[编辑]历史 古细菌这个概念是1977年由Carl Woese和George Fox提出的,原因是它们在16SrRNA的系统发生树上和其它原核生物的区别。这两组原核生物起初被定为古细菌(Archaebacteria)和真细菌(Eubacteria)两个界或亚界。Woese认为它们是两支根本不同的生物,於是重新命名其为古菌(Archaea)和细菌(Bacteria),这两支和真核生物(Eukarya)一起构成了生物的三域系统。 [编辑]古菌、细菌和真核生物 在细胞结构和代谢上,古菌在很多方面接近其它原核生物。然而在基因转录这两个分子生物学的中心过程上,它们并不明显表现出细菌的特徵,反而非常接近真核生物。比如,古菌的转译使用真核的启动和延伸因子,且转译过程需要真核生物中的TATA框结合蛋白和TFIIB。 古菌还具有一些其它特徵。与大多数细菌不同,它们只有一层细胞膜而缺少肽聚糖细胞壁。而且,绝大多数细菌和真核生物的细胞膜中的脂类主要由甘油酯组成,而古菌的膜脂由甘油醚构成。这些区别也许是对超高温环境的适应。古菌鞭毛的成分和形成过程也与细菌不同。 Image:PhylogeneticTree.jpg 基於rRNA序列的系统发生树,显示了可明显区别的三支:细菌(Bacteria)、古菌(Archaea)和真核生物(Eukarya)[编辑]生境 很多古菌是生存在极端环境中的。一些生存在极高的温度(经常100℃以上)下,比如间歇泉或者海底黑烟囱中。还有的生存在很冷的环境或者高盐、强酸或强碱性的水中。然而也有些古菌是嗜中性的,能够在沼泽、废水和土壤中被发现。很多产甲烷的古菌生存在动物的消化道中,如反刍动物、白蚁或者人类。古菌通常对其它生物无害,且未知有致病古菌。 [编辑]形态 单个古菌细胞直径在0.1到15微米之间,有一些种类形成细胞团簇或者纤维,长度可达200微米。它们可有各种形状,如球形、杆形、螺旋形、叶状或方形。它们具有多种代谢类型。值得注意的是,盐杆菌可以利用光能制造ATP,尽管古菌不能像其他利用光能的生物一样利用电子链传导实现光合作用。 [编辑]进化和分类 从rRNA进化树上,古菌分为两类,泉古菌(Crenarchaeota)和广古菌(Euryarchaeota)。另外未确定的两类分别由某些环境样品和2002年由Karl Stetter发现的奇特的物种纳古菌(Nanoarchaeum equitans)构成。 Woese认为细菌、古菌和真核生物各代表了一支具有简单遗传机制的远祖生物的后代。这个假说反映在了“古菌”的名称中(希腊语archae为“古代的”)。随后他正式称这三支为三个域,各由几个界组成。这种分类后来非常流行,但远组生物这种思想本身并未被普遍接受。一些生物学家认为古菌和真核生物产生於特化的细菌。 古菌和真核生物的关系仍然是个重要问题。除掉上面所提到的相似性,很多其他遗传树也将二者并在一起。在一些树中真核生物离广古菌比离泉古菌更近,但生物膜化学的结论相反。然而,在一些细菌,(如栖热袍菌)中发现了和古菌类似的基因,使这些关系变得复杂起来。一些人认为真核生物起源於一个古菌和细菌的融合,二者分别成为细胞核和细胞质。这解释了很多基因上的相似性,但在解释细胞结构上存在困难。 目前有22个古菌基因组已经完全结束了测序,另外15个的测序工作正在进行中。[1] [编辑]参见古菌分类表 [编辑]补充20世纪70年代,卡尔·乌斯(Carl Woese)博士率先研究了原核生物的进化关系。