会议签到系统不仅让整个签到流程变得简单化,它的优势也非常多。1.灵活的场景应用,支持会议、活动、讲座、课程等多种大型场景应用,通过智能会议签到系统的灵活应用更加便于现场的活动管理满足需求。2.通过人脸识别会议签到的模式,使用户快速完成会议签到。同时,该系统支持单人以及多人通过人脸识别快速签到,省去传统手写签到造成人员过多时的混乱场面,有了这款会议签到系统让整个会议签到流程更加严谨化、智能化、便捷化。3.智能签到的模式,保障了个人信息安全。该系统具有严格的信息加密技术以及权限管理模式,支持人脸识别登陆验证,只有授权人员的使用,为活动参与者的个人信息保驾护航。4.灵活的签到模式任意选择,该系统提供人脸识别签到、二维码签到、微信签到等多种签到模式,便于参会人员的自由选择。5.会议前,支持自定义活动邀请函,个性化的设计灵活应用;会议后,支持多维度数据统计分析,帮助管理者为后续活动提供决策依据。通过人脸识别会议签到的模式让参会人员都能有序的进行参加活动,整个活动现场流程更加便捷有序。
比如云脉人脸识别会议签到系统的操作流程:首先,会议管理人员仅需一次采集参会人员的正面人脸图像,将其录入到人脸图像数据库,就可以建立起比对模板;然后,当会议开场,签到窗口打开,参会人员陆陆续续涌入,签到也就开始了;之后,参会者无需刻意配合,只要进入摄像头的拍摄范围内,摄像头就会自动捕捉人脸图像,并精准地识别出参会者的身份,无感完成签到...
人的面部是具有一些形状特征的,这些特征不会随整容以为的修饰形式而改变,所以这些形状特征可以用来鉴定是否为同一个面部。普遍使用的原理是特征匹配算法。在图片上通过边缘提取等方法,将面部划分为数个多边形后,选择一定数量的特征点,特征点会在参考图和待鉴定图上都可以捕捉到,然后通过比对特征点之间的相对位置来确定是否为同一张面部。这种鉴定方法较为依赖于面部的姿态,最好是可以正面进行识别,可以尽可能减小误差。不过是2D识别方法,所以准确度并没有达到非常高的等级。还可以尝试使用双目视觉、ToF或者结构光的方法,进行3D建模识别。双目视觉是通过两张不同角度的图片进行匹配计算投影矩阵来推算出特征点的3D结构。后两者则是通过光学扫描的形式,通过反射光来重构面部的3D模型。
流程一般分两步:第一步:收集参会者头像,所有参会者在报名的时候,就提示上传好自己的头像,或者说有些场合,可以允许到到会者现场采集头像。,再由工作人员批量导入头像数据。第二步:快速识别:当参会人员到达会议现场的在签到墙前,摄像头将对参会人员进行拍照,然后与系统里上传的头像进行比对,快速识别,比对成功及语音提醒签到成功
现在科技越来越发达,人脸识别已经广泛应用于各个领域,手机可以用人脸识别解锁,人脸识别支付,人脸识别完成考勤打卡等等,人脸识别适用的频率越来越高,使用领域也越来越广泛。深圳市添越智创科技有限公司研发的新一代动态人脸识别管理系统拥有200 万双目摄像头,1.2 米清晰识别,万人库正确识别率大于 99%,系统与公安系统,第三方系统自由对接,配合双目活体算法,识别效果快,准,狠!可能在未来一两年,你会在需要人脸识别的地方畅通无阻,你无法了解自己的脸部信息是被自己提交过信息的应用或者产品共享了,还是在某个有摄像头的地方,被动的提交了,信息就如同电话号码,简历信息一样,无隐私可言,不可避免的被大量商业机构获得。互联网巨头不断推动,越来越多的人脸识别选项出现在消费者面前,尽管知道存在风险,但是仍然有超过六成以上的中国网民愿意尝试人脸识别。毋庸置疑的是,“互联网+”必将成为以后的发展趋势,作为一种新型的智能安全控制系统,添越智创人脸识别门禁系统不仅赋予每一道门智能、安全、便捷的特性,更推动门禁技术不断更新迭代,产业随智能化建设加速推进,真正的实现“智慧城市”。
可以越用越好用,因为会根据实际情况进行调整
传统的就是比较简单的,深度的就是比较复杂的,应该这样理解吧!
