(计算机-自动化放射性的粒子追踪了) 和 CT(计算机断层摄影术) 设备在化学物质发展了反应工程实验室,华盛顿大学,圣路易斯, MO(Devanathan,1991; Kumar,1994)。 它可能被注意系统在研究之下是非常密集的和狂暴的, 和唯一的非侵入的 flowmonitoring方法喜欢 CARPT 和 CT 能够正确地测量固体速度和集中。现在的装备被设计以便起床者区段可能在 CARPT-CT 被为研究安装月台。在固体-状态流体力学的研究之前,住宅时间分配测量被引导在液体的状态中。 液体的导电率状态在脉膊之后在策略的位置被检测KCl 解决的注入。 这一项研究的结果是报告其他地方 (Roy 以及其他人。,1996)。 一般发现液体的状态实际地在塞子流程流动, 由于小的散布产生。 无尺寸不一致那* 着作到谁所有的通信应该被演说。 液体追踪者电子曲线总是被跳跃在 下面.图 1. 概要的液体-固体起床者装备。4666 Ind。 Eng。 Chem。 关于。 1997,36,4666-4669S0888-5885(97)00292-3 CCC: $ 1997 美国的化学社会对于 CARPT 研究 (Devanathan,1991; 杨以及其他人。,1992), 追踪者粒子被藉由介绍准备一放射性的 Sc-46 粒子 (力量 350 í Ci 和 halflife83 天) 在空的铝球体大小而且密度与玻璃粒子一起相配在液化。 透过一个精细的口径测定程序在 CARPT 方法中用了 (杨以及其他人。,1992), 那粒子被放在大约 200-300个已知的位置之内在测试区段和一张口径测定地图中被获得对于距离-放射线关系的强烈对于每个发现者。 一经口径测定是完全的,被需要的液体表面的速度是组和维护, 和粒子被允许自由地移动在流程领域中, 模拟典型玻璃的运动粒子。 追踪者粒子的位置被记录如一个时间的功能, 以光子的形式计数从发现者, 在长时期内. 低劣的而且变动速度成份,喧嚣叁数,而且坚硬粒子的动能可能是后来藉着过滤计算而且处理那生的肉数据 (Devanathan,1991; Larachi 以及其他人。,1997)。 这是第一次 CARPT 的使用是在一个系统成功地示范哪里追踪者粒子定期地休假和再进入区段被发现者质问。在 CREL ,华盛顿大学的 CT 扫描仪, 圣路易斯 , MO,使用狂热者-光线的几何学作为测量变薄 ?-放射线当做它经过过那给予的物体, 在这情况起床者区段。 生的肉变薄测量然后用来重建代表性时间平均劫盗分配时期。 来源是被装入胶囊的 100 mCi Cs-137个同位素 , 和 11个 NaI 发现者的有角排列(最大值) 作为变薄测量。 那以最大值为基础的判断-最大值化的运算法则可能原则,(兰格和卡森,1984)作为来自发射的图像重建测量。 软件和硬件的细节CREL 扫描仪的方面被 Kumar 讨论以及其他人。 (1995) 而且 Kumar 和 Dudukovic ′.(1997)目前研究, 测试区段 (液体-固体起床者) 向前在四个策略的轴位置被扫描专栏。结果和讨论实验在多种的液体被运行表面的速度, 从 12 到 23 cm/s。 在这一项研究,典型的结果藉由跑系统获得了在一20 cm/s 的液体表面速度被报告。 所有的实验与玻璃粒子一起运行 毫米直径,与喷射器水流动 25 gal 的比率/最小。 33 gal/最小的水流程率被维护在起床者的底部维持一种全部的液体在专栏中的 20 cm/s 的表面速度。图 2 方位角地平均是情节和 timeaveraged光线的固体劫盗 (固体集中)分配,在四个轴的位置测量了, 在一种液体20 cm/s 的表面速度。 一般观察那固体劫盗的大小非常不改变重要地 (最大的变化是 4%) 由于逐渐增加的除了减少之外的光线位置些微地以轴的位置(最大的 4%). 固体劫盗, 在任何的给予轴的位置,些微地在专栏的中心比较高当做与墙壁相较。 这是一个有趣的结果,就它而言在瓦斯-固体的起床者中广泛地被报告那那相反的趋势被观察 (Rhodes 和 Geldart,1989;Rhodes,1990). 在固体劫盗中的光线倾斜度分配在这里也是非常小的。图 3 表演固体速度领域当做评估从 CARPT 实验。 图 3 一是速度无线电诱导情节, 这清楚地表示, 在次平均的感觉, 固体状态有循环成环: 固体上在专栏的中心而且降在墙壁。 图 3b 表演相同的事实数量地根据时间-平均了轴的成份固体速度, 在中央的四个位置那专栏。 它可能被注意那当 downflow的时候固体的速度在墙壁是小大小当做与 upflow 速度相较, 总块在 downflow 的固体仍然是可感知的 ( 在这情况)图 2. 固体劫盗 (集中) 分配在不同的轴的位置 (液体的表面速度 )20 cm/s).图 3. 在液体表面速度的固体速度领域20 cm/s: (一) 速度矢量情节; (b) 轴的低劣速度描绘轮廓。Ind。 Eng。 Chem。 关于。, 第 36 册,11,19974667 号由于一个流程的比较高的部份区域在一比较棒的光线的位置。关于固体劫盗的一个意见在水平描绘轮廓在专栏的 33 cm 井然有序。 这一个水平, 仅仅在上面在专栏 (图 1) 中的经销商和喷射器, 是混合地域的部份, 和显然地表示一不规则的较低的劫盗描绘 78 cm 水平轮廓胜于。 这是也藉着 CARPT 结果确认了: 图 3 一清楚地出示固体速度矢量任意地被指示在哪一消除, 当更高地向上的时候在专栏中一清楚的循环环能被识别。 因此, 流程在 33在专栏的 cm 仍然正在发展而且表示一显然偏离常规的行为当与其余者相较了专栏。使用一本小说接近, 固体住宅时间在起床者区段的分配 (RTD) 被计算间接地从 CARPT 数据。 