人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。以下是我精心整理的人工智能的利与弊论文的相关资料,希望对你有帮助!
摘要:自1956年人工智能诞生起,几十年的发展让其有了许多的进步,并广泛用于机器视觉,专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学等各大领域,并且与人类生活联系越来越紧密。在安全性没有得到确切认证的情况下广泛发展人工智能是否是可行的做法,人工智能是否会战胜人类智能,现在还存在广泛的争论。本文从人工智能的概况,应用领域与人类生活的联系等方面讨论,联系有关理论,认为人工智能的发展需要在人类智能可控的范围内进行。
关键字:人工智能 超越 人类智能 退化
一.人工智能的概况
(一)人工智能的概念
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
(二)人工智能的兴起
1956年,被认为是人工智能之父的John McCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论。他请他们到 Vermont参加 " Dartmouth人工智能夏季研究会"。从那时起,这个领域被命名为 "人工智能"。1976年Newell 和Simon提出了物理符号系统假设,认为物理符号系统是表现智能行为必要和充分的条件。 Minsky从心理学的研究出发,提出了框架知识表示方法。到80年代,Minsky认为人的智能,根本不存在统一的理论。以McCarthy和Nilsson等为代表,主张用逻辑来研究人工智能,即用形式化的方法描述客观世界。逻辑学派在人工智能研究中,强调的是概念化知识表示、模型论语义、演绎推理等。 McCarthy主张任何事物都可以用统一的逻辑框架来表示,在常识推理中以非单调逻辑为中心。传统的人工智能研究思路是“自上而下”式的,它的目标是让机器模仿人,认为人脑的思维活动可以通过一些公式和规则
来定义,因此希望通过把人类的思维方式翻译成程序语言输入机器,来使机器有朝一日产生像人类一样的思维能力。这一理论指导了早期人工智能的研究。
(三)人工智能的发展状况
1956年,Samuel研制了跳棋程序,它在1959年击败了Samuel本人
1959年美籍华人学者、洛克菲勒大学教授王浩 自动定理证明
1976年 “四色定理”的证明
1977年,曾是赫伯特·西蒙的研究生、斯坦福大学青年学者费根鲍姆
(),在第五届国际人工智能大会上提出了”知识工程”的概念 1976年美国斯坦福大学肖特列夫开发医学专家系统MYCIN
80年代,AI 被引入了市场,并显示出实用价值
1997年 “深蓝”
2011年9月,在印度古瓦哈蒂举行的电脑科技展上,一个“聪明机器(Cleverbot)”成功过近800名观众,使他们难以分辨对话出自真人还是电脑软件。当日参加聊天试验的30名志愿者被安排进行4分钟在线文字聊天,聊天的对象可能是“聪明机器人”,也可能是一个真人。他们的对话内容展示在一个
大屏幕上,1334名普通观众观看对话内容后进行投票。结果,超过的观众 把人与“聪明机器人”的对话误认成人与人之间的对话“聪明机器人”的发明 者、英国人罗洛·卡彭特很高兴地告诉记者:“过一半以上观众,你可以说聪明机器人算是通过了"图灵测试"
二.人们对人工智能的依靠
(一)人工智能主要应用领域
目前人工智能主要的应用领域在机器视觉(指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别),专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。
(二)人们生活与人工智能的密切关系
从智能手机、自动驾驶汽车到医疗机器人,人工智能革命已经到来。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通
中推荐最畅通的线路;帮助识别信用卡„„虽然很多时候我们甚至没有意识到它的存在,但我们的生活却因它悄悄改变。
在美国硅谷,尼古拉斯·亚宁早上起来准备去上班,到公司需要40分钟车程。这位在Google工作的技术员走向他的Lexus汽车。汽车即将驶上加州拥挤的高速路,此时他的“司机”———汽车开始掌控大局。亚宁的这辆车是Google正在实验的自动驾驶汽车,安装有复杂的人工智能技术,使得他可以放松地坐在驾驶座上充当乘客。