他没有按常规靠细菌的形态和生物化学特性来研究,而是靠分析由DNA序列决定的另一类核酸---核糖核酸(RNA)的序列分析来确定这些微生物的亲缘关系。我们知道,DNA是通过指导蛋白质合成来表达它决定某个生物个体遗传特征的,其中必须通过一个形成相应RNA的过程。并且蛋白质的合成必须在一种叫做核糖核蛋白体的结构上进行。因此细胞中最重要的成分是核糖核蛋白体,它是细胞中一种大而复杂的分子,它的功能是把DNA的信息转变成化学产物。核糖核蛋白体的主要成分是RNA,RNA和DNA分子非常相似,组成它的分子也有自己的序列。 由于核糖核蛋白体对生物表达功能是如此重要,所以它不会轻易发生改变,因为核糖核蛋白体序列中的任何改变都可能使核糖核蛋白体不能行使它为细胞构建新的蛋白质的职责,那么这个生物个体就不可能存在。因此我们可以说,核糖核蛋白体是十分保守的,它在数亿万年中都尽可能维持稳定,没有什么改变,即使改变也是十分缓慢而且非常谨慎。这种缓慢的分子进化速率使核糖核蛋白体RNA的序列成为一个破译细菌进化之谜的材料。乌斯通过比较许多细菌、动物、植物中核糖核蛋白体的RNA序列,根据它们的相似程度排出了这些生物的亲缘关系。 乌斯和他的同事们研究细菌的核糖核蛋白体中RNA序列时,发现并不是所有的微小生物都是亲戚。他们发现原来我们以为同是细菌的大肠杆菌和能产生甲烷的微生物在亲缘关系上竟是那么不相干。它们的RNA序列和一般细菌的差别一点也不比与鱼或花的差别小。产甲烷的微生物在微生物世界是个异类,因为它们会被氧气杀死,会产生一些在其它生物中找不到的酶类,因此他们把产生甲烷的这类微生物称为第三类生物。后来又发现还有一些核糖核蛋白体RNA序列和产甲烷菌相似的微生物,这些微生物能够在盐里生长,或者可以在接近沸腾的温泉中生长。而我们知道,早期的地球大气中没有氧气,而含有大量氨气和甲烷,可能还非常热。在这样的条件下植物和动物无法生存,对这些微生物却非常合适。在这种异常地球条件下,只有这些奇异的生物可以存活,进化并在早期地球上占统治地位,这些微生物很可能就是地球上最古老的生命。 因此,乌斯把这类第三生物定名为古生菌(Archaea),成为和细菌域、真核生物域并驾齐驱的三大类生物之一。他们开始还没有如此大胆,只是称为古细菌(Archaebacteria),后来他们感到这个名词很可能使人误解是一般细菌的同类,显不出它们的独特性,所以干脆把“bacteria”后缀去掉了。这就是古生菌一词的来由。 [编辑]补充古菌的发现 人们对古菌的兴趣并非始于1970年代。古菌一些奇特的生活习性和与此相关的潜在生物技术开发前景,长期以来一直吸引着许多人的注意。古菌常被发现生活于各种极端自然环境下,如大洋底部的高压热溢口、热泉、盐碱湖等。事实上,在我们这个星球上,古菌代表着生命的极限,确定了生物圈的范围。例如,一种叫做热网菌(Pyrodictium)的古菌能够在高达113℃的温度下生长。这是迄今为止发现的最高生物生长温度。近年来,利用分子生物学方法,人们发现,古菌还广泛分布于各种自然环境中,土壤、海水、沼泽地中均生活着古菌。 目前,可在实验室培养的古菌主要包括三大类:产甲烷菌、极端嗜热菌和极端嗜盐菌。产甲烷菌生活于富含有机质且严格无氧的环境中,如沼泽地、水稻田、反刍动物的反刍胃等,参与地球上的碳素循环,负责甲烷的生物合成;极端嗜盐菌生活于盐湖、盐田及盐腌制品表面,它能够在盐饱和环境中生长,而当盐浓度低于10%时则不能生长;极端嗜热菌通常分布于含硫或硫化物的陆相或水相地质热点,如含硫的热泉、泥潭、海底热溢口等,绝大多数极端嗜热菌严格厌氧,在获得能量时完成硫的转化。 