自从追踪者以后粒子被认为是一个典型的零零散散的状态实体哪一个重复地拿流通返回起床者区段, 在起床者中被它花费的时代的分配在它的每一次拜访期间的区段是对它的 RTD 的衡量。在连续的拜访期间的这些 " 住宅乘 " 是在图 4 中计画翻译如一个柱状图了。 唤起 ergodic假设, 这给坚硬的状态的 RTD。最后, 在图 5 中, 那轴地平均低劣的轴的固体的速度被呈现如一个液体的功能表面的速度。 在不同人被做的实验情况指出大小的全部增加中线和墙壁 (downflow) 速度。 这是, 当然, 在自从一个较高的动力以后被期望液体的状态会传授较多的动力到经过 interphase 累赘的坚硬状态, 带领到固体的比较高的低劣速度。 纯粹地基于这些实验, 结果似乎建议那固体-状态速度到达某种 " saturationprofile"以增加液体的表面速度。 然而,如此结果的严厉确认等候未来实验。总结评论液化的床和起床者的设计练习使今天相等停留在传统的 " 经验法则 " 上。 真实人如此的系统的现象更加复杂比较藉着启发式方法捕获了被用当做那设计相等的基础。 因此, 使用者和液体-固体起床者的设计者应该最后有益于从改良基本理解那如此的系统的流体力学。 现在的研究是想要在实验的定量化中是一个第一个步骤一样的。在 CREL, 工作是在进步方面在学习起床者方面在多种操作情况之下的装备而且使用一种粒子的光谱按规定尺寸制作。 短期居留者的调查如此的系统的现象也被计画为在那未来。 较进一步的数据的处理将会被做在命令计算动能,狂暴的修剪压迫力 , 和狂暴的散布系数在那固体状态。 这一个研究努力的全部目标是发展主要变数的理解感人的液体-固体起床者的表现和发展更以基本上为基础的刻度-提高规则。 那实验的数据也被期望担任基点对于计算流动动态模型那液体-固体起床者流动。承认作家谢谢工业赞助者那化学的反应工程实验室 (CREL) 在为支持在圣路易斯的华盛顿大学这计画。命名法Ul) 表面的液体速度, cmZ) 在起床者中的水平, cm文学引证Corma, 一。; Martinez , A. 化学,催化剂和程序为Isoparaffin-石腊的烃化: 真实的情形和未来趋势。 Catal。 牧师-Sci。 Eng。 1993,35,, 在泡沫的液体流体力学的 N. 调查专栏经由计算机自动化放射性的粒子追踪(CARPT). 。 论题,华盛顿大学,圣路易斯,MO,, S. B. 计算机空虚的断层摄影术测量在泡沫专栏中的分数和流程的模型。 博士论文,佛罗里达州大西洋大学, Boca Raton , FL,, S. B.; Dudukovic ′, M. P. 计算机辅助灰阶和X光断层摄影术: 多状态流程制度的申请。在多状态流程的非侵入监听中; Chaouki , J。,Larachi , F。, Dudukovic ′, M. P. , Edmund。; Elsevier 科学出版者:阿姆斯特丹,荷兰,1997; pp , B. S.; Moslemian , D。; Dudukovic ′, M. P. 一伽??线描绘的断层摄影术的扫描仪空的分数分配在泡沫专栏中。 流动 Meas 。 Instrum。 1995,6,61.图 4. 住宅计时坚硬的状态的分配在一20 cm/s 的液体表面速度.(从 CARPT 实验)图 5. 轴地平均了轴的低劣固体速度当做一液体表面的速度的功能。4668 Ind。 Eng。 Chem。 关于。, 第 36 册,11,1997 号兰格, K。; 卡森, R. 电子 MReconstruction 运算法则对于发射而且传输断层摄影术。 J. Comput。 帮助。 Tomogr。1984,8, , F。; Chaouki , J。; 肯尼迪, G。; Dudukovic ′, M. P. 放射性的在多状态反应者中的粒子追踪: 原则和申请。 在多状态流程的非侵入监听中;Chaouki , J。。 Larachi , F。, Dudukovic ′, M. P. , Edmund。; Elsevier科学出版者: 阿姆斯特丹,荷兰,1997; pp335-406.两, W. G.; Yu, Z. Q.; Jin , Y。; 王, Z. W.; 王, Y. 综合线 Alkylbenzene 在一种液体-固体循环液化固定反应者。 J. Chem。 Technol。 Biotechnol。 1995,62,, 流程结构的 M. J. 模型向上的移动瓦斯固体中止。 搽粉于 Technol 。 1990,60,, M. J.; Geldart, D. 流体力学再循环液化了床。 在流通方面液化了床技术; Basu,P。, Edmund。; Pergamon 杂志报纸: 纽约,1986; pp , S。; 陈, J。; Kumar, S. B.; Al-Dahhan, M. H.; Dudukovic ′, M。P. 液体状态在液体混合-固体循环反应者。纸在 AIChE 年会,芝加哥上呈现了,1996.汤姆斯, C. L. 接触反应的程序而且证明催化剂; 学者杂志报纸: 纽约,1970.杨, Y. B.; Devanathan , N。; Dudukovic ′, M. P. 液体 Backmixing在泡沫专栏中经由计算机自动化放射的粒子追踪 (CARPT). Chem。 Eng。 Sci。 1992,47,2859.四月 21 日为检讨收到了,1997校订手写的被一般承认的八月 1 日,1997一般承认的八月 9 日,1997XIE970292 L十月 1 日, X 摘要预先出版了 ACS 摘要,。 Eng。 Chem。 关于。, 第 36 册,11,19974669 号