在马萨诸塞州贝德福特的iRobot公司,一名参观者看着5英尺高的机器人爱娃小心翼翼地行走在大厅里,躲避着周围的障碍物———包括人类。今年年底它将开始自己的第一份真正工作———远程医疗助手,让数千英里之外的专家通过安装在它“头”上的视频屏幕给医院的病人看病。当医生准备看望下一位病人时,他只需点击电脑地图上的新位置。爱娃根据地图找到并赶往下一个病房,它还会自己乘坐电梯。
在华盛顿普尔曼,华盛顿州立大学的研究者们正在给“智能”房间安装上感应器,使之能够根据需要自动调节房间的光线,监控住户的一切活动,包括他们每天睡眠多少小时,锻炼多少分钟。听上去有点像是被监禁,但事实上,倡导者们认为这样的技术就像一个富有爱心的保姆:智能房屋可以帮助老年人,尤其是有身体或智力障碍的老人过上独立的生活。
从今年夏天在火星登陆的好奇号太空探测器,到仪表盘能够与人对话的汽车,再到智能手机,人工智能正在改变我们的生活———有时候以一种显而易见的方式,更多的时候,我们甚至没有意识到它的存在。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通中推荐最畅通的线路;帮助识别信用卡;告诉驾驶员什么时候越过了道路中央的分道线。
甚至连烤面包机也即将加入人工智能革命。你可以将一个面包放进去,用智能手机拍张照片,手机将把所有需要的信息传送给烤面包机,指导它如何将面包烤得恰到好处。
从某个方便说,人工智能几乎无处不在,从控制数码相机的光圈和快门速度的智能感应器,到干衣机中的温度和湿度探测器,再到汽车中的自动泊车功能。更复杂的应用还在源源不断地走出实验室。
三.人工智能的弊端
(一)关于人工智能超越人类智能的假说
人工智能只可以作为人类智能的补充,但是人工智能的发展速度远远超过人类智能的发展速度,即根据进化论来说人工智能的进化速度比人类智能进化得快许多。由于人工智能起步较低,故现在和人类智能有一定差距,但其表现出了在局部超越了人类智能的现状,让人有理由相信人工智能超越人类智能只是时间上的问题。
人工智能超越人类智能论据有:一是达尔文进化论;二是类比人类的创造性即由于人类智能的不断探索欲会把自己独有创造赋予人工智能,这会导致人工智能战胜人类智能;三是“量变质变定律”人工智能不断的在某些领域超越人类智能,最终将在质上战胜人类智能。
其代表人物有四川大学社科系教授王黔玲从世界观角度提出的“人工智能将超越人类智能”的论断。华东师范大学哲学系教授郦全民认为在好奇心的驱使下,在不前进就会落后的“象棋皇后”效应的作用下,人类不会停止对比自己先进的更高的智能系统的探索。而进化法则又不可违背,将使得进化之链朝着超越人类的方向发展。因此地球上出现超越人类的高智能物种是进化的必然。代维也大胆预测“人工智能将在不远的将来战胜人类智能,但会有自己的存在方式,不会对人类构成威胁”。约翰·麦卡锡——人工智能之父认为“没有理由相信我们不能写出一个能使电脑像人一样思考的公式。”斯蒂芬·霍金 说过“在我看来,如果非常复杂的化学分子可以在人体内活动并使人类产生智慧的话,那么太阳复杂的电子电路也可以使计算机以智能化的方式采取行动。”德国班贝克大学心理学教授德尔纳认为“有灵魂的机器是存在的。”
(二)人类退化的假说
从智能手机、自动驾驶汽车到医疗机器人,人工智能革命已经到来。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通中
第5 / 6页
推荐最畅通的线路;帮助识别信用卡等。虽然很多时候我们甚至没有意识到它的存在,但我们的生活却因它悄悄改变。人们总是趋向于安逸的生活,人工智能的出现满足了人们许多的需求,这会导致人们满足于享受当前的生活而忘记许多自己的本能。根据达尔文的进化学说,那些我们不在经常使用的本能会在生物的繁衍中逐渐的退化消失。人工智能化的发展,我们的衣食住行都可以有简单的解决方法,并且也越来越为人们所依赖。就像过去几千年我们没有电话手机,一样可以有自己的通讯方式,可是现在手机发展不过几十年,就没有几个人能离得开手机了。试想一下日益进入我们生活中的人工智能,等你习惯后还能离得开吗。如果有了人工智能,你什么都不用自己动手,那经过生物衍变,人类的未来还能剩下什么呢。经过退化衍变的人类还有什么能力呢。
四.结语
现阶段人工智能在专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学等方面都有许多的应用,并且范围越来越广,虽然看似都是促进科学发展的,但是我们得注意其使用的度,就像克隆的应用一样,具有双面性的东西在发展时都应该慎重考虑。人工智能智能作为一种工具被人类智能限定在一定的范围里发展,才能在保证其安全的条件下最大程度的为人类发挥作用。 参考文献:
【1】史忠植. 高级人工智能(第二版). 科学出版社, 2006.