尽管生活习性大相径庭,古菌的各个类群却有共同的、有别于其他生物的细胞学及生物化学特征。例如,古菌细胞膜含由分枝碳氢链与D型磷酸甘油,以醚键相连接而成的脂类,而细菌及真核生物细胞膜则含由不分枝脂肪酸与L型磷酸甘油,以酯键相连接而成的脂类。细菌细胞壁的主要成分是肽聚糖,而古菌细胞壁不含肽聚糖。 有趣的是,虽然与细菌相似,古菌染色体DNA呈闭合环状,基因也组织成操纵子(操纵子为原核生物基因表达和调控的基本结构单位,生物活性相关的基因常以操纵子的结构形式协调基因表达的开启和关闭),但在DNA复制、转录、翻译等方面,古菌却具有明显的真核特征:采用非甲酰化甲硫氨酰tRNA作为起始tRNA,启动子、转录因子、DNA聚合酶、RNA聚合酶等均与真核生物的相似。 比较生物化学的研究结果表明,古菌与细菌有着本质的区别,这种区别与两者表现在系统发育学方面亲缘关系的疏远是一致的。 二分法和三域学说 地球上究竟有几种生命形式?当亚里士多德建立生物学时,他用二分法则将生物分为动物和植物。显微镜的诞生使人们发现了肉眼看不见的细菌。细菌在细胞结构上与动植物的最根本差别是,动植物细胞内有细胞核,遗传物质DNA主要储存于此,而细菌则没有细胞核,DNA游离于细胞质中。由于动物与植物的差别小于它们与细菌的差别,沙东(E. Chatton)于1937年提出了生物界新的二分法则,即生物分为含细胞核的真核生物和不含细胞核的原核生物。动植物属于真核生物,而细菌属于原核生物。 1859年达尔文发表《物种起源》以后,生物学家便开始建立基于进化关系而非表型相似性的分类系统,即所谓系统发育分类系统。可是,由于缺乏化石记录,这种分类方法长期未能有效运用于原核生物的分类。1970年代,随着分子生物学的发展,伍斯终于在这方面获得了意义重大的突破。 在漫长的进化过程中,每种生物细胞中的信息分子(核酸和蛋白质)的序列均不断发生着突变。许多信息分子序列变化的产生在时间上是随机的,进化速率相对恒定,即具有时钟特性。因此,物种间的亲缘关系可以用它们共有的某个具有时钟特性的基因或其产物(如蛋白质)在序列上的差别来定量描述。这些基因或其产物便成了记录生物进化历程的分子记时器(chronometer)。显然,这种记录生物系统发育历程的分子记时器应该广泛分布于所有生物之中。基于这一考虑,伍斯选择了一种名为小亚基核糖体核酸(SSU rRNA)的分子,作为分子记时器。这种分子是细胞内蛋白质合成机器——核糖体的一个组成部分,而蛋白质合成又是几乎所有生物生命活动的一个重要方面。因此,把SSU rRNA分子作为分子记时器是合适的。 在比较了来自不同原核及真核生物的SSU rRNA序列的相似性后,伍斯发现原先被认为是细菌的甲烷球菌代表着一种既不同于真核生物,也不同于细菌的生命形式。考虑到甲烷球菌的生活环境可能与生命诞生时地球上的自然环境相似,伍斯将这类生物称为古细菌。据此,伍斯于1977年提出,生物可分为三大类群,即真核生物、真细菌和古细菌。基于SSU rRNA分析结果的泛系统发育(进化)树随后诞生了。 进一步的研究表明,进化树上的第一次分叉产生了真细菌的一支和古细菌/真核生物的一支,古细菌和真核生物的分叉发生在后。换句话说,古细菌比真细菌更接近真核生物。 据此,1990年伍斯提出了三域分类学说:生物分为真核生物、真细菌和古细菌三域,域被定义为高于界的分类单位。为突出古细菌与真细菌的区别,伍斯将古细菌更名为古菌。真细菌改称细菌。三域学说使古菌获得了与真核生物和细菌等同的分类学地位。 