有机挥发性化合物(挥发性有机化合物)都被看作是一个大班级的空气污染物,可引起许多担忧——ronmental问题。释放大量的挥发的环境中,连同其tox - icity要求和致癌性质,研究人员发现的一种有效方法,破坏。bustion催化com -是一种有效的方法,转换成有机废气的CO2、水在低温固化。珍贵的金属,如Pt、Pd和俄罗斯是众所周知的高活性催化剂氧化有机挥发性化合物。人们普遍认为,小说有机挥发性化合物催化剂应注意的两个问题:较低的温度下活动,具有较高的热stabil -强度。然而,在大多数情况下,存在着大tem -高温催化反应器的梯度变化从300°C到1300°C和各种有机挥发性化合物燃烧催化剂是必需的,涵盖了广泛的温度范围内。当操作温度高于1000°C,它会导致催化剂颗粒在他们的active-site烧结,降低药物的催化活性。通常,最常用的支持是氧化铝,在某些情况下,还不能确保一个需要求教他人的热稳定性。在这个意义上,有一个强劲的市场需求发展的新型材料、热稳定性、低成本的支持和催化剂作为有机挥发性化合物的燃烧
Study on Adsorption of Heavy Metals by Suspended Sediment of Juma River 拒马河悬浮沉积物对重金属的吸附—解吸研究2. Effect of Cd-Pb pollution on cole growth behavior and its accumulation effect of heavy metals in soil 土壤镉、铅污染对油菜生长行为及重金属累积效应的影响3. Study on the Adsorption of Heavy Metals Ion onto Vermiculite 蛭石对重金属离子吸附作用的研究4. A Perliminary Study on Concentrating Heavy Metals By Sabina Chinensis Seadlings 桧柏富集重金属研究初报5. Iron presents in abundance as variety of Fe(III) oxides in crust. Fe 在地壳中含量丰富,通常以各种Fe(III)氧化物的形式存在。6. Chemical behavior of heavy metals in rhizosphere——Ⅱ. The rhizosphere effect of desorption of adsorbed Cu in soils. 重金属在根际中的化学行为——Ⅱ.土壤中吸附态铜解吸的根际效应7. STUDY OF POLYSILOXANE WITH AMINO ACID SIDE CHAIN SUPPORTED CATALYSTS .Ⅲ. THE SYNTHESIS, HYDROGENATION ACTIVITY AND XPS STUDY OF POLY-γ-(L-SERINE)PROPYLSILOXANE PALLADIUM CATALYSTS 含氨基酸侧链的有机硅高分子催化剂——Ⅲ.聚γ—(丝氨酸基)丙基硅氧烷钯催化剂的合成、加氢活性及XPS研究8. A Study of Monitoring Heavy Metals and SO_2 in Air Using Moss-bags as Bio-monitors 苔袋法监测大气重金属和SO_2污染9. STUDY ON HIGH EFFICIENT REMOVAL METHOD OF COD_(cr) IN DIPDYE OUTLET WATER 印染废水COD_(cr)高效去除法的研究10. The absorptive capacity of soil to heavy metals and its pollution levels were in the following orders:Cd>Pb>Cr>Cu>As>Zn>Ni>Mn>Fe. 土壤对重金属元素的吸附及污染程度 :Cd >Pb >Cr >Cu >As>Zn >Ni>Mn >Fe。
Nano materials in structural and optical and chemical properties of the attractive features such as caused physicists, materials scientists and chemists keen interest. The beginning of the 1980s after the formation of the concept of nano-materials, the rest of the world paid great attention to such materials. It is the unique physical and chemical properties that make people aware of its potential for physics, chemistry, materials, biology, medicine and other disciplines bring new opportunities for research. Nano-materials, very broad application prospects. In recent years, it has been in a certain field of chemical production applications, and demonstrated its unique charm. 