【2】玛格丽特·博登,人工智能哲学,上海译文出版社2001-11-01
【3】 Russell S., Peter Norvig,人工智能——一种现代方法(第二版)北京:人民邮电出版社, 2004 【4】史忠植. 智能主体及其应用.科学出版社,2000.
【5】 叶世伟, 史忠植 译. 神经网络原理(Simon Haykin: Neural Networks) . 机械工业出版社,2004.
【6】蔡自兴,徐光佑,人工智能及其应用(第三版). 北京:清华大学出版社,2003年
【7】卢格尔,人工智能,机械工业出版社,2009-03-01
【8】CarolynAbate,人工智能改变生活,南方都市报,2012-09-30
【9】门泽尔,机器人的未来,上海辞书出版社,2002年
【10】钱学森,关于思维科学,上海人民出版社,1986
【11】钱铁云,人工智能是否可以超越人类智能?,科学社会与辩证法,2004
【12】代维,人工智能VS人类智能。20年后谁称雄,青年探索,2002
【13】姜长阳,人类正在退化,自然辨证法研究,2000年11期
只要谈及科技对人类的意义,有一个词语出语率颇高――“双刃剑”。即科技在给人们带来便捷、舒适和高质量生活的同时,也不可避免地会带来诸多弊端。在这种种弊端中,有看得见的,如环境污染;而更多的则是看不见的,如科技对文化的冲击。
有关科技的利与弊,近年来舆论界一直争论不休,莫衷一是。这一现象也直接反映在了高考语文试题中――连续几年的高考作文都涉及到这一话题,且有逐年增多的趋势。
据统计,在近几年高考作文中讨论最多的话题是“科技对文化(尤其是传统文化)的冲击”――即科技会不会对文化构成冲击?又会构成什么样的冲击?如2012年高考湖北卷作文题就提供了这样一则材料:
语文课堂上,老师在讲到杜甫《春望》“烽火连三月,家书抵万金”时,不无感慨地说:“可惜啊,我们现在已经很难见到家书了,书信这种形式恐怕要消失了。”学生甲:“没有啊,我上大学的表哥就经常给我写信,我觉得这种交流方式是不可替代的。”学生乙:“信息技术这么发达,打电话、发短信、写邮件更便捷,谁还用笔写信啊?”学生丙:“即使不用笔写信,也不能说明书信消失了,只不过是书信的形式变了。”学生丁:“要是这样说的话,改变的又何止是书信?社会发展了,科技进步了,很多东西都在悄然改变。”……
诚然,电话、短信、邮件在带给我们方便、快捷的同时,也消减了我们生活中的诗意。可是我们不妨思量一下,“云中谁寄锦书来”或许能带给我们诗意和遐想,可在“烽火连三月”的情况下,恐怕还是一条快捷的短信更让人放心。因此,我们要充分考虑到两者的得失,对如何处理好科技与文化的关系作出深刻的反思:是为了保存传统的美好而抱残守缺,还是为了方便快捷就抛弃传统?是在传统的树干上嫁接上时尚的枝条,还是在崭新的文化中打上旧补丁?笔者想:应该思考这类问题的绝不仅仅是我们的中学生,更有我们的决策者、我们的专家,甚至我们每一个普普通通的公民。反思永远强于抱怨,只有总结反思,才能使我们的下一步走得更好,走得更稳健,从而一步步接近我们理想中的伊甸园。
与此一脉相承的是2014年高考广东卷的作文题。所不同的是广东卷的材料放弃了书信与手机,取而代之的是黑白胶片与数码技术:
黑白胶片的时代,照片很少,只记录下人生的几个瞬间,在家人一次次的翻看中,它能唤起许多永不褪色的记忆。但照片渐渐泛黄,日益模糊。数码技术的时代,照片很多,记录着日常生活的点点滴滴,可以随时上传到网络与人分享。它从不泛黄,永不模糊,但在快速浏览与频繁更新中,值得珍惜的“点滴”也可能被稀释。
黑白胶片与数码技术就像尺素与短信、马车与高铁、书法与“键谈”、远足与网游、品茗与快餐,品评它们又岂是一个“利”字或“弊”字可以概括的?这当中,掺和有科技的因素,有文化的因素,有传统的因素,有心理习惯的因素……其实,人们最希望拥有的是现代科技的便捷加上传统文化的醇香,而这恰如鱼与熊掌,兼而得之实在不易。
