(一)摘要摘要是毕业设计(论文)主要信息的简要陈述,具有独立性和完整性。摘要内容包括本论文研究目的、方法、结果、结论四部分。千万不要讲一些人们已经做过的工作。要开门见山地讲本文的主要工作。摘要分中文摘要和外文摘要,中文摘要在前,一般300字左右,外文摘要另起一页,内容应与中文摘要对应。(二)正文毕业论文正文部分包括前言、主体和结论。前言作为开场白,应以简短的篇幅,说明毕业论文选题的目的和意义、国内外文献综述、研究的内容及预期目标,要求突出重点,实事求是。主体是毕业论文的核心部分,占主要篇幅。毕业论文正文字数一般要求在15000字以上。有创新的论文,字数不受限制。文中插入的图表要符合国家标准,经过精心设计后用计算机绘制,尽量避免扫描图表。结论是整个毕业论文的最后总结,完整、准确、简洁地指出以下内容:(1)毕业论文得到的结果所揭示的原理及其普遍规律;(2)研究中有无发现例外或本文尚难以解释和解决的问题;(3)与同类研究工作的异同;(4)进一步深入研究本课题的建议。(三)参考文献毕业设计(论文)要求有10篇以上的中外文参考文献,其中至少有一篇与设计(论文)内容相关的外文文献。毕业设计(论文)引用的文献应以近期发表的与毕业设计(论文)直接有关的文献为主。凡引用本人或他人已公开或未公开发表文献中的学术思想、观点或研究方法、设计方案等,不论借鉴、评论、综述,还是用做立论依据,都应编入参考文献目录。各条文献按在论文中的文献引用序号顺序排列。
可编程序控制器在机床数控系统中应用探讨1 引言 近年来,PLC在工业自动控制领域应用愈来愈广,它在控制性能、组机周期和硬件成本等方面所表现出的综合优势是其它工控产品难以比拟的。随着PLC技术的发展, 它在位置控制、过程控制、数据处理等方面的应用也越来越多。在机床的实际设计和生产过程中,为了提高数控机床加工的精度,对其定位控制装置的选择就显得尤为重要。永宏FBs系列PLC的NC定位功能较其它PLC更精准,且程序的设计和调试相当方便。本文提出的是如何应用永宏PLC的NC定位控制实现机床数控系统控制功能的方法来满足控制要求,在实际运行中是切实可行的。整机控制系统具有程序设计思路清晰、硬件电路简单实用、可靠性高、抗干扰能力强,具有良好的性能价格比等显著优点,其软硬件的设计思路可供工矿企业的相关数控机床设计改造借鉴。 2 数控机床组成结构及工作过程 本例数控机床由输入、输出装置、数控装置、可编程控制器、伺服系统、检测反馈装置和机床主机等组成,如图1所示。图1 数控机床组成机构图输入装置可将不同加工信息传递于计算机。在数控机床产生的初期,输入装置为穿孔纸带,现已趋于淘汰;目前,使用键盘、磁盘等,大大方便了信息输入工作。输出指输出内部工作参数(含机床正常、理想工作状态下的原始参数,故障诊断参数等),一般在机床刚工作状态需输出这些参数作记录保存,待工作一段时间后,再将输出与原始资料作比较、对照,可帮助判断机床工作是否维持正常。数控装置是数控机床的核心与主导,完成所有加工数据的处理、计算工作,最终实现数控机床各功能的指挥工作。它包含微计算机的电路,各种接口电路、CRT显示器等硬件及相应的软件。可编程控制器对主轴单元实现控制,将程序中的转速指令进行处理而控制主轴转速;管理刀库,进行自动刀具交换、选刀方式、刀具累计使用次数、刀具剩余寿命及刀具刃磨次数等管理;控制主轴正反转和停止、准停、切削液开关、卡盘夹紧松开、机械手取送刀等动作;还对机床外部开关(行程开关、压力开关、温控开关等)进行控制;对输出信号(刀库、机械手、回转工作台等)进行控制。检测反馈装置由检测元件和相应的电路组成,主要是检测速度和位移,并将信息反馈于数控装置,实现闭环控制以保证数控机床加工精度。数控机床的工作过程如图2所示。图2 数控机床的工作过程框图数控加工的准备过程较复杂,内容多,含对零件的结构认识、工艺分析、工艺方案的制订、加工程序编制、选用工装及使用方法等。机床的调整主要包括刀具命名、调入刀库、工件安装、对刀、测量刀位、机床各部位状态等多项工作内容。程序调试主要是对程序本身的逻辑问题及其设计合理性进行检查和调整。试切加工则是对零件加工设计方案进行动态下的考察,而整个过程均需在前一步实现后的结果评价后再作后一步工作。试切成功后方可对零件进行正式加工,并对加工后的零件进行结果检测。前三步工作均为待机时间,为提高工作效率,希望待机时间越短越好,越有利于机床合理使用。该项指标直接影响对机床利用率的评价(即机床实动率)。 3 机床数控系统需要解决的几个问题 机床是由机械和电气两部分组成,在设计总体方案时应从机电两方面来考虑机床各种功能的实施方案,数控机床的机械要求和数控系统的功能都很复杂,所以更应机电沟通,扬长避短。机床控制系统选件、装配、程序编制及操作都应该比较合理,精度和稳定性都必须满足使用要求。同时为便于调试和检修,各项操作均设手动功能,如手动各轴快慢移动、主轴高低速旋转、切削液及润滑开关等。PLC按照逻辑条件进行顺序动作或按照时序动作,另外还有与顺序、时序无关的按照逻辑关系进行联锁保护动作的控制,PLC发展成了取代继电器线路和进行顺序控制的主要产品,在机床的电气控制中应用也比较普遍。 