自然界中有许多天然超疏水表面,其中最常见的是荷叶, 荷叶表面的高分辨率扫描电子显微镜SEM图像,可以观察到荷叶表面有 5 ~ 10 微米的突起无序分布,并且突起具有直径为 100 ~ 200 纳米的特殊毛状纳米结构。这些复合表面纹理包括微米和纳米范围内的分层结构,放大了荷叶表面蜡膜的疏水性,从而获得 150 ~ 160 ° 的接触角和大约 2 ° 的滑动角。
一般来说,超疏水表面被定义为其表面的水滴必须满足水接触角> 150 °,滑动角 <10 °,这意味着当水滴落在超疏水表面上时,它们几乎是球形的并且容易滚动。这些表面由于具有自净,耐腐蚀,微流体的滑移流,抗生物污染,防雪防雾等优点,可用于防腐,透明涂层的防反射,需要功能织物的特殊润湿性,防雾天线防冰,玻璃,以及一些微流体装置等等。
虽然国内外对超疏水表面的研究较多,但基于论文对超疏水表面的研究并不多。由于纸中存在羟基,羧基,磺酸基等具有亲水性,从而限制了其在高疏水性的某些领域的应用,超疏水纸的成功制备将充分发挥纸的潜在价值,拓宽其应用范围。据报道,纳米涂层是利用连续辊在纸板上形成的。
在常压下的滚压过程,通过纳米结构的透明涂层主要由TiO2 纳米颗粒、液体火焰射流LFS组成用于沉积在大气条件下的颜料涂层纸板生产线上,所获得的纸板表面测得的最高水接触角超过 160 °,当水滴到时,表面会出现反弹现象,而当水滴静止时,它们有很强的附着力。