高考作文涉及到的又一方面的话题是“科技对传统审美观念的冲击”。如2014年高考辽宁卷作文题提供了这样一则材料:
夜晚,祖孙二人倚窗远眺。“瞧万家灯火,大街通明,霓虹闪耀,真美!”男孩说,“要是没有电,没有现代科技,没有高楼林立,上哪儿看去?”老人颔首,又沉思摇头:“可惜满天繁星没有了。沧海桑田,转眼之间啊!当年那些祖先,山洞边点燃篝火,看月亮初升,星汉灿烂,他们欣赏的也许才是美景。”
读罢这则材料,笔者觉得:如果“当年那些祖先”能够“穿越”回来,即便他们依然认为篝火、明月、星汉是大自然中最美丽的景观,但他们还乐意栖居在山洞里燃着篝火欣赏那满天繁星吗?现代科技早已潜入到了人们的灵魂深处,纵然我们会偶尔生出几许怀旧的情愫,那不过是我们在内心珍存的原始记忆陨落时的惆怅,纵然我们心向往之,也未必愿意返璞归真。在现代社会中,像陶渊明、梭罗这些真正倾心于自然的隐者已经很难寻觅了。
高考作文所涉及的有关科技的材料,还触及到了近乎于“科幻”的话题。如2014年高考天津卷的作文材料,讲的是一则带有几分科幻色彩的故事,揭示了现代科技给人带来的“荒诞感”:
也许将来有这么一天,我们发明了一种智慧芯片,有了它,任何人都能古今中外无一不知,天文地理无所不晓。比如说,你在心里默念一声“物理”,人类有史以来有关物理的一切公式、定律便纷纷浮现出来,比老师讲的还多,比书本印的还全。你逛秦淮河时,脱口一句“旧时王谢堂前燕”,旁边卖雪糕的老大娘就接茬说“飞入寻常百姓家”,还慈祥地告诉你,这首诗的作者是刘禹锡,这时一个金发碧眼的外国小女孩抢着说,诗名《乌衣巷》,出自《全唐诗》365卷4117页……这将是怎样的情形啊!
不知道是否真的有那么一天,不知道这样的情形是否真的会出现,也不知道这样的情形出现究竟是喜是悲。
平心而论,科技带给我们的永远是利大于弊,否则我们绝不会视之为“第一生产力”,也不会有那么多仁人志士为科技献身,为科技发展不遗余力了。我们现在要探究的是在发展科技的同时怎样将它的负面效应降到最低,乃至使之成为促进文化传承与发展的助力;而不是因噎废食,视科技为文化的宿敌,甚至视若洪水猛兽――而承担这一重任的主力,将会是今天走上考场的一代青年。从这一意义上看,让他们先写这样的文章真的很有价值。想必“科技”这一话题在随后的高考作文中仍会有一定的地位。
姓名:陈心语 学号:21009102266 书院:海棠1号书院 转自: 人工智能在自动驾驶技术中的应用 - 云+社区 - 腾讯云 () 【嵌牛导读】本文介绍了人工智能在无人驾驶方面的应用。 【嵌牛鼻子】人工智能运用于无人驾驶。 【嵌牛提问】人工智能在无人驾驶方面中有什么运用呢? 【嵌牛正文】 随着技术的快速发展云计算、大数据、人工智能一些新名词进入大众的视野,人工智能是人类进入信息时代后的又一技术革命正受到越来越广泛的重视。作为人工智能技术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。 自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。自动驾驶技术将成为未来汽车一个全新的发展方向。 本文将主要介绍人工智能技术在自动驾驶中的应用领域,并对自动技术的发展前景进行一个简单的分析。 人工智能是一门起步晚却发展快速的科学。20 世纪以来科学工作者们不断寻求着赋予机器人类智慧的方法。现代人工智能这一概念是从英国科学家图灵的寻求智能机发展而来,直到1937年图灵发表的论文《理想自动机》给人工智能下了严格的数学定义,现实世界中实际要处理的很多问题不能单纯地是数值计算,如言语理解与表达、图形图像及声音理解、医疗诊断等等。 1955 年Newell 和Simon 的Logic Theorist证明了《数学原理》中前52 个定理中的38 个。Simon 断言他们已经解决了物质构成的系统如何获得心灵性质的问题( 这种论断在后来的哲学领域被称为“强人工智能”) ,认为机器具有像人一样逻辑思维的能力。