在实际控制中如何既能提高定位速度,同时又能保证定位精度是一项需要认真考虑并切实加以解决的问题。精度是机床必须保证的一项性能指标。位置伺服控制系统的位置精度在很大程度上决定了数控机床的加工精度。因此位置精度是一个极为重要的指标。为了保证有足够的位置精度,一方面是正确选择系统中开环放大倍数的大小,另一方面是对位置检测元件提出精度的要求。因为在闭环控制系统中,对于检测元件本身的误差和被检测量的偏差是很难区分出来的,反馈检测元件的精度对系统的精度常常起着决定性的作用。高精度的控制系统必须有高精度的检测元件作为保证。当现场条件发生变化时,系统的某些控制参数必须能作相应的修改,为满足生产的连续性,要求对控制系统可变参数的修改应在线进行。尽管使用编程器可以方便快速地改变原设定参数,但编程器一般不能交现场操作人员使用;所以,应考虑开发其他简便有效的方法实现PLC的可变控制参数的在线修改。另外为了防止电压过高损坏PLC,电源输入端加上压敏电阻。为了防止过热, PLC不许安装在变压器等发热元件的正上方,变频器与PLC、伺服驱动器等保持一定距离。在元件间留有适当的空隙,以便散热,并且在配电箱上安装风扇降温。此外,为保证控制系统的安全与稳定运行,还应解决控制系统的安全保护问题,如系统的行程保护、故障元件的自动检测等。 4 永宏FBs系列PLC的NC机床定位伺服控制系统分析 数控机床是一种高精度、高效率的自动化设备,提高数控机床的可靠性就显得尤为重要。可靠度是评价可靠性的主要定量指标之一,其定义为:产品在规定条件下和规定时间内,完成规定功能的概率。对数控机床来说,这里的功能主要指数控机床的使用功能,例如数控机床的各种机能,伺服性能等。数控机床的功能部件对机床的功能扩展和性能的提升起着极为重要的作用,因此,它不同于一般配套件和附件的选用,不仅须与数控机床的整体结构谐和协调,融入整机系统具有最佳的匹配性能,而且还能很好地彰显出该数控机床的个性化特征。用于高速化的数控系统不能仅是提高数据处理能力,而是应具备热误差补偿单元以及能实现速度前瞻控制、位置环前馈控制和加减速平稳控制等先进控制技术的功能。所以必须选择稳定可靠的控制单元才能保证数控机床正常高效运行。 鉴于以上各项要求,笔者采用台湾永宏电机股份有限公司的FBs-44MN PLC作为该机床控制主单元,该型机具有较高的性价比,体积小,使用起来非常方便,接线简捷。其编程软件WinProladder有梯形图大师之称,易学易用且功能强大,编辑、监视、除错等操作非常顺手,按键、鼠标并用及在线即时指令功能查询与操作指引,使编辑、输入效率倍增。同时配以人机界面进行程序参数修改、设定以及运行状态显示监控,可编程设置人机界面的内容。该控制系统具有可靠性高,价格便宜,结构紧凑等特点,非常适合机床的控制要求,具体控制思路如图3所示。图3 采用永宏PLC FBs-44MN 的NC 机床定位电气控制系统图可编程逻辑控制器是该机床各项功能的逻辑控制中心,集成于数控系统中,主要是指控制软件的集成化,而PLC硬件则在规模较大的系统中往往采取分布式结构。由图3可以看出,系统控制中心采用永宏PLC FBs-44MN控制,并配以人机界面进行程序参数修改、设定,以及运行状态显示监控,可编程设置人机界面的内容。三轴均为全数字交流伺服系统,各轴伺服电机通过连轴器带动滚珠丝杠,以移动配有直线导轨的工作台和主轴铣头,其定位准确,速度快。主轴铣头由变频器控制,根据刀具及工件和进给量,来设置主轴合理的转速,并在程序中设定它的启动停止。各轴均设二端极限传感器和原点传感器,冷却和润滑也都有异常检测,在报警灯和人机界面处显示报警信息由光栅、感应同步器等位置检测装置测得的实际位置反馈信号,随时与给定值进行比较,将两者的差值放大和变换,驱动执行机构,以给定的速度向着消除偏差的方向运动,直到给定位置与反馈的实际位置的差值等于零为止。闭环进给系统在结构上比开环进给系统复杂,成本也高,对环境室温要求严。设计和调试都比开环系统难。但是可以获得比开环进给系统更高的精度,更快的速度,驱动功率更大的特性指标。早期使用一般电机作为定位控制,由于速度不快、或者精度要求不高,所以足够应对所需场合;当机械运转为了获取效率而将速度加快时,当产品质量、精度要求越来越高时,电机停止位置的控制就不是一般电机所能达到的了。解决这一问题的最佳方法是采用NC定位控制配合步进或伺服电机作定位控制。但在过去,由于它的价格很高,而限制了它使用的普遍性,近年来由于技术的发展及成本的降低,其价位已被用户所接受,使用数量也越来越多。为配合这一趋势,永宏PLC FBs系列将目前市面上专用的NC定位控制器功能整合在PLC内部SoC芯片内,除了免掉PLC与专用NC 定位控制器之间复杂的数据交换与连结程序外,更大幅降低整体成本,为用户提供一种价廉物美、简单方便的PLC整合NC定位控制的方案。永宏PLC FBs-44MN内部的SoC芯片含有多轴高速脉冲输出以及高速硬件计数器,并且提供简易使用和设计的定位程序编辑,对于这方面的应用,更是如虎添翼、如鱼得水、得心应手了。