传统方法中特征提取主要依赖人工设计的提取器,需要有专业知识及复杂的调参过程,同时每个方法都是针对具体应用,泛化能力及鲁棒性较差。深度学习主要是数据驱动进行特征提取,根据大量样本的学习能够得到深层的、数据集特定的特征表示,其对数据集的表达更高效和准确,所提取的抽象特征鲁棒性更强,泛化能力更好,并且可以是端到端的。缺点是样本集影响较大,算力要求较高。
opencv的人脸识别系统设计的目的是通过人脸识别系统预防同行或者职业打假人。根据查询相关资料显示:作为生意经营者,需要预防同行的咨询、问价等商业活动,这是一种行业内的竞争关系,而通过这套系统可以非常准确的识别出这些特殊群体,从而使得商家能够先发制人,采取主动的措施权。
人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,在一定程度上有泛滥成“灾”之嫌。
为了更好地对人脸识别研究的历史和现状进行介绍,本文将AFR的研究历史按照研究内容、技术方法等方面的特点大体划分为三个时间阶段,如表1所示。
该表格概括了人脸识别研究的发展简史及其每个历史阶段代表性的研究工作及其技术特点。
下面对三个阶段的研究进展情况作简单介绍:
第一阶段(1964年~1990年)
这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主要技术方案是基于人脸几何结构特征(Geometricfeature based)的方法。
这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。
人工神经网络也一度曾经被研究人员用于人脸识别问题中。
较早从事AFR研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。
金出武雄于1973年在京都大学完成了第一篇AFR方面的博士论文,直到现在,作为卡内基-梅隆大学(CMU)机器人研究院的一名教授,仍然是人脸识别领域的活跃人物之一。
他所在的研究组也是人脸识别领域的一支重要力量。
总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。
第二阶段(1991年~1997年)
这一阶段尽管时间相对短暂,但却是人脸识别研究的 *** 期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的FERET人脸识别算法测试,并出现了若干商业化运作的人脸识别系统,比如最为著名的Visionics(现为Identix)的FaceIt系统。
美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特兰德(Pentland)提出的“特征脸”方法无疑是这一时期内最负盛名的人脸识别方法。
其后的很多人脸识别技术都或多或少与特征脸有关系,现在特征脸已经与归一化的协相关量(NormalizedCorrelation)方法一道成为人脸识别的性能测试基准算法。
这一时期的另一个重要工作是麻省理工学院人工智能实验室的布鲁内里(Brunelli)和波基奥(Poggio)于1992年左右做的一个对比实验,他们对比了基于结构特征的方法与基于模板匹配的方法的识别性能,并给出了一个比较确定的结论:模板匹配的方法优于基于特征的方法。
这一导向性的结论与特征脸共同作用,基本中止了纯粹的基于结构特征的人脸识别方法研究,并在很大程度上促进了基于表观(Appearance-based)的线性子空间建模和基于统计模式识别技术的人脸识别方法的发展,使其逐渐成为主流的人脸识别技术。
贝尔胡米尔(Belhumeur)等提出的Fisherface人脸识别方法是这一时期的另一重要成果。
该方法首先采用主成分分析(Principalponent Analysis,PCA,亦即特征脸)对图像表观特征进行降维。
在此基础上,采用线性判别分析(LinearDiscriminant Analysis, LDA)的方法变换降维后的主成分以期获得“尽量大的类间散度和尽量小的类内散度”。
该方法目前仍然是主流的人脸识别方法之一,产生了很多不同的变种,比如零空间法、子空间判别模型、增强判别模型、直接的LDA判别方法以及近期的一些基于核学习的改进策略。
麻省理工学院的马哈丹(Moghaddam)则在特征脸的基础上,提出了基于双子空间进行贝叶斯概率估计的人脸识别方法。