自诞生之日起,伍斯的三域学说便遭到部分人,特别是微生物学领域外的人反对。反对者坚持认为:原核与真核的区分是生物界最根本的、具有进化意义的分类法则;与具有丰富多样性表型的真核生物相比,古菌与细菌的差异远没有大到需要改变二分法则的程度。但在詹氏甲烷球菌基因组序列测定完成前的近20年中,采用多种分子记时器进行的系统发育学研究一再证明,古菌是一种独特的生命形式。 三域学说的第一个基因组学证据 尽管对古菌已有了上述认识,当人们第一次面对詹氏甲烷球菌的全基因组序列时,还是大吃了一惊。詹氏甲烷球菌共有1738个基因,其中人们从未见过的基因竟占了56%!相比之下,在这之前完成测序的流感嗜血菌(Haemophilus influenzae)和生殖道枝原体(Mycoplasma genitalium)基因组中未知基因仅占20%左右。于是人们终于在基因组水平上认识到,古菌是一种崭新的生命形式。 更有趣的是,詹氏甲烷球菌基因组中占总数44%的那些功能或多或少已经知道的基因似乎勾勒出了古菌与另两类生物之间的进化关系:古菌在产能、细胞分裂、代谢等方面与细菌相近,而在转录、翻译和复制方面则与真核生物类似。换言之,一个生活在大洋底部热溢口处的、习性古怪的微生物,在遗传信息传递方面竟有着与人(而不是与人的消化道中细菌)相似的基因!在赞叹生命奇妙的同时,许多人开始欢呼三域学说的最终确立。美国《科学》周刊在把詹氏甲烷球菌基因组序列测定工作列为1996年度重大科学突破之一时宣称,这一成果使围绕三域学说的争论差不多可以结束了。 对伍斯进化树的新挑战 就在古菌的悬念似乎行将消失时,接踵而来的新发现却使人们重新陷入困惑之中。各类完整的微生物基因组序列一个接一个出现在人们轻点鼠标便可查阅的数据库中,在已发表的18种生物基因组序列中,古菌的占了4个。采用更灵敏的方法对这些基因组(包括詹氏甲烷球菌基因组)进行分析,得到了令人吃惊的结果:詹氏甲烷球菌基因组中只有30%(不是先前估计的半数以上)的基因编码目前未知的功能,这与细菌基因组相近。古菌的神秘性和独特性因此减少了许多。 对三域学说更为不利的是,在詹氏甲烷球菌的那些可以推测功能的基因产物(蛋白质)中,44%具有细菌蛋白特征,只有13%的像真核生物的蛋白质。在另一个古菌,嗜热碱甲烷杆菌(Methanobacterium thermoaotutrophicum)的基因组中也有类似情况。因此,从基因组比较的数字上看,古菌与细菌间的差异远小于古菌与真核生物间的差异,不足以说服三域学说的反对者。 更令人难以理解的是,利用同一生物中不同基因对该物种进行系统发育学定位常常会得到不同的结果。最近,一种能在接近沸点温度下生长的细菌(Aquifex aeolicus)的基因组序列测定完成。对该菌的几个基因进行的系统发育学研究表明:如果用参与细胞分裂调控的蛋白质FtsY作为分子记时器,该菌与伍斯进化树上位于细菌分枝的一个土壤细菌——枯草芽孢杆菌相近;如果以一种参与色氨酸合成的酶为准,该菌应属于古菌;而当比较该菌和其他生物的合成胞苷三磷酸(DNA的基本结构单位之一)的酶时,竟发现古菌不再形成独立的一群。看来不同的基因似乎在诉说不同的进化故事。那么,古菌还能是独特的、统一的生命形式吗? 属于真核生物的啤酒酵母基因组序列测定完成后,三域学说遇到了更大危机。酵母细胞核基因中,与细菌基因有亲缘关系的比与古菌有亲缘关系的多一倍。有人还对在三种生命形式中都存在的34个蛋白质家族进行了分析,发现其中17个家族来源于细菌,只有8个显示出古菌与真核生物的亲缘关系。 