PLC结合伺服驱动器所构成的NC闭环回路控制系统中,PLC负责发送高速脉冲命令给伺服驱动器,除了装在伺服电机的位移检测信号直接反馈到伺服驱动器外,外加位移检测器装在传动机构之后,真正反映实际位移量,并将此信号反馈到PLC 内部的高速硬件计数器,这样就可作更精确的控制,并且可避免上述半闭环回路的缺点。永宏PLC FBs系列的定位功能将市面上专用NC定位控制器整合在PLC内,使PLC与NC控制器能共享相同的数据区,而不需要作两个系统之间的数据交换与同步控制等复杂的工作,但仍可用一般常用的NC 定位控制指令(例如DRV、SPD…等)。PLC控制4轴的定位工作,并可作多轴同动控制,除了提供点对点的定位速度控制,还提供了各轴间直线插补功能。当系统应用超过4轴时还可利用永宏PLC的CPU LINK功能达到更多的定位运动控制。数控机床对位置系统要求的伺服性能包括:定位速度和轮廓切削进给速度;定位精度和轮廓切削精度;精加工的表面粗糙度;在外界干扰下的稳定性。这些要求主要取决于伺服系统的静态、动态特性。对闭环系统来说,总希望系统有较高的动态精度,即当系统有一个较小的位置误差时,机床移动部件会迅速反应。在数控机床的加工中,伺服系统为了同时满足高速快移和单步点动,要求进给驱动具有足够宽的调速范围。 单步点动作为一种辅助工作方式常常在工作台的调整中使用。伺服系统最高速度的选择要考虑到机床的机械允许界限和实际加工要求,高速度固然能提高生产率,但对驱动要求也就更高。此外,从系统控制角度看也有一个检测与反馈的问题,尤其是在计算机控制系统中,必须考虑软件处理的时间是否足够。全闭环伺服系统是将位置检测元件置于被测坐标轴的终端移动部件上,以检测机械传动链中螺距误差、间隙及各种干扰所造成的传动误差,并进行反馈补偿控制,从而提高机床的位置控制精度。在全闭环伺服控制系统中,对位置检测元件和反馈元件的选择很关键。感应同步器具有精度高、重复性好、抗干扰能力强,耐油耐污及维护简单等优点,特别适合于高精度全闭环数控机床的工作场合。数控机床要求具备稳定性、快速性和准确性,而大型数控机床的机械传动装置转动惯量较大,固有频率低,要使其大大高于系统截止频率很困难,全闭环包括了该进给系统轴几乎所有不稳定的非线性因素,调整不当很容易使机床产生抖动现象。 因此数控机床全闭环伺服系统在保证快速性的基础上主要是解决机床进给运动的稳定性而获得比半闭环伺服系统高的位置精度。伺服电机的编码器将位移检测信号反馈到伺服驱动器,驱动器将输入信号的脉冲频率和脉冲数与回馈信号的频率和脉冲数,经内部的偏差计数器与频率转电压电路处理后,得到脉冲偏差值与转速误差值,这样使控制伺服电机实现高速、精密的速度与位置闭环回路处理系统。伺服电机的转速与输入信号的脉冲频率成正比,而电机的移动量则由脉冲数决定。图4是PLC控制下的伺服电机工作示意图。图4 数控机床伺服电机工作示意图5 相关程序设计与操作 PLC通过编程器输入程序,达到控制目的。由于PLC工作过程是循环,所以程序执行速度很快。另外软件故障检测设计在采用硬件设计的基础上采用软件检测外部行程开关状态,当行程开关失灵后,通过程序控制停止机床的运行,有效地减少了机床因元件失灵造成的事故。 图5是使用编程软件WinProladder编辑定位程序参数设定指令图,图6是具体操作加工程序图。图5 定位程序参数设定指令图图6 加工程序图6 结束语 我国是一个机床生产和应用大国,但数控技术的应用水平还不高,严重制约着我国制造业水平的提高。国际上的相关开发计划对我国的数控技术的发展提出了严峻的挑战,同时也带来了机遇。只有选择合适的PLC才能使定位达到预期的效果。永宏FBs系列PLC的NC定位功能在机床数控系统设计中占有重要的地位,该机床经过长期运行表明,整个系统设计合理,控制精度高,运行可靠,提高了生产的自动化水平,减小了操作人员的劳动强度。 由于采用了PLC控制,使电气部分的抗干扰能力增加,提高了机床的运行可靠性,因而增加了设备的柔性,提高了设备的使用效率。
基于 AT89C52 的多周期同步测频技术的实现黄晓峰 上海工程技术大学高职学院,上海 200437 摘 要:论述了传统的频率测量方法的原理及误差。提出了基于 AT89C52 实现多周期同步测频的新方法。 构造了与待测信号同步的多周期闸门时间,实现了时基信号与待测信号的准同步计数,系统只用一个定时/ 计数器 T2 实现了多周期同步测频。该频率测试仪结构简单,成本较低,能够在高低频段范围内实现频率参 数的等精度测量,具有较高的测量精度和较短的系统反应时间。 