该方法通过“作差法”,将两幅人脸图像对的相似度计算问题转换为一个两类(类内差和类间差)分类问题,类内差和类间差数据都要首先通过主成分分析(PCA)技术进行降维,计算两个类别的类条件概率密度,最后通过贝叶斯决策(最大似然或者最大后验概率)的方法来进行人脸识别。
人脸识别中的另一种重要方法——弹性图匹配技术(Elastic GraphMatching,EGM) 也是在这一阶段提出的。
其基本思想是用一个属性图来描述人脸:属性图的顶点代表面部关键特征点,其属性为相应特征点处的多分辨率、多方向局部特征——Gabor变换[12]特征,称为Jet;边的属性则为不同特征点之间的几何关系。
对任意输入人脸图像,弹性图匹配通过一种优化搜索策略来定位预先定义的若干面部关键特征点,同时提取它们的Jet特征,得到输入图像的属性图。
最后通过计算其与已知人脸属性图的相似度来完成识别过程。
该方法的优点是既保留了面部的全局结构特征,也对人脸的关键局部特征进行了建模。
近来还出现了一些对该方法的扩展。
局部特征分析技术是由洛克菲勒大学(RockefellerUniversity)的艾提克(Atick)等人提出的。
LFA在本质上是一种基于统计的低维对象描述方法,与只能提取全局特征而且不能保留局部拓扑结构的PCA相比,LFA在全局PCA描述的基础上提取的特征是局部的,并能够同时保留全局拓扑信息,从而具有更佳的描述和判别能力。
LFA技术已商业化为著名的FaceIt系统,因此后期没有发表新的学术进展。
由美国国防部反毒品技术发展计划办公室资助的FERET项目无疑是该阶段内的一个至关重要的事件。
FERET项目的目标是要开发能够为安全、情报和执法部门使用的AFR技术。
该项目包括三部分内容:资助若干项人脸识别研究、创建FERET人脸图像数据库、组织FERET人脸识别性能评测。
该项目分别于1994年,1995年和1996年组织了3次人脸识别评测,几种最知名的人脸识别算法都参加了测试,极大地促进了这些算法的改进和实用化。
该测试的另一个重要贡献是给出了人脸识别的进一步发展方向:光照、姿态等非理想采集条件下的人脸识别问题逐渐成为热点的研究方向。
柔性模型(Flexible Models)——包括主动形状模型(ASM)和主动表观模型(AAM)是这一时期内在人脸建模方面的一个重要贡献。
ASM/AAM将人脸描述为2D形状和纹理两个分离的部分,分别用统计的方法进行建模(PCA),然后再进一步通过PCA将二者融合起来对人脸进行统计建模。
柔性模型具有良好的人脸合成能力,可以采用基于合成的图像分析技术来对人脸图像进行特征提取与建模。
柔性模型目前已被广泛用于人脸特征对准(FaceAlignment)和识别中,并出现了很多的改进模型。
总体而言,这一阶段的人脸识别技术发展非常迅速,所提出的算法在较理想图像采集条件、对象配合、中小规模正面人脸数据库上达到了非常好的性能,也因此出现了若干知名的人脸识别商业公司。
从技术方案上看, 2D人脸图像线性子空间判别分析、统计表观模型、统计模式识别方法是这一阶段内的主流技术。
第三阶段(1998年~现在)
FERET’96人脸识别算法评估表明:主流的人脸识别技术对光照、姿态等由于非理想采集条件或者对象不配合造成的变化鲁棒性比较差。
因此,光照、姿态问题逐渐成为研究热点。
与此同时,人脸识别的商业系统进一步发展。
为此,美国军方在FERET测试的基础上分别于2000年和2002年组织了两次商业系统评测。
基奥盖蒂斯(Gehiades)等人提出的基于光照锥 (Illumination Cones) 模型的多姿态、多光照条件人脸识别方法是这一时期的重要成果之一,他们证明了一个重要结论:同一人脸在同一视角、不同光照条件下的所有图像在图像空间中形成一个凸锥——即光照锥。
为了能够从少量未知光照条件的人脸图像中计算光照锥,他们还对传统的光度立体视觉方法进行了扩展,能够在朗博模型、凸表面和远点光源假设条件下,根据未知光照条件的7幅同一视点图像恢复物体的3D形状和表面点的表面反射系数(传统光度立体视觉能够根据给定的3幅已知光照条件的图像恢复物体表面的法向量方向),从而可以容易地合成该视角下任意光照条件的图像,完成光照锥的计算。
识别则通过计算输入图像到每个光照锥的距离来完成。
以支持向量机为代表的统计学习理论也在这一时期内被应用到了人脸识别与确认中来。
支持向量机是一个两类分类器,而人脸识别则是一个多类问题。