1. The application in catalysis Chemical catalysts in many areas play a decisive role, it can control the reaction time, improving their efficiency and velocity response. Most traditional catalytic efficiency of the catalyst is not only low, but their preparation is experience, not only caused a great waste of raw materials in the production, and increase cost-effectiveness, but also caused pollution to the environment. Nanoparticle Surface Active, as it provided the necessary conditions for the catalyst. Nanoparticles to catalyze the reaction efficiency can be greatly enhanced by controlling speed, not even the original can be used for the reaction. Nanoparticle catalyst for the reaction than the average speed of 10-15 times the catalyst. Nanoparticles as a catalyst used in the semiconductor photocatalyst, especially in the area of organic preparation. Dispersed in the solution of a semiconductor particles, similar to a short-circuit as the micro-batteries, and energy than the bandgap semiconductor illumination semiconductor decentralized system, the semiconductor nanoparticles have e-absorption -- hole right. In the electric field, electron hole separated from the surface of the particles were moved to different positions, and the solution is similar to components of oxidation and reduction reactions. Photocatalytic reaction involves many different types of chemical reactions, such as alcohol and hydrocarbon oxidation, redox inorganic ions, organic catalytic hydrogenation and dehydrogenation, amino acids, nitrogen fixation reaction, water purification, the water-gas shift, some of heterogeneous catalysis is hard to achieve. Semiconductor-effective catalyst for the degradation of organic pollutants in water. For example, TiO2 photocatalytic activity of both higher, while acid, and light stable, non-toxic, inexpensive and easy to get is the best choice for Preparation of photocatalyst. The article has reported that the use of silica matrix, which yielded higher catalytic activity TiO/SiO2 supported catalysts. Ni Cu or Zn compound of a nano-particles of certain organic compounds are excellent hydrogenation catalysts can replace expensive platinum catalyst or buttons. Nano Platinum black ethylene oxide catalysts reaction temperature from 600 ° C to room temperature. Reaction nanoparticles used as a catalyst to improve efficiency, optimize the reaction paths and improve the speed of response, the future is an important research topic in catalytic science can not be ignored, it is very likely that the catalyst to bring about revolutionary changes in industrial applications.