关键词:频率测量;多周期同步;闸门时间;AT89C52;捕捉方式; 关键词:频率测量;多周期同步;闸门时间;AT89C52;捕捉方式;等精度测量 中图分类号: 中图分类号: 文献标识码: 文献标识码:B 文章编号: 文章编号: Realization of multi-cycle synchronization based on AT89C52 HUANG Xiao-Feng Vocational Technical College, Shanghai University of Engineering Science, Shanghai, 200437 Abstract:The traditional frequency measuring principles and the errors are introduced. The new way of : multi-cycle synchronization based on 89C52 is presented. By structuring multi-cycle gate time synchronistically with the frequency signal, the system use only T2 to acquire under synchronous time base with the frequency signal, and realize the new method of multi-cycle synchronization frequency measuring .With the characteristics of a simple structure ,low cost, high accuracy and short measuring time, this frequency meter can realize equal precision measurement from high frequency to low frequency . Keyword:frequency measurement; multi-cycle synchronization; gate time;AT89C52; capture function;equal : precision measurement 0 引言 频率作为一种最基本的物理量,是电子测量技术中最重要的被测量之一。本文详细论 述了传统频率测量方法及原理, 并对各种方法的测量误差进行了分析。 为保证频率测量精度 和兼顾测量反应时间, 采用多周期同步测频技术, 设计了以 AT89C52 单片机为核心的频率参 数测试仪, 由于充分利用 AT89C52 片内定时器/计数器 T2 所特有的捕捉功能, 使得该频率参 数测试仪的软硬件结构简单, 实现了对高低频段频率参数的等精度测量, 具有较高的测量精 度和较短的系统反应时间。 1 传统测频方法及其误差分析 频率测量的方法主要有 M 法、T 法以及 M/T 法 [1] 。M 法的基本测频原理是在选定的 闸门时间 T 内对被测脉冲信号进行计数,根据计数值 N x 和闸门时间 T 求得所测脉冲信号的 频率。在 M 法中,由于闸门时间 T 由标准频率源决定,而单片机的标准频率源是由晶振频 率分频后获得, 因而保证了闸门时间 T 的精确性。 但由于闸门的启闭与待测计数脉冲不同步, 闸 门开 通时间 通常 不是待 测信 号周期 的整数 倍, 存在 待测脉 冲信号 的计 数量 化误差 ?N x = ±1 。由 M 法的测频原理可知,待测信号频率 1 fx = Nx N ? f0 = x N0 T (1) 设待测脉冲频率的准确值为 f xd , 由于单片机测频系统中的标准频率源通常是由晶振产 生的频率信号分频后得到的, 而晶振的稳定性很高, 只要按测量精度要求选择合适的晶振后, 由标准频率源的不稳定性所造成的测频误差就可以被忽略掉 (文中的误差分析均是在忽略标 准频率源的不稳定性下做出的) 。设 δ Mx 为测量的相对误差 δM x = f xd = 得 δ Mx = f xd ? f x f xd (2) N x + ?N x T = ?N x N x + ?N x ≤ (3) f xd ? f x f xd 1 Nx (4) 由式(4)知, 当待测脉冲信号频率较高时, 在闸门时间 T 内被测信号脉冲的计数值 N x 较 大, δ Mx 很小,M 法能够达到较高的测量精度;而当待测脉冲信号频率较低时,在闸门时间 T 内 N x 较小, δ Mx 很大,测频精度降低。例如,被测信号的频率为 100HZ,则在 1S 内的相对误差 δ M x =1%。 而当待测脉冲信号的频率为 10HZ, f x 在 T =1S 内的相对误差 δ M x =10%。 则 虽然可以通过增大闸门时间 T 来提高测量精度,但闸门时间 T 过长将使系统的测量时间过 长,无法满足实时性的要求。 T 法的基本原理是在待测脉冲的一个周期内对标准频率信号进行计数,根据计数值 N 0 和标准信号的频率 f 0 求得待测脉冲信号的频率。在 T 法中,由于闸门时间 T 由待测脉冲信 号决定,不存在待测脉冲信号计数的量化误差 ?N x 。但由于闸门的启闭与标准频率源不同 步,故存在对标准频率源信号的计数量化误差 ?N 0 = ±1 。由 T 法的测频原理可知,待测信 号频率 f x = 1 N 0T0 = f 0 N 0 其中 T0 为标准频率源信号的周期。同理,可得 (5) δ Tx = f xd ? f x f0 f = ? 