1956 年,“人工智能”( AI) 由美国的JohnMcCarthy 提出,经过早期的探索阶段,人工智能向着更加体系化的方向发展,至此成为一门独立的学科。 五十年代,以游戏博弈为对象开始了人工智能的研究;六十年代,以搜索法求解一般问题的研究为主;七十年代,人工智能学者进行了有成效的人工智能研究;八十年代,开始了不确定推理、非单调推理、定理推理方法的研究;九十年代,知识表示、机器学习、分布式人工智能等基础性研究方面都取得了突破性的进展。 人工智能在自动驾驶技术中的应用概述 人工智能发展六十年,几起几落,如今迎来又一次热潮,深度学习、计算机视觉和自然语言理解等各方面的突破,使得许多曾是天方夜谭的应用成为可能,无人驾驶汽车就是其中之一。作为人工智能等技术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。目前,人工智能在汽车自动驾驶技术中也有了广泛应用。 自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,它是一个集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统, 它集中运用了计算机、现代传感、信息融合、通讯、人工智能及自动控制等技术, 是典型的高新技术综合体。 这种汽车能和人一样会“思考” 、“判断”、“行走” ,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆 。 按照 SAE (美国汽车工程师协会)的分级,共分为:驾驶员辅助、部分自动驾驶、有条件自动驾驶、高度自动驾驶、完全自动驾驶五个层级。 第一阶段:驾驶员辅助 目的是为驾驶者提供协助,包括提供重要或有益的驾驶相关信息,以及在形势开始变得危急的时候发出明确而简洁的警告。现阶段大部分ADAS主动安全辅助系统,让车辆能够实现感知和干预操作。例如防抱死制动系统(ABS)、电子稳定性控制(ESC)、车道偏离警告系统、正面碰撞警告系统、盲点信息系统等等,此时车辆是能够通过摄像头、雷达传感器获知周围交通状况,进而做出警示和干预。 第二阶段:部分自动驾驶 车辆通过摄像头、雷达传感器、激光传感器等等设备获取道路以及周边交通信息,车辆会自行对方向盘和加减速中的多项操作提供驾驶支援,在驾驶者收到警告却未能及时采取相应行动时能够自动进行干预,其他操作交由驾驶员,实现人机共驾,但车辆不允许驾驶员的双手脱离方向盘。例如自适应巡航控制(ACC)、车道保持辅助系统(LKA)、自动紧急制动(AEB)系统、车道偏离预警(LDW)等。 第三阶段:有条件自动驾驶 由自动驾驶系统完成驾驶操作,根据路况条件所限,必要时发出系统请求,必须交由驾驶员驾驶。 第四阶段:高度自动驾驶 由自动驾驶系统完成所有驾驶操作,根据系统请求,驾驶员可以不接管车辆。车辆已经可以完成自动驾驶,一旦出现自动驾驶系统无法招架的情形,车辆也可以自行调整完成自动驾驶,驾驶员不需要干涉。 第五阶段:完全自动驾驶 自动驾驶的理想形态,乘客只需提供目的地,无论任何路况,任何天气,车辆均能够实现自动驾驶。这种自动化水平允许乘客从事计算机工作、休息和睡眠以及其他娱乐等活动,在任何时候都不需要对车辆进行监控。 自动驾驶的实现 车辆实现自动驾驶,必须经由三大环节: 第一,感知。 也就是让车辆获取,不同的系统需要由不同类型的车用感测器,包含毫米波雷达、超声波雷达、红外雷达、雷射雷达、CCD \CMOS影像感测器及轮速感测器等来收集整车的工作状态及其参数变化情形。 第二,处理。 也就是大脑将感测器所收集到的资讯进行分析处理,然后再向控制的装置输出控制讯号。 第三,执行。 依据ECU输出的讯号,让汽车完成动作执行。其中每一个环节都离不开人工智能技术的基础。 人工智能在自动驾驶定位技术中的应用 定位技术是自动驾驶车辆行驶的基础。目前常用的技术包括 线导航、磁导航、无线导航、视觉导航、导航、激光导航等。 