高效去除聚合物支持的纳米水合铁(Ⅲ)氧化物:重金属行为和XPS研究 摘要:本研究开发了一种聚合物为基础的混合型吸附剂(重油- 001)高效去除重金属[例如,铅(II),镉(Ⅱ)和铜(Ⅱ)不可逆转地浸渍水合铁(三] )氧化物(重油)纳米粒子在阳离子交换树脂的D - 001(的R - SO3Na无纺布),揭示其机制的X射线光电子能谱(基于XPS)的研究。重油- 001结合了出色的处理,流动特性,传统和自然减员的阳离子交换树脂抵抗的HFOs对重金属离子的具体亲和力。相比为D - 001,对铅的吸附重油- 001选择性(二),铜(Ⅱ),镉(Ⅱ),是有很大的Ca(二)在较为集中的竞争改善。柱吸附结果表明,重油- 001的工作能力三个方面的重金属去除约4-6倍以上的D - 001从模拟电镀水(pH值〜)。此外,重油- 001是跟踪,特别是在消除从模拟自然水域铅(II),镉(二)符合饮用水标准的有效,数量级高于D - 001处理量的订单。对重油- 001性能优越的原因是唐南膜的影响东道国的D - 001以及具体的相互作用产生浸渍重油粒子对重金属离子,进一步对铅吸附的XPS研究证实。更有吸引力,疲惫的重油- 001能有效地再生珠的盐酸,氯化钠溶液(pH 3)无任何重大的重复使用能力的丧失。 1。简介:到水体仍然是一个重要的环境问题,重金属的排放,现在正越来越多地作为新的监管法规限制,以推动金属污水每十亿分之一(ppb),甚至更低的水平(美国环保局,2004年中国环保局,2008 )。在重金属去除现有的技术,碱性沉淀历来为每百万次会议部分的首选技术(百万分之一的微量金属[例如)监管水平,铅(Ⅱ),镉(Ⅱ)等]的直废水排放点源,然而,这项技术通常仅限于≥1百万分之由于非晶态金属氢氧化物阶段和商业固液分离装置(代尔等有限的溶解度低效率的污水浓度。,1998年,2003年)。利用离子强酸性阳离子交换树脂的交换是另一个对工业废水(东布罗夫斯基等重金属有效去除效率的技术。,2004年;康等人。,2004年; Kurniawan等。,2006)或受污染的地下水(Vilensky等。,2002年;东布罗夫斯基等。,2004)。然而,一个简单的离子交换过程只有通过静电作用和非特异性驱动的重金属去除(德米尔巴什等。,2005年;卡莫纳等。,2008)。
希望不要让我个小时的努力付之东流!篇名:液-固提升管的计算机层析摄影和微粒示踪研究作者:Shantanu Roy, Jinwen Chen, Sailesh B. Kumar, M. H. Al-Dahhan,* 和M. P. Dudukovic [* 表示通讯作者的意思]。单位:密苏里州圣路易斯市华盛顿洲立大学化学工程系化学反应工程实验室(63130)摘要:液-固循环流化床在各种工业过程中均是一种有潜在价值的反应装置,如炼油和精细化学品、石化产品及食品的合成。这些过程中,迅速失活的固体催化剂需要在基本反应完成后再生,并在提升管的固体中再循环。本研究表明,计算机辅助放射微粒示踪技术(CARPT)可用于构建提升管中固体流速模型和供试流体流速下的固体回流。?-射线计算机层析摄影(CT) 表明,在分馏柱中部固体浓度稍高。这和气-固提升管反应器的情景相反,后者的固体浓度在柱壁上更高。前言液-固循环流化床在精细化学品、石化产品合成及炼油等各种工业过程中作为一种备选反应装置迅速得到推广(Liang等, 1995)。该过程在液相反应物(典型高压、低温下的烃)(Thomas, 1970)和可快速灭活的固相催化剂(Corma和Martinez, 1993)存在的反应器中完成。基本反应在高液/固流速比的垂直提升管柱中完成(在提升管中固体变成可被液体运载的液化状态)。