0 N 0 + ?N 0 N 0 f xd f0 N 0 + ?N 0 (6) 2 = ?N 0 N 0 ≤ 1 N 0 由于闸门时间 T 是待测脉冲信号周期的整数倍, 当待测脉冲频率较低时, 闸门时间 T 较 长,对标准频率源的计数值 N 0 较大,测量精度高;而当待测脉冲频率较高时,闸门时间 T 过短,甚至与标准频率源信号周期相近,故高频测量时 T 法存在严重的测量误差。 理论分析表明, 无论采取何种补偿措施, 都无法同时消除对待测脉冲和标准信号的计数 量化误差。将 M 法和 T 法结合起来就是 M/T 法,M/T 法结合了 M 法和 T 法各自的优点,在被 测信号频率较高时采用 M 法,频率较低时采用 T 法,这样在高、低频信号测量中都能获得较 高的精度。但由于在 M 法中, ?N x 随着被测信号频率的降低而增大,在 T 法中 ?N 0 随着被 测信号频率的增大而增大, 因此必存在 M 法和 T 法的分界点, 在该点高低频测量的相对误差 相等且达到最大,即 δ max = δ M x = δ T x 。我们将该点的频率称为中界频率 f C ,由式(1)知 N x = f x ? T ,由式(5)得 N 0 = f 0 f x ,则中界频率 f C = f 0 T 。虽然 M/T 法能够在两端获 得高精度,但在中界频率处的误差却总是最大的。本系统采用多周期同步测频原理,利用 AT89C52 片内定时器/计数器 T2 所特有的捕捉方式,实现对信号频率、周期、脉宽以及占空 比的测量。 2 多周期同步测频原理及其误差分析 多周期同步测频技术的基本原理是在待测脉冲的 m 个周期内同时对对待测脉冲和标准 信号计数, 根据待测脉冲的计数值 N x 和标准信号的计数值 N 0 求得被测信号的频率 [2,3] 。 由 于闸门时间 T 为待测脉冲的 m 个周期即闸门时间与待测脉冲同步,从而消除了待测脉冲的 计数量化误差 ?N x 。但由于闸门的启闭与标准信号不同步,故仍存在对标准信号的计数量 化误差 ?N 0 = ±1 。设两个计数器在闸门时间 T 内同时对待测脉冲和标准信号的计数值分别 为 N x 和 N 0 ,则待测信号频率 fx = Nx T f0 = N0 T 消去闸门时间 T ,得 f x = N x ? f 0 N 0 (7) (8) (9) 同理,相对误差 δ = f xd ? f x f xd f0 f ?N ? Nx ? 0 x N + ?N 0 N0 = 0 f0 ? Nx N 0 + ?N 0 (10) = ?N 0 N 0 ≤ 1 N 0 = 1 f 0T 3 由式(10)知, δ 只与标准频率源的频率 f 0 和闸门时间 T 有关,与待测脉冲的频率 f x 无 关,实现了整个测量频段内的等精度测量,使测量精度大大提高。对于标准信号的计数量化 误差 ?N 0 ,虽然可以通过提高标准频率源的频率 f 0 和加大闸门宽度 T 来减小,但需要考虑 标准频率源工作频率的限制,以及加大闸门宽度 T 所带来的系统测量时间的增加。 3 基于 AT89C52 的多周期同步测频技术的实现 AT89C52 片内有 1 个 16 位的定时/计数器 T2,T2 除具备和定时/计数器 T0、T1 相同的 功能外,还具有捕捉方式、16 位自动重装等功能 [4,5] 。所谓捕捉功能就是当 T2 的外部输入 端 T2EX()的输入电平发生负跳变时,就会把 TH2 和 TL2 的内容同时记录到特殊功能寄存 器 RCAP2H 和 RCAP2L 中,并将外部中断标志 EXF2 置位,向 CPU 发出中断申请信号。T2 的 捕捉功能避免了 CPU 在读计数值的高字节时, 低字节还在变化所引起的读数误差, 更重要的 是,T2EX()上输入电平连续两次负跳变的计数差值,就是外部输入脉冲的周期。 依据多周期同步测频技术的原理,将 AT89C52 的定时/计数器 T2 设置为定时器捕捉工 作方式,闸门时间 T 为 m 个待测脉冲周期,被测信号经放大、整形、分频后送入 T2 的外部 输入端 T2EX(),在待测信号产生第一次负跳变时,TH2 和 TL2 中的内容(即时基脉冲计 数值)被同时捕捉至特殊功能寄存器 RCAP2H 和 RCAP2L,并在 T2 外部中断服务程序中记录 待测信号下降沿的数目, 以此实现闸门开启及待测脉冲及和时基脉冲的同时计数, 闸门时间 到时(即 T2 的外部输入端 T2EX 检测到第 m + 1 个待测脉冲下降沿) ,一次测量过程结束。 在此过程中, 当外部待测脉冲的下降沿到来或定时器 T2 产生对时基脉冲的计数溢出时, T2 外部中断标志 EXF2 或 T2 溢出标志 TF2 置位,并向 CPU 发出中断申请信号。CPU 相应中 断后,在 T2 中断服务程序中通过软件判断是 EXF2 还是 TF2 产生的中断,并进行相应的处 理,是 EXF2 产生的中断就记录下待测脉冲下降沿的数目,若是 TF2 就记录下 T2 对时基脉 冲的溢出次数。待测频率具体的计算如下: 设闸门时间 T 内共产生了 m + 1 次 T2 外部中断( m 个待测脉冲)及 N 次 T2 溢出中断, 且设第一个待测脉冲的下降沿到来时 T2 对时基的计数值为 l1 , m + 1 个待测脉冲的下降沿 第 到来时 T2 对时基的计数值为 l2 ,则 T2 对时基的计数过程如下(包括 N 次 T2 溢出中断) 。 