如果伍斯进化树正确、古菌与真核生物在进化历程中的分歧晚于两者与细菌的分歧的话,那么怎样才能解释上面这些结果呢? 根据细胞进化研究中流行的内共生假说,真核细胞细胞器(线粒体、叶绿体)的产生源于细菌与原真核生物在进化早期建立的内共生关系。在这种关系中,真核细胞提供稳定的微环境,内共生体(细菌)则提供能量,久而久之,内共生体演变为细胞器。真核生物细胞核中一部分源于细菌的基因可能来自线粒体,这些为数不多的基因通常编码重新运回线粒体的蛋白质分子。可是,现在发现许多源于细菌的核基因编码那些在细胞质、而不是线粒体中起作用的蛋白质。那么,这些基因从何而来呢?显然,内共生假说已不足以挽救伍斯进化树。 不过,伍斯进化树也不会轻易倒下,支撑它的假说依然很多。最近,有人提出了新版的“基因水平转移”假说。根据这个假说,基因组的杂合组成是进化过程中不同谱系间发生基因转移造成的。一种生物可以采用包括吞食等方式获得另一种、亲缘关系也许很远的生物的基因。伍斯推测,始祖生物在演化形成细菌、古菌和真核生物三大谱系前,生活于可以相互交换基因的“公社”中,来自这个“史前公社”的生物可能获得了不同的基因遗产。这一切使得进化树难以枝杈分明。不过,伍斯相信,基于SSU rRNA的进化树在总体上是正确的,三种生命形式是存在的。 争 论 在 继 续 三年前詹氏甲烷球菌基因组序列的发表,似乎预示着一场延续了20多年的、关于地球上到底有几种生命形式的争论的终结。古菌似乎被认定为生命的第三种形式。如今,仅仅过了三年,即使最乐观的人都无法预料伍斯进化树的命运。这场仍在继续的争论中,尽管古菌的分类地位遭到质疑,但古菌这一生命形式的独特性依然得到不同程度的肯定。 目前,古菌研究正在世界范围内升温,这不仅因为古菌中蕴藏着远多于另两类生物的、未知的生物学过程和功能,以及有助于阐明生物进化规律的线索,而且因为古菌有着不可估量的生物技术开发前景。古菌已经一次又一次让人们吃惊,可以肯定,在未来的岁月中,这群独特的生物将继续向人们展示生命的无穷奥秘。
在黑暗的深海水域中发生的事情比你想象的要多:不计其数的看不见的微生物在水体中过着它们的日常生活。如今,在一项新的研究中,来自南丹麦大学等研究机构的研究人员发现,其中的一些微生物以一种意想不到的方式产生氧气。相关研究结果发表在2022年1月7日的Science期刊上,论文标题为“Oxygen and nitrogen production by an ammonia-oxidizing archaeon”。论文通讯作者为南丹麦大学生物学系助理教授Beate Kraft。
氧气对地球上的生命至关重要,主要由植物、藻类和蓝细菌通过光合作用产生。已知有少数微生物可以在没有阳光的情况下制造氧气,但到目前为止,人们只在非常特定的栖息地发现了数量非常有限的微生物。海洋中有活的微生物Nitrosopumilus maritimus(海洋氨氧化古菌)和它的表亲。
呆在黑暗中的幽灵生物
Kraft说,“这些家伙在海洋中真的很丰富,它们在氮气循环中发挥着重要作用。为此它们需要氧气,所以长期以来一直存在一个难题,即为何它们在没有氧气的水域也非常丰富。我们认为,它们只是呆在那里,没有任何功能;它们一定是某种幽灵细胞。”
论文共同作者、Don Canfield说,然而,这其中有一些令人费解的地方:“这些微生物是如此普遍,一桶海水中每五个细胞就有一个是它们”。因此,这些作者开始感到好奇;它们在缺氧的水中会不会有什么功能?