其中磁导航是目前最成熟可靠的方案,现有大多数应用均采用这种导航技术。磁导航技术通过在车道上埋设磁性标志来给车辆提供车道的边界信息,磁性材料具有好的环境适应性,它对雨天,冰雪覆盖,光照不足甚至无光照的情况都可适应,不足之处是需要对现行的道路设施作出较大的改动,成本较高。同时磁性导航技术无法预知车道前方的障碍,因而不可能单独使用。 视觉导航对基础设施的要求较低,被认为是最有前景的导航方法。在高速路和城市环境中视觉方法受到了较大的关注。 人工智能在自动驾驶图像识别与感知中的应用 无人驾驶汽车感知依靠传感器。目前传感器性能越来越高、体积越来越小、功耗越来越低,其飞速发展是无人驾驶热潮的重要推手。反过来,无人驾驶又对车载传感器提出了更高的要求,又促进了其发展。 用于无人驾驶的传感器可以分为四类: 雷达传感器 主要用来探测一定范围内障碍物(比如车辆、行人、路肩等)的方位、距离及移动速度,常用车载雷达种类有激光雷达、毫米波雷达和超声波雷达。激光雷达精度高、探测范围广,但成本高,比如Google无人车顶上的64线激光雷达成本高达70多万元人民币;毫米波雷达成本相对较低,探测距离较远,被车企广泛使用,但与激光雷达比精度稍低、可视角度偏小;超声波雷达成本最低,但探测距离近、精度低,可用于低速下碰撞预警。 视觉传感器 主要用来识别车道线、停止线、交通信号灯、交通标志牌、行人、车辆等。常用的有单目摄像头、双目摄像头、红外摄像头。视觉传感器成本低,相关研究与产品非常多,但视觉算法易受光照、阴影、污损、遮挡影响,准确性、鲁棒性有待提高。所以,作为人工智能技术广泛应用的领域之一的图像识别,也是无人驾驶汽车领域的一个研究热点。 定位及位姿传感器 主要用来实时高精度定位以及位姿感知,比如获取经纬度坐标、速度、加速度、航向角等,一般包括全球卫星定位系统(GNSS)、惯性设备、轮速计、里程计等。现在国内常用的高精度定位方法是使用差分定位设备,如RTK-GPS,但需要额外架设固定差分基站,应用距离受限,而且易受建筑物、树木遮挡影响。近年来很多省市的测绘部门都架设了相当于固定差分基站的连续运行参考站系统(CORS),比如辽宁、湖北、上海等,实现了定位信号的大范围覆盖,这种基础设施建设为智能驾驶提供了有力的技术支撑。定位技术是无人驾驶的核心技术,因为有了位置信息就可以利用丰富的地理、地图等先验知识,可以使用基于位置的服务。 车身传感器 来自车辆本身,通过整车网络接口获取诸如车速、轮速、档位等车辆本身的信息。 人工智能在自动驾驶深度学习中的应用 驾驶员认知靠大脑,无人驾驶汽车的“大脑”则是计算机。无人车里的计算机与我们常用的台式机、笔记本略有不同,因为车辆在行驶的时候会遇到颠簸、震动、粉尘甚至高温的情况,一般计算机无法长时间运行在这些环境中。所以无人车一般选用工业环境下的计算机——工控机。 工控机上运行着操作系统,操作系统中运行着无人驾驶软件。如图1所示为某无人驾驶车软件系统架构。操作系统之上是支撑模块(这里模块指的是计算机程序),对上层软件模块提供基础服务。 支撑模块包括:虚拟交换模块,用于模块间通信;日志管理模块,用于日志记录、检索以及回放;进程监控模块,负责监视整个系统的运行状态,如果某个模块运行不正常则提示操作人员并自动采取相应措施;交互调试模块,负责开发人员与无人驾驶系统交互。 图:某无人驾驶车软件系统架构 除了对外界进行认知之外,机器还必须要能够进行学习。深度学习是无人驾驶技术成功地基础,深度学习是源于人工神经网络的一种高效的机器学习方法。深度学习可以提高汽车识别道路、行人、障碍物等的时间效率,并保障了识别的正确率。通过大量数据的训练之后,汽车可以将收集到的图形,电磁波等信息转换为可用的数据,利用深度学习算法实现无人驾驶。 在无人驾驶汽车通过雷达等收集到数据时,对于原始的训练数据要首先进行数据的预处理化。计算均值并对数据的均值做均值标准化、对原始数据做主成分分析、使用PCA白化或ZCA白化。