l1 L65535 → 0L65535 → 0L65535 → 0LLL0L65535 → 0Ll2 则闸门时间 T = ( l2 ? l1 + 65536 × N ) × T0 = mTx 其中 T0 为单片机时基信号周期, Tx 为待测脉冲信号周期,故被测信号频率为 fx = k ( l2 ? l1 + 65536 × N ) × mT0 (11) 其中 k 为可编程分频器相应的分频数 4 4 系统的软硬件设计 本系统采用多周期同 步 测 频 原 理 [3] , 以 盘 AT89C52 单片机为核心, 显 利用其片内定时器/计数 示 器 T2 所特有的捕捉功能, 器 XTAL2 利用定时器 T2 的捕捉功 复位电路 RESET VSS 能及外部中断,软硬件结 GND 合完成待测信号与闸门信 图1 系统硬件组成框图 号的同步,以及待测信号 与时基信号的同时刻计数,使用一个定时器/计数器 T2 实现多周期同步测频技术,使得频率 测试仪的软硬件结构简单易于实现。系统硬件组成框图如图 1 所示,主要由放大限幅电路、 波形转换与整形电路、可编程分频器电路、单片机最小应用系统及键盘显示器电路组成。输 入的正弦波、 三角波等各种形式的小信号电压经放大限幅后, 通过波形转换电路转换为方波 信号,再利用 7414 整形为 TTL 电平信号,利用可编程分频器来扩展频率测量范围的上限, 这样将经过了放大、整形、分频后的待测脉冲送入单片机最小应用系统的 (T2 的外部 输入端 T2EX) ,通过键盘显示器电路来实现被测频率参数(频率、周期、脉宽和占空比) 的选择与动态显示。 放 大 被测信号 与 限 幅 波 形 变 换 整 形 可 编 程 待测脉冲 分 频 器 +5V VCC XTAL1 键 软件采用自顶向下的模块化设计方法 [6] ,将 T2中断服务程序流程图 N 各个功能分成独立的模块,由系统的监控程序统 一管理执行。整个系统由初始化模块、键输入模 块(用于测量参数的选择)、信号频率测量模块、 数据处理模块、数据显示模块等组成。上电后, 首先进入系统初始化模块,在初始化子程序中完 成对定时/计数器 T2 的定时器及捕捉方式的设置, 并启动 T2。 频率测量模块由 T2 中断服务程序完成, 当外 部待测脉冲的下降沿到来或定时器 T2 产生对时基 脉冲的计数溢出时,T2 向 CPU 发出中断申请。 CPU 响应中断后, 通过软件判断是 EXF2 还使 TF2 产生的中断,并进行相应处理。T2 中断服务程序 流程图如图 2 所示。 5 结束语 本文讨论了传统频率测量方法的原理及误 差。在此基础上,对多周期同步测频技术的原理 及其误差进行了详细分析。由于多周期同步测频 技术的测量精度与被测信号的频率无关,实现了 整个测量频段内的等精度测量,消除了 M 法中对 T2外部中断? Y T2外中断次数加1 T2溢出中断 次数加1 Y 第1个外部 脉冲下降沿? N 第m+1个外部 脉冲下降沿? 捕捉寄存器 内容送时基 计数单元1 Y 捕捉寄存器内容 送时基计数单元2 存外中断次数 外中断次数清零 存T2溢出次数 溢出次数清零 清TF2中断 标志 清EXF2中断标志 中断返回 图2 T2中断服务程序流程图 5 被测脉冲信号的计数量化误差 ?N x = ±1 , 克服了 M/T 法中高低频两端精度高而中界频率附 近测量误差最大的缺陷。 本文提出了基于 AT89C52 实现多周期同步测频方法, 利用 T2 的捕 捉功能和外部中断产生与待测信号同步的闸门时间,通过 T2 的定时功能实现了时基信号与 待测信号的同步计数,使得系统只用一个定时器/计数器 T2 就实现了多周期同步测频技术, 该系统软硬件结构简单,具有较高的测量精度和较短的系统反应时间。 参考文献: 参考文献: [1] 尹克荣.智能仪表中的频率测量方法[J].长沙电力学院学报,2002, 17(1):74-76 [2] 章军,张平,于刚.多周期同步测频测量精度的提高[J].电测与仪表,2003,40(6):16-18 [3] 王连符.测频系统测量误差分析及其应用[J].中国科技信息,2005,(18A):94-94 [4] 李全利.单片机原理及应用技术[M].北京:高等教育出版社,2001 [5] 李群芳 黄建.单片微型计算机与接口技术[M].北京:电子工业出版社,2002 [6] 孙传友,孙晓斌,汉泽西等,测控系统原理与设计[M].北京:北京航空航天大学出版社,2002 作者简介: 作者简介: 黄晓峰(1969-),男,甘肃省甘谷县人,副教授,硕士,研究方向为检测技术及智能仪器仪表、计算机控制。 E-mail: 电话: 6 基于 MCS_51单片机的直流电机转速测控系统设计摘要: 给出了一种基于89C51单片机以及 PWM 控制思想的高精度、高稳定、多任务直流电机转速测控系 统的硬件组成及关键单元设计方法。实验结果表明该系统能实时、有效地对直流电机转速进行监测与控制, 而且输出转速精度高、稳定性好。 