它们自己制造氧气
Kraft决定在实验室里测试它们。“我们想看看如果它们耗尽了氧气会发生什么,就像它们从富氧水域转移到缺氧水域时那样。它们会存活吗?”
Canfield说,“我们看到它们如何耗尽水中的所有氧气,然后令我们惊讶的是,在几分钟内,氧气水平又开始增加。这是非常令人兴奋的。”
对我和我的朋友来说足够了
这些作者证实海洋氨氧化古菌能够在黑暗环境中制造氧气。虽然制造的氧气不多---根本没有多到会影响地球上的氧气水平,但足以维持它们自己的生存。
Kraft解释说,“如果它们产生的氧气比它们自己需要的多一点,它将很快被它们附近的其他生物所摄取,所以这些氧气将永远不会离开海洋。”但是,这些极其丰富的产氧微生物对它们所处的环境有什么影响?
新的海洋考察
科学家们已知道氨氧化古菌是微生物,它们维持着全球的氮循环,但他们并不清楚它们的全部能力。
在这种新发现的产氧途径中,海洋氨氧化古菌将氧气产生与气态氮的产生偶联起来。通过这样做,它们从环境中去除生物可用的氮。
Kraft说,“如果这种生活方式在海洋中广泛存在,这无疑迫使我们重新思考我们目前对海洋氮循环的理解。我的下一步是调查我们在世界各地不同海洋点的缺氧水域的实验室培养物中看到的现象。”
她的研究团队已经在丹麦的Mariager Fjord采集了样本,下一站是墨西哥和哥斯达黎加附近的水域。(生物谷 Bioon.com)
参考资料: Beate Kraft et al. Oxygen and nitrogen production by an ammonia-oxidizing archaeon. Science, 2022, doi:10.1126/science.abe6733.
这个题不好写“如果地球上没有生命”本身就有问题,现(事)实与理想的完美冲突!哪我就反其道而为之吧!希望你不要见笑。 生命何时、何处、特别是怎样起源的问题,是现代自然科学尚未完全解决的重大问题,是人们关注和争论的焦点。历史上对这个问题也存在着多种臆测和假说,并有很多争议。随着认识的不断深入和各种不同的证据的发现,人们对生命起源的问题有了更深入的研究,第一个阶段,从无机小分子生成有机小分子的阶段,即生命起源的化学进化过程是在原始的地球条件下进行的,这一过程教材中已有叙述,这里不再重复。需要着重指出的是米勒的模拟实验。在这个实验中,一个盛有水溶液的烧瓶代表原始的海洋,其上部球型空间里含有氢气、氨气、甲烷和水蒸汽等“还原性大气”。米勒先给烧瓶加热,使水蒸汽在管中循环,接着他通过两个电极放电产生电火花,模拟原始天空的闪电,以激发密封装置中的不同气体发生化学反应,而球型空间下部连通的冷凝管让反应后的产物和水蒸汽冷却形成液体,又流回底部的烧瓶,即模拟降雨的过程。经过一周持续不断的实验和循环之后。米勒分析其化学成分时发现,其中含有包括5种氨基酸和不同有机酸在内的各种新的有机化合物,同时还形成了氰氢酸,而氰氢酸可以合成腺嘌呤,腺嘌呤是组成核苷酸的基本单位。米勒的实验试图向人们证实,生命起源的第一步,从无机小分子物质形成有机小分子物质,在原始地球的条件下是完全可能实现的。第二个阶段,从有机小分子物质生成生物大分子物质。这一过程是在原始海洋中发生的,即氨基酸、核苷酸等有机小分子物质,经过长期积累,相互作用,在适当条件下(如黏土的吸附作用),通过缩合作用或聚合作用形成了原始的蛋白质分子和核酸分子。