通常有三种策略解决这个问题,即:类内差/类间差法、一对多法(one-to-rest)和一对一法(one-to-one)。
布兰兹(Blanz)和维特(Vetter)等提出的基于3D变形(3D Morphable Model)模型的多姿态、多光照条件人脸图像分析与识别方法是这一阶段内一项开创性的工作。
该方法在本质上属于基于合成的分析技术,其主要贡献在于它在3D形状和纹理统计变形模型(类似于2D时候的AAM)的基础上,同时还采用图形学模拟的方法对图像采集过程的透视投影和光照模型参数进行建模,从而可以使得人脸形状和纹理等人脸内部属性与摄像机配置、光照情况等外部参数完全分开,更加有利于人脸图像的分析与识别。
Blanz的实验表明,该方法在CMU-PIE(多姿态、光照和表情)人脸库和FERET多姿态人脸库上都达到了相当高的识别率,证明了该方法的有效性。
2001年的国际计算机视觉大会(ICCV)上,康柏研究院的研究员维奥拉(Viola)和琼斯(Jones)展示了他们的一个基于简单矩形特征和AdaBoost的实时人脸检测系统,在CIF格式上检测准正面人脸的速度达到了每秒15帧以上。
该方法的主要贡献包括:1)用可以快速计算的简单矩形特征作为人脸图像特征;2)基于AdaBoost将大量弱分类器进行组合形成强分类器的学习方法;3)采用了级联(Cascade)技术提高检测速度。
目前,基于这种人脸/非人脸学习的策略已经能够实现准实时的多姿态人脸检测与跟踪。
这为后端的人脸识别提供了良好的基础。
沙苏哈(Shashua)等于2001年提出了一种基于商图像[13]的人脸图像识别与绘制技术。
该技术是一种基于特定对象类图像集合学习的绘制技术,能够根据训练集合中的少量不同光照的图像,合成任意输入人脸图像在各种光照条件下的合成图像。
基于此,沙苏哈等还给出了对各种光照条件不变的人脸签名(Signature)图像的定义,可以用于光照不变的人脸识别,实验表明了其有效性。
巴斯里(Basri)和雅各布(Jacobs)则利用球面谐波(Spherical Harmonics)表示光照、用卷积过程描述朗博反射的方法解析地证明了一个重要的结论:由任意远点光源获得的所有朗博反射函数的集合形成一个线性子空间。
这意味着一个凸的朗博表面物体在各种光照条件下的图像集合可以用一个低维的线性子空间来近似。
这不仅与先前的光照统计建模方法的经验实验结果相吻合,更进一步从理论上促进了线性子空间对象识别方法的发展。
而且,这使得用凸优化方法来强制光照函数非负成为可能,为光照问题的解决提供了重要思路。
FERET项目之后,涌现了若干人脸识别商业系统。
美国国防部有关部门进一步组织了针对人脸识别商业系统的评测FRVT,至今已经举办了两次:FRVT2000和FRVT2002。
这两次测试一方面对知名的人脸识别系统进行了性能比较,例如FRVT2002测试就表明Cognitec, Identix和Eyematic三个商业产品遥遥领先于其他系统,而它们之间的差别不大。
另一方面则全面总结了人脸识别技术发展的现状:较理想条件下(正面签证照),针对37437人121,589 幅图像的人脸识别(Identification)最高首选识别率为73%,人脸验证(Verification)的等错误率(EER[14])大约为6%。
FRVT测试的另一个重要贡献是还进一步指出了目前的人脸识别算法亟待解决的若干问题。
例如,FRVT2002测试就表明:目前的人脸识别商业系统的性能仍然对于室内外光照变化、姿态、时间跨度等变化条件非常敏感,大规模人脸库上的有效识别问题也很严重,这些问题都仍然需要进一步的努力。
总体而言,目前非理想成像条件下(尤其是光照和姿态)、对象不配合、大规模人脸数据库上的人脸识别问题逐渐成为研究的热点问题。
而非线性建模方法、统计学习理论、基于Boosting[15]的学习技术、基于3D模型的人脸建模与识别方法等逐渐成为备受重视的技术发展趋势。
总而言之, 人脸识别是一项既有科学研究价值,又有广泛应用前景的研究课题。
国际上大量研究人员几十年的研究取得了丰硕的研究成果,自动人脸识别技术已经在某些限定条件下得到了成功应用。
这些成果更加深了我们对于自动人脸识别这个问题的理解,尤其是对其挑战性的认识。
尽管在海量人脸数据比对速度甚至精度方面,现有的自动人脸识别系统可能已经超过了人类,但对于复杂变化条件下的一般人脸识别问题,自动人脸识别系统的鲁棒性和准确度还远不及人类。