0 引言 目前使用的电机模拟控制电路都比较复杂,测量范围与精度不能兼顾, 且采样时间较长, 难以测得 瞬时转速。本文介绍的电机控制系统利用 PWM 控制原理, 同时结合霍尔传感器来采集电机转速, 并经 单片机检测后在显示器上显示出转速值, 而单片机则根据传感器输出的脉冲信号来分析转速的过程量, 并 超限自动报警。本系统同时设置有按键操作仪表, 可用于调节电机的转速。 1 系统方案的制定 直流电机控制系统主要是以 C8051单片机为核心组成的控制系统, 本系统中的电机转速与电机两端的 电压成比例, 而电机两端的电压与控制波形的占空比成正比, 因此, 由 MCU 内部的可编程计数器阵列 输出 PWM 波, 以调整电机两端电压与控制波形的占空比, 从而实现调速。本系统通过霍尔传感器来实 现对直流电机转速的实时监测。系统的设计任务包括硬件和软件两大部分,其中硬件设计包括方案选定、 电路原理图设计、PCB 绘制、线路调试; 软件设计包括内存空间的分配, 直流电机控制应用程序模块的 设计, 程序调试、软件仿真等。 2 硬件设计 C8051是完全集成的混合信号系统级 MCU 芯片, 具有64个数字 I/O 引脚, 片内含有 VDD 监视器、 看门狗定时器和时钟振荡器, 是真正能独立工作的片上系统, 并能快捷准确地完成信号采集和调节。同 时也方便软件编程、干扰防制、以及前向通道的结构优化。 本单片机控制系统与外部连接可实时接收到外部信号, 以进行对外部设备的控制, 这种闭环系统可 以较准确的实现设计要求, 从而制定出一个合理的方案, 图1所示是电机测控系统框图。 图1 电机测控系统框图。 本系统先由单片机发出控制信号给驱动电机, 同时通过传感器检测电机的转速信号并传送给单片机, 单片机再通过软件将测速信号与给定转速进行比较, 从而决定电机转速, 同时将当前电机转速值送 LED 显示。此外, 也可以通过设置键盘来设定电机转速。系统中的转速检测装置由霍尔传感器组成, 并通过 A/D 转换将转速转换为电压信号, 再以脉冲形式传给单片机。这种设计方法具有频率响应高(响应频率达 20 kHz 以上)、输出幅值不变、抗电磁干扰能力强等特点。其中霍尔传感器输入为脉冲信号, 十分容易与 微处理器相连接, 也便于实现信号的分析处理。单片机的 T0口可对该脉冲信号进行计数。 设计时, 可通过单片机的 ~ 五个接口来完成键盘的输入, 口可完成鸣叫和报警, 接电机, ~接显示器的位选, P0口为显示器段选码, 其硬件连接电路如图2所示。 图2 硬件连接电路图。 本系统的脉冲宽度调制(Pulse Width Modulation)原理是: 脉冲宽度调制波由一列占空比不同的矩形脉 冲构成, 其占空比与信号的瞬时采样值成比例。该系统由一个比较器和一个周期为 Ts 的锯齿波发生器组 成。脉冲信号如果大于锯齿波信号, 比较器输出正常数 A, 否则输出0。图3所示为脉冲宽度调制系统的 调制原理和波形图。 图3 脉宽调制过程。 设样本 τk 为均匀脉冲信号, 它的第 k 个矩形脉冲可以表示为: 其中, x {t} 是离散化信号; Ts 是采样周期,τ0是未调制宽度, m 是调制指数。现假设脉冲幅度为 A, 中心在 t=kTs 处, τk 在相邻脉冲间变化缓慢, 那么, 其 Xp (t) 可表示为: 其中, 为电机角速度,结合式(2) 可见, 脉冲宽度信号可由信 号 x (t)加上一个直流成分以及相位调制波构成。当 τ0<<> 因此, 脉冲宽度调制波可以直接通过低通滤波器进行解调。C8051单片机有2个12位的电压方式 DAC, 每个 DAC 的输出摆幅为0 V~VREF, 对应的输入码范围是0x000~0xFFF。通过交叉开关配置可将 CEX0~CEX4 配置到 P2 端口, 这样, 改变 PWM 的占空比就可以调整电机速度。 LED 显示采用动态扫描方式, 并用单片机 I/O 接口扩展输出, 再由三极管驱动各显示器的位选端并 放大电流。独立式按键采用查询方式, 按键输入均采用低有效, 上拉电阻可用于保证在按键断开使其 I/O 口为高电平。单片机的 I/O ()引脚所扩展的5个按键分别定义为: 设置、启动、移位、开始、+1 功能。硬件电路确定以后, 电机转速控制的主要功能将依赖于软件来实现。 3 软件设计 本系统的软件程序的设计可分为5个步骤: 分别是综合分析并确定算法; 设计程序流程图;合理选择和分配内存单元以及工作寄存器; 编写程 序; 上机调试运行程序。 应用软件的设计可采用模块化结构设计, 其优点是每个模块的程序结构相对简单, 且任务明确, 易 于编写、调试和修改; 其次是程序可读性好, 对程序的修改可局部进行, 而其他部分可以保持不变, 这 样便于功能扩充和版本升级; 另外, 对于使用频繁的子程序, 可以建立子程序库, 以便于多个模块调 用; 最后是便于分工合作, 多个程序员可同时进行程序的编写和调试工作, 故可加快软件研制进度。 本程序采用8051单片机的 C 语言编程来实现。 在系统的程序设计中, 可采用模块化编程实现。 