第三个阶段,从生物大分子物质组成多分子体系。这一过程是怎样形成的呢?前苏联学者奥巴林提出了团聚体假说,他通过实验表明,将蛋白质、多肽、核酸和多糖等放在合适的溶液中,它们能自动地浓缩聚集为分散的球状小滴,这些小滴就是团聚体。奥巴林等人认为,团聚体可以表现出合成、分解、生长、生殖等生命现象。例如,团聚体具有类似于膜那样的边界,其内部的化学特征显著地区别于外部的溶液环境。团聚体能从外部溶液中吸入某些分子作为反应物,还能在酶的催化作用下发生特定的生化反应,反应的产物也能从团聚体中释放出去。另外,有的学者还提出了微球体和脂球体等其他的一些假说,以解释有机高分子物质形成多分子体系的过程。图7团聚体简单代谢示意图第四个阶段,有机多分子体系演变为原始生命。这一阶段是在原始的海洋中形成的,是生命起源过程中最复杂和最有决定意义的阶段。目前,人们还不能在实验室里验证这一过程.生命的起源与演化是和宇宙的起源与演化密切相关的。生命的构成元素如碳、氢、氧、氮、磷、硫等是来自“大爆炸”后元素的演化。资料表明前生物阶段的化学演化并不局限于地球,在宇宙空间中广泛地存在着化学演化的产物。在星际演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等可能形成于星际尘埃或凝聚的星云中,接着在行星表面的一定条件下产生了象多肽、多聚核苷酸等生物高分子。通过若干前生物演化的过渡形式最终在地球上形成了最原始的生物系统,即具有原始细胞结构的生命。至此,生物学的演化开始,直到今天地球上产生了无数复杂的生命形式。38亿年前,地球上形成了稳定的陆块,各种证据表明液态的水圈是热的,甚至是沸腾的。现生的一些极端嗜热的古细菌和甲烷菌可能最接近于地球上最古老的生命形式,其代谢方式可能是化学无机自养。澳大利亚西部瓦拉伍那群中35亿年前的微生物可能是地球上最早的生命证据。原始地壳的出现,标志着地球由天文行星时代进入地质发展时代,具有原始细胞结构的生命也开始逐渐形成。但是在很长的时间内尚无较多的生物出现,一直到距今5.4亿年前的寒武纪,带壳的后生动物才大量出现,故把寒武纪以后的地质时代称为显生宙。首先,生命起源之说,第一个谜是生命的时间,起源的时间问题。在中世纪的西方,人们对《圣经》的上帝造人的故事是深信不疑的。在1650年,一位爱尔兰大主教根据圣经上所描述的,计算出上帝创世的确切时间是公元前4004年,而另一位牧师甚至把创世时间更加精确地计算到公元前4004年10月23号上午九点钟。也就是说,生命起源距今是六千年前,这当然不是真的,而真的是什么呢?真的就是用科学的回答,科学是怎么回答这个生命起源的时间呢?那就是说用化石,是保存在岩石中的化石来回答。我们知道,生物死亡后,它们的遗迹在适当的条件下,就保存在岩石之中,我们把它们称作化石。地质历史中形成的岩层,就像一部编年史书,地球生物的演化历史,就深深埋藏在这些岩石之中,年代越久远的生物化石,就保存在岩层的最底层。迄今为止,我们发现了最古老的生物化石是来自澳大利亚西部,距今约三十五亿年前的岩石,这些化石类似于现在的蓝藻,它们是一些原始的生命,是肉眼看不见的。它的大小只有几个微米,到几十个微米。因此我们可以说,生命起源它不晚于三十五亿年。同时我们知道地球的形成年龄大约在46亿年前,有这两个数据我们就可以看到生命起源的年龄,大致可以界定在46亿年到35亿年之间。