失活催化剂在通过连续内环流中的循环固体和基本反应偶联的独立处理过程中再生。此类连续流动的液固系统的设计和组装需要每相中的流动模型以及相含率分配方面的知识。本工作的目的是通过实验研究实验室级循环液固系统流动模型的提升管中固相的流速和含率分布问题。实验实验室级液-固循环流化床的装备图纸如图1所示。提升管是一根直径6英寸、高7英尺的有机玻璃柱。提升管中的自来水带动直径毫米的玻璃微珠流动,并通过柱塞和喷射器回流进入系统。用喷射器(已把固体流速预标定为水流速函数)控制液流法来维持提升管中的固体物料流。全部固/液流速比可通过柱底部分配盘来调控。用内环流中的泵和储水罐中的循环水来维持气馏柱和喷射口部分恒定的高速水流。实验在密苏里州圣路易斯市华盛顿洲立大学化学工程系化学反应工程实验室研发的CARPT和CT装置中进行(Devanathan, 1991; Kumar,1994)。也许有必要指出,本研究使用的系统是致密的,粘滞性小,惟有非浸入式流体检测法如CARPT和CT才有能力精确测量固体流速和浓度。当前的装备使得提升管可以在CARPT-CT操作平台上安装用于本研究。早在固相水动力学的研究之前, 液相停留时间分布测定仪就在液相中得到应用。脉冲式快速注入氯化钾溶液后测定液相在既定位置的传导情况。本研究的结果其他地方也有报道(Roy 等, 1996),我们发现液相实际上呈集中流势,具有小的分散效应。液体示踪颗粒E-曲线的二维方差总是小于。美国化学学会的CARPT研究(Devanathan, 1991; Yang等, 1992)把放射性Sc-46微粒(发射波长350 íCi,半衰期83天)引入一个粒径和密度与待混流的玻璃微珠相匹配的中空铝球中来制备示踪颗粒。采用精妙的CARPT标定步骤(Yang等, 1992), 颗粒被放入供试反应段的约200-300个已知位置,就得到了每个检测器的距离-密度关系标定图谱。标定完成后,设置并保持所需的液体超临界流速,且容许固体微粒自由进入流场来模拟典型的玻璃微粒的运动。长时间后(8小时),示踪颗粒的位置(用检测器获得的光子数目来表示)记作时间的函数。随后,固体颗粒的平均流体组分和波动流体组分、粘滞系数和动力学能量可以通过舍弃和处理粗略的原始数据后计算得出(Devanathan, 1991; Larachi 等, 1997)。这是CARPT技术首次在一个体系中的成功演示,该体系中示踪颗粒周期性地离开和重新进入被检测器检测到的分馏柱反应段。密苏里州圣路易斯市华盛顿洲立大学化学工程系化学反应工程实验室的CT扫描仪采用扇-线几何学来测定?-射线通过提升管中给定物体后的放射衰减。然后用粗略的衰减测量仪器重构中横截面上各相的时间平均含率分布。该放射源被置于100 mCi的Cs-137同位素中, 11个碘化钠检测器(最大值)组成的角阵列用于衰减测试。基于极大似然原理的期望极大算法(Lange和Carson, 1984)用来做投影仪中获取的图象重建。CREL扫描仪的软件和硬件方面的细节问题已经由 Kumar 等 (1995)、Kumar和Dudukovic′(1997)讨论过。本研究中供试液-固提升管在沿柱的四个轴向位置被扫描。结果与讨论实验在液体超临界流速(12-23 cm/s)的范围内进行。本研究报道了在20 cm/s液体超临界流速的条件下运行的系统中得到的典型结果。所有实验采用直径毫米的玻璃微珠,喷射器的水流速度为25 gal/min。提升管底部的水流速度保持在33 gal/min,以便使柱中的平均液体超临界流速达到20 cm/s。图2 是在20 cm/s的液体超临界流速下4个轴向位置测得的对数平均化和时间平均化的径向固体含率 (固体浓度) 分布图。