整个软件由主程序模块、转速测量模块、时钟模块、数据通信模块、动态显示模块等组成。各模块均 采用结构化程序设计思想设计, 因而具有较强的通用性; 而采用模块化程序结构则可使软件易于调试、 维护和移植。 系统软件可根据硬件电路的功能与 AT89C51各管脚的连接情况对软件进行设计。以便明确各引脚所要 完成的功能, 从而方便进行程序设计和内存地址的分配, 最终完成程序模块化设计。 本系统为直流电机测控系统。根据系统性能要求, 除复位电路外, 还应该设置一些功能键: 包括启动键、设置键、确定键、移位键、加1键等。由于本系统中的单片机还有闲置的 I/O 口线,而系 统要求所设置的按键数量也不多, 因此, 可以采用独立式按键结构。 根据直流电机控制系统的结构, 该电机转速控制系统为一简单的应用系统, 可以采用顺序的设计方 法。这种设计由主程序和若干个中断服务程序构成, 整个电机转速测控系统可分成六大模块, 每个模块 完成一定的功能。图4所示是根据电路图确定的程序设计模块图。 图4 直流电机控制软件设计模块图。 其中主程序模块主要设置主程序的起始地址、中断服务程序的起始地址、有关内存单元及相关部件的 初始化和一些子程序调用等。其主程序流程图如图5所示。 图5 主程序流程图。 对于定时器 T1 (1s) 子程序的设计,其实在单片机中,定时功能既可以由硬件(定时/计数器) 实现,也 可以通过软件定时程序来实现。软件延时程序要占用 CPU 的时间, 因而会降低 CPU 的利用率。而硬件定 时则通过单片机内的定时器来定时, 而且, 定时器启动以后可与 CPU 并行工作, 故不占用 CPU 的时间, 从而可使 CPU 具有较高的工作效率。 本系统采用硬件定时和软件定时并用的方式, 即用 T1溢出中断功能来实现10 ms 定时, 而通过软件 延时程序实现1 ms 定时。其中 T1定时器中断服务程序的功能主要实现转速值的读入、检测与缓存处理。 对于定时器 T1的计数初值计算, 由于本系统采用的是6 MHz 的时钟频率, 所以, 一个机器周期时 间是2 ?s。这样, 根据 T1定时器产生500 ?s 的定时, 便可以计算出计数初值。 本文设计的转速测控系统的工作方式寄存器 TMOD=00010000B, T1定时器以工作方式2来完成定时。 4 程序调试 程序调试可在伟福仿真软件上进行编制, 该软件支持脱机运行, 纯软件环境可模拟单步、跟踪、全 速、 断点; 源文件仿真、 汇编等, 并可支持多文件混合编程。 仿真调试后的目标程序可以固化到 EPROM, 然后用专门的程序烧写器对89C51单片机进行程序烧写。 5 结束语 本设计采用 C51进行编程, 程序占用存储器单元少, 执行速度快, 并能够准确掌握执行时间, 实 现精细控制。同时由于采用89C51为 CPU,并利用噪声抵抗能力较强的 PWM 控制技术、串行口扩展显示 器接口和 I/O 口扩展键盘, 因而可省去片外 RAM, 而且体积小, 功能全, 小巧灵活,操作方便, 又 可安装在工作现场单独工作。因而具有较大的实用价值和良好的应用前景。
一、 实验目的1、 熟悉数字式频率计的基本工作原理。2、 熟悉数字频率计中计数显示及控制等部分的综合设计及调试方法。二、实验原理数字频率计是测量电信号频率的仪器之一,其原理图如下所示:......被测信号经过放大整形成为脉冲信号,作为计数器的计数脉冲,计数器受控制门(闸门)的控制,闸门开启,计数器开始对输入的脉冲信号计数,若闸门开启的时间为1秒,则计数器累计的脉冲数就是被测信号的频率。在闸门关闭后,停止计数,计数器的状态写入锁存器,并通过译码器驱动数码管显示出测量值。这样,当再次测量(计数)时,数码管可以保持上一次的测得的数据。三、 实验要求1、 利用555定时器设计标准秒脉冲发生器电路。2、 译码显示电路用实验箱中的四路数码管显示电路。四、设计思路根据实验原理框图,做如下设计:信号的放大部分可以用三极管放大电路来完成,而整形部分可用施密特触发器来完成,为简单起见,可用555来做。控制门用一个与门即可实现。两个单稳态触发器完全一样,均可用555来做。计数器用74LS160来完成,免去了接十进制计数器的麻烦(若用74LS161)。锁存电路用四路锁存器74LS75来完成。其输出可直接接到数电箱上的74LS247译码电路,进而显示结果。在这次实验中,设计四位频率计,故需用四个74LS160和四个74LS75。五、 实验器件555定时器 74LS160 74LS75 74LS04 74LS00 电阻、电容若干六、设计思路这里主要说明一些参数的选择。对施密特触发器只涉及到一个外接小电容,典型值为。
答辩没过吧?还在学校耗着呢??同情。。。。
207 浏览 4 回答
86 浏览 5 回答
188 浏览 2 回答
354 浏览 5 回答
229 浏览 6 回答
88 浏览 5 回答
224 浏览 10 回答
352 浏览 2 回答
88 浏览 7 回答
337 浏览 5 回答
303 浏览 3 回答
281 浏览 7 回答
140 浏览 5 回答
158 浏览 7 回答
322 浏览 5 回答