例如:将激光传感器收集到的时间数据转换为车与物体之间的距离;将车载摄像头拍摄到的照片信息转换为对路障的判断,对红绿灯的判断,对行人的判断等;雷达探测到的数据转换为各个物体之间的距离。 将深度学习应用于无人驾驶汽车中, 主要包含以下步骤: 1. 准备数据,对数据进行预处理再选用合适的数据结构存储训练数据和测试元组; 2. 输入大量数据对第一层进行无监督学习; 3. 通过第一层对数据进行聚类,将相近的数据划分为同一类,随机进行判断; 4. 运用监督学习调整第二层中各个节点的阀值,提高第二层数据输入的正确性; 5. 用大量的数据对每一层网络进行无监督学习,并且每次用无监督学习只训练一层,将其训练结果作为其更高一层的输入。 6. 输入之后用监督学习去调整所有层。 人工智能在自动驾驶信息共享中的应用 首先, 利用无线网络进行车与车之间的信息共享。通过专用通道,一辆汽车可以把自己的位置、路况实时分享给队里的其它汽车,以便其它车辆的自动驾驶系统,在收到信息后做出相应调整。 其次, 是3D路况感应,车辆将结合超声波传感器、摄像机、雷达和激光测距等技术,检测出汽车前方约5米内地形地貌,判断前方是柏油路还是碎石、草地、沙滩等路面,根据地形自动改变汽车设置。 另外, 汽车还将能进行自动变速,一旦探测到地形发生改变,可以自动减速,路面恢复正常后,再回到原先状态。 汽车信息共享所收集到的交通信息量将非常巨大,如果不对这些数据进行有效处理和利用,就会迅速被信息所湮没。因此需要采用数据挖掘、人工智能等方式提取有效信息,同时过滤掉无用信息。考虑到车辆行驶过程中需要依赖的信息具有很大的时间和空间关联性,因此有些信息的处理需要非常及时。 人工智能应用于自动驾驶技术中的优势 人工智能算法更侧重于学习功能,其他算法更侧重于计算功能。 学习是智能的重要体现,学习功能是人工智能的重要特征,现阶段大多人工智能技术还处在学的阶段。如前文所说,无人驾驶实际上是类人驾驶,是智能车向人类驾驶员学习如何感知交通环境,如何利用已有的知识和驾驶经验进行决策和规划,如何熟练地控制方向盘、油门和刹车。 从感知、认知、行为三个方面看, 感知部分难度最大, 人工智能技术应用最多。感知技术依赖于传感器,比如摄像头,由于其成本低,在产业界倍受青睐。以色列一家名叫Mobileye的公司在交通图像识别领域做得非常好,它通过一个摄像头可以完成交通标线识别、交通信号灯识别、行人检测,甚至可以区别前方是自行车、汽车还是卡车。 人工智能技术在图像识别领域的成功应用莫过于深度学习,近几年研究人员通过卷积神经网络和其它深度学习模型对图像样本进行训练,大大提高了识别准确率。Mobileye目前取得的成果,正是得益于该公司很早就将深度学习当作一项核心技术进行研究。 认知与控制方面,主要使用人工智能领域中的传统机器学习技术,通过学习人类驾驶员的驾驶行为建立驾驶员模型,学习人的方式驾驶汽车。 无人驾驶技术所面临的挑战和展望 在目前交通出行状况越来越恶劣的背景下,“无人驾驶”汽车的商业化前景,还受很多因素制约。 主要有: 1. 法规障碍 2. 不同品牌车型间建立共同协议,行业缺少规范和标准 3. 基础道路状况,标识和信息准确性,信息网络的安全性 4. 难以承受的高昂成本 此外,“无人驾驶”汽车的一个最大特点,就是 车辆网络化、信息化程度极高 ,而这也对电脑系统的安全问题形成极大挑战。一旦遇到电脑程序错乱或者信息网络被入侵的情况,如何继续保证自身车辆以及周围其他车辆的行驶安全,这同样是未来急需解决的问题。 虽然无人驾驶技术还存在着很多挑战,但是无人驾驶难在感知,重在“学习”,无人驾驶的技术水平迟早会超过人类,因为稳、准、快是机器的先天优势,人类无法与之比拟。
“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,对《人工智能》这门专业选修课程的 教学 方法 进行了探索和 总结 。以下是我整理分享的关于人工智能结课论文的相关 文章 ,欢迎阅读!