我们观察到固体含率的级数并不随着径向位置的升高而呈显著变化(最大变异是4%),但随轴向位置的变化而稍微下降(最大变异4%)。和柱壁比较而言,任何既定轴向位置的固体含率稍高于柱中部。这是一个有趣的结果,因为在气-固提升管中广泛报道的是相反趋势(Rhodes和Geldart, 1989; Rhodes, 1990)。这里报道的固体含率分布的径向梯度也更小。图3表示CARPT实验中估计的固体流速场。图3a是流速矢量图, 该图清楚地表明,从时间平均化的角度来考虑,固相有一个内循环回路:固体在柱心上升并在柱壁上下降。图3b表示柱中部四个位置的固体流速的时间平均化轴向成分也有相同的定量结果。有必要指出,柱壁上固体的下游流速和上游流体相比较有较小的数量级, 下游总的固体质量仍然是令人满意的(本实验为)。柱的33cm高度处固体含率图一般来说是有序的。这个高度恰好位于柱中分配器和喷射器的上方(图1),是混合区域的一部分, 显然比78 cm高度处有较低的固体含率。这也为CARPT的实验结果所证实:图3a 清楚地表明固体流速矢量的方向在该高度上是随机取向的, 而柱中较高的位置则出现清晰的循环回路。因此,柱中33cm高度处的流体仍待斟酌,并且和柱的其他部分相比呈现明显的偏离行为。用一种新颖的方法, 提升管中固体残留时间分布(RTD)可间接从CARPT数据计算得出。由于示踪颗粒被认为是可重复循环进入提升管的典型分散系组分,其每次通过提升管在其中停滞的时间的分布是其RTD值。这些不间断采集数据获得的“残留时间”被作成图4中的柱状图。提一个武断的假说,这就给出了固相的RTD值。最后,在图5中, 固体沿轴向的平均轴向流速被表示为液体超临界流速的函数。不同条件下实验表明,柱中线以及柱壁(下游)的流速整体上都是增加的。当然,这也可能是由于通过相同区段的液相模量较高引起固相模量的增加导致了固体平均流速提高。纯粹基于这些实验,结果似乎表明随着液体超临界流速的加大固相流速有一种趋于“饱和值”的倾向。然而,这些结果仍期待着未来进一步的实验来做强有力的验证。结论直至今日,流化床和提升管的设计仍停滞在经验法则的水平上。此类系统中的实际现象远比作为设计程式基础的启发式近似算法获得的结果要复杂的多。因此,液-固提升管的使用者和设计者可以从此类系统中的水动力学基本认识中获得极大的启发。当前的研究只是向同类实验定量方面迈出了一小步。在CREL(作者的实验室), 各种操作条件和使用不同粒径的颗粒的提升管配置研究工作正在进展中。此类体系中的静止现象研究也在未来的计划中。数据将做进一步的处理来计算固相的动力学能量、粘流剪切应力以及粘流分散系数。本研究努力的整体目标是了解影响液-固提升管效能的一些关键变量,进而研究更基础的按比例增大规律。我们期望我们的实验数据能作为液-固提升管流体的计算机动态建模的基准。图表题目翻译如下:图1. 液-固提升管的装备图纸图2. 20 cm/s液体超临界流速下不同轴向位置的固体含率(浓度)分布图3. 20 cm/s液体超临界流速下的固体流速场: (a) 流速矢量图; (b) 轴向平均流速图。致谢(略)参考文献(略)
The applications of nano-components in chemical prodcution基本上都是简单词汇嘛, 你可以找个字典自己翻翻啊.这么长要翻很久的
92 浏览 2 回答
113 浏览 4 回答
142 浏览 4 回答
147 浏览 4 回答
236 浏览 2 回答
129 浏览 4 回答
86 浏览 4 回答
170 浏览 4 回答
90 浏览 3 回答
133 浏览 4 回答
192 浏览 8 回答
142 浏览 8 回答
159 浏览 3 回答
189 浏览 3 回答
317 浏览 5 回答