这种差距产生的本质原因现在还不得而知,毕竟我们对于人类自身的视觉系统的认识还十分肤浅。
但从模式识别和计算机视觉等学科的角度判断,这既可能意味着我们尚未找到对面部信息进行合理采样的有效传感器(考虑单目摄像机与人类双眼系统的差别),更可能意味着我们采用了不合适的人脸建模方法(人脸的内部表示问题),还有可能意味着我们并没有认识到自动人脸识别技术所能够达到的极限精度。
但无论如何,赋予计算设备与人类似的人脸识别能力是众多该领域研究人员的梦想。
相信随着研究的继续深入,我们的认识应该能够更加准确地逼近这些问题的正确答案。
人脸识别技术包含三个部分:(1)人脸检测面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:①参考模板法首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;②人脸规则法由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;③样品学习法这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;④肤色模型法这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。⑤特征子脸法这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。值得提出的是,上述5种方法在实际检测系统中也可综合采用。(2)人脸跟踪面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。(3)人脸比对面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法:①特征向量法该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。②面纹模板法该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。人脸识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。 一般分三步:(1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。(2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。(3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辩认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。
威尔考勤系统不仅限于基本的上下班考勤,对于企业的规范化管理更是至关重要。通过该系统的约束,可彻底改变人性的懒惰、上班拖沓等现象,让员工养成优秀的习惯,将更好的状态带入 工作中去,提升工作效率。 系统支持跨地域管理,实现各分支机构独立管理,总部统一核查。
监测人脸识别系统把员工的人脸录进系统,在这个整体的基础上做联动联防,大数据分析,再根据设置的规则进行提前预警,比如某个人或某个部门的人不应该出现在某个区域内,则在这个区域内,某个人或某个部门的人就相当于黑名单了,只要一出现就会预警提示。也可以设置一部分人在某个区域内出现的频率,一天或一个月出现的次数高于设置值就预警提示。
人脸识别系统的技术原理是以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。它广泛采用区域特征分析算法,融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,具有广阔的发展前景。用人脸识别会议签到系统正是应用先进的面部自动识别技术来实现与会人员的自主签到,智能化办公,提高办事效率,增加与会人员身份准确定位,从而大大提高了会前会务组织、会中会议签到和会后数据查询统计速度,并节省经费。迎宾机系统会议签到应用方案是现代会议管理中的一项重要环节,会议签到流程一改传统签到的弊端,与会人员只需从摄像机前走过,利用人体生物特征的唯一性进行身份认证,即时完成到会签到,还能有效识别假冒人员,同时,能即时统计、打印出到会人员名单。缩短到会人员签到时间,减轻工作人员与会人数统计强度,统计数准确、快捷。3系统设计3.1系统结构本方案可应用于各种企事业单位和会议中心,用于与会人员的签到管理,主要由摄像机、显示设备、人脸识别分析盒、管理客户端组成。在会议室入口签到处安装一台网络摄像机,通过交换机将采集图像传输到迎宾主机,主机可通过串口数据线连接会议室门禁系统,以识别结果通过串口信息来控制门禁打开,有效防止会议无关人员进入,同时连接到显示设备上,在显示器上实时显示识别结果,以及设置的欢迎致辞或提示信息,或用于会议宣传内容播放等。以上设备通过局域网内的客户端进行管理和配置信息的下发,在客户端可进行人脸识别库的建立,会议签到统计等功能。系统拓扑如下:
写一篇基于实时监控人脸检测的论文,可以按照以下步骤进行:1. 研究背景和意义:介绍实时监控人脸检测技术在安防、智能家居等领域的应用,并说明该技术对社会发展的重要性。2. 相关工作综述:对当前主流的人脸检测算法进行梳理和总结,包括传统方法(如Haar特征分类器、HOG+SVM)以及深度学习方法(如卷积神经网络)。并分析其优缺点及适用场景。3. 实验设计与数据集选择:详细描述本次实验所使用的硬件设备、软件环境以及数据集来源。同时还需解释为什么选择这些硬件设备和数据集,并且需要提供相关参数设置。4. 方法介绍:详细介绍采用哪种算法来进行实时监控人脸检测,包括模型架构、训练过程中使用到的技巧等方面。此外,还需说明如何将该算法应用于视频流中,并保证高效率地运行。5. 实验结果与分析:给出本次实验得到的具体结果,在不同条件下测试准确率、召回率等指标,并通过图表形式直观呈现。同时也需要针对结果进行分析,找出其中存在问题或者改进空间之处。6. 结论与展望:总结本次研究成果并归纳出最新发现;同时也需要指出目前存在问题或者未来可开展工作方向。最后强调该项技术在未来可能带来更多广泛而深远影响。 7. 参考文献: 列举文章引用过所有参考资料, 便于读者查阅相关信息.以上是一份简单论文框架, 具体内容根据自身情况灵活调整即可。
海天瑞声的“天籁数据中心”应该有啊,你去注册会员,看看是否有免费数据下载。如果没有的话,给他们写邮件或打电话,一般都会给你的
你擅长哪个就写哪个。
写设计系统方面的就可以了。之前也是苦于写不出,还是学姐给的文方网,写的《人脸识别系统的研究与实现——图像获取、定位、特征提取和特征识别》,很专业的说人寿保险老业务综合处理系统的设计与实现输油泵机组远程监测及诊断系统设计与实现FORTRAN语言题库管理系统的设计与实现大中型企业网络会计信息系统的设计与实现住房改革管理信息系统的设计与实现DMS-2002型轮机模拟器船舶电力系统故障模拟的研制与实现利用MATLAB基于频率法实现系统串联校正基于红外线检测的停车场智能引导系统研究与实现网络选课系统研究与实现基于人脸识别技术的身份认证系统实现简介基于三维技术的城市工程地质信息系统设计与实现大型烧结机整粒自动控制系统的实现基于B/S模式的药品信息咨询系统的设计与实现使用UML实现学生注册管理系统需求建模基于UML实现三层C/S结构系统的架构基于MuitiGen机载导弹地面训练虚拟现实系统的实现基于Web Service技术实现大型系统集成图书管理系统的设计与实现基于Lucene的电子文档管理系统的设计与实现编组钩计划演示系统设计与实现网络型监控系统的设计与实现热量计多路数据采集系统的设计与实现铁路计量管理信息系统的设计与实现基于ARM的嵌入式绣花机系统的软件实现机载SAR监控系统的设计与实现基于B/S模式的教师信息管理系统的设计与实现一种教学机器人控制系统的设计与实现基于智能Agent的用户个性化检索系统的实现矿井通风实验装置监测监控系统软件的设计与实现基于J2EE的网上考试系统设计与实现基于21554的无主多处理器系统实现列车接近防护系统的设计与实现研究生教育网络管理系统的设计与实现嵌入式电力监控系统的研究与实现博硕士论文远程提交及检索系统功能模块的组成和实现基于Extranet和构件的造纸企业产品数据管理系统设计与实现DVB-C系统中两种滤波器的FPGA实现VC++实现基于工控机与单片机串行通讯的监控系统ERP系统用户权限的全动态配置研究及实现政府宏观决策信息网络系统的设计与实现基于CC1020芯片无线传输系统的设计与实现具有主动功能的连锁经营企业配送中心管理信息系统的设计与实现DLP背投系统的研究及在高速公路监控系统的实现学生评教系统的设计与实现微小型电动无人机动力系统试验台的设计与实现全集成船舶主机遥控系统的研究及实现
计算机软件毕业论文的题目都好写啊