对《人工智能》专业选修课教学的几点体会
摘要:“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,提高《人工智能》专业选修课的教学效果,我们结合近几年的实际教学 经验 ,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对《人工智能》这门专业选修课程的教学方法进行了探索和总结。
关键词:人工智能 优选教材 考核方式内容 手段 实践
人工智能(Aritificial Intelligence,英文缩写为AI)是一门综合了应用数学、自动控制、模式识别、系统工程、计算机科学和心理学等多种学科交叉融合而发展起来的的一门新型学科,是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它是研究智能机器所执行的通常与人类智能有关的职能行为,如推理、证明、感知、规划和问题求解等思维活动,来解决人类处理的复杂问题。人工智能紧跟世界社会进步和科技发展的步伐,与时俱进,有关人工智能的许多研究成果已经广泛应用到国防建设、工业生产、国民生活中的各个领域。在信息网络和知识经济时代,人工智能现已成为一个广受重视且有着广阔应用潜能的前沿学科,必将为推动科学技术的进步和产业的发展发挥更大的作用。因此在我国的大中专院校中开展人工智能这门课的教学与科研工作显得十分紧迫。迄今为止,全国绝大多数工科院校中的自动控制、计算机/软件工程、电气工程、机械工程、应用数学等相关专业都开设了人工智能这门课程。南京邮电大学自动化学院自2005年成立至今,一直将“人工智能”列为自动化专业本科生的选修课程,到目前为止已经有八年的历史了。由于南京邮电大学是一所以邮电、通信、电子、计算机、自动化为特色的工科院校,因此,学校所开设的许多专业都迫切需要用人工智能理论和方法解决科研中的实际问题。在问题需求的推动下,南邮人经过多年的努力工作,在人工智能科研方面取得了丰硕的成果,如物联网学院所开发的现代智能物流系统、自动化学院所开发的城市交通流量控制与决策系统,为本课程的开设提供了典型的教学案例。我们结合近几年的实际教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对人工智能课程教学方法进行了总结归纳。
一、优选教材
目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。
二、考核方式
在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行 教育 体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。
三、教学内容调整
对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。
四、教学手段的改进
(一) 激发学生的学习兴趣
经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。
(二) 借助多媒体教学
多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能 足球 机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。 (三)提倡课堂 辩论
我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列 辩论会 。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。
五、实践教学
实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验 报告 。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。
人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。
参考文献
[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.
[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.
[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.
[4]赵海波.人工智能课程教学方法的探讨[J].科技信息,2011,(7):541.
[5]张廷,杨国胜.“人工智能”课程教学的实践与探索[J].课程与教学,2009(11):133-134.
本研究得到了江苏省2011年度研究生双语授课教学试点项目—“模式识别与智能系统”项目经费的资助。
下一页分享更优秀的<<<人工智能结课论文
87 浏览 2 回答
148 浏览 3 回答
290 浏览 4 回答
320 浏览 2 回答
226 浏览 3 回答
235 浏览 3 回答
185 浏览 1 回答
86 浏览 5 回答
252 浏览 6 回答
117 浏览 2 回答
103 浏览 5 回答
170 浏览 5 回答
317 浏览 2 回答
112 浏览 3 回答
264 浏览 2 回答