今天,随着科学的发展,地质学家认为,在地球形成的早期,地球受到了大量的小行星和陨石的撞击,它是不适合生命的生存。与其说当时地球上有生命,还不如说它在毁灭生命,因此地球上生命起源的时间,它不早于40亿年。另外,在格陵兰的38.5亿年的岩石中发现了碳,这个碳的话,我们知道,碳分两种,一个无机碳、一个有机碳。另外,这个碳的话,它有重碳和轻碳之分,因此我们可以根据这个碳之中的轻碳和重碳之比,就来可以推测这些碳的来源。科学家根据碳的同位素分析,推测这些碳它是有机碳,是来源于生物体。也就是说,这样我们把生命起源的时间大大缩短了,也就是在距今40亿年到38亿年之间,自从地球上生命起源之后,一直到现在45亿年,就是生生不息的生命演化史。1859年,伴随着达尔文《物种起源》一书的问世,生物科学发生了前所未有的大变革,同时也为人类揭示生命起源这一千古之谜带来了一丝曙光,这就是现代的化学进化论。生命起源的化学进化论首先在1953年首先得到了一位美国的学者米勒的证实,既然你说地球早期温度都是比较高,又充满了很多还原性气体,还有水,那么我就把这些气体,把水放在一个瓶子里面,看看它是不能产生生命,或者产生有机化合物。米勒在1953年把氨气、氢气,还有水、一氧化碳放在一个密封的瓶子里面,在瓶子里面两头插上金属棒,完了通上电源,通过这个类似于闪电的作用,确实在几天之后产生了大量的氨基酸。那么就是说在地球上面,在闪电下,在常温下,也能成为无机分子,合成有机分子。我们知道,你氨基酸的话,是组成蛋白质的最重要的物质,可以说,组成生命起源最重要的物质。因此,米勒描述的生命起源的事件应该是什么样子的呢?那就是在早期,地球上因为它含有大量的还原性的原始大气圈,比如说甲烷、氨气、有水、有氢气,还有原始的海洋,当早期地球上闪电作用把这些气体聚合成多种氨基酸,而这多种氨基酸,在常温常压下,它可能在局部浓缩,再进一步演化成蛋白质,蛋白质和其他的多糖类,以及高分子脂类,在一定的时候有可能孕发成生命,这就是米勒描述的生命进化的过程。但是这种温暖水池说,也遇到一些问题,其中有两个问题,第一个问题是现在地质学家认为,地球早期大气圈它并不是含有大量的还原性气体,它是含有大量的二氧化碳和氮气,比米勒的这个气体多一些惰性。在闪电的情况下,你并不能形成大量的氨基酸。第二个,温暖的水池在地球早期并不能长期形成,为什么呢?因为当时地球早期,刚才说过它有大量的陨石、流星,还加上地球本身的放射性,温度很高,你这个温暖水池一旦生命产生了,一个陨星过来,温度在瞬间之内可能达到上千度、甚至几千度,生命已经绝灭了,只能再来一次生命的起源。但是我们现在就这么想,现今的地球上是不是有温度比较高,还有还原性气体,还有生物存在呢?那么,有两件工作可以说具有划时代的意义,一个是1967年美国学者布莱克,在黄石公园的热泉中发现了大量嗜热生物,我们知道蛋白质一般的话超过六十度,就会凝固的,煮鸡蛋六十度七十度以上鸡蛋就熟了,但是生物,是不是在六十度以上还能够生活呢?在以前是不敢想的。现代生物学家,他通过生物分子学的研究,他把热泉中的一些嗜热古细菌,跟现在的普通细菌进行了基因的对比,发现它们基因的相同点,不超过60%。那么就是说这些古细菌它们含有非常多的古老的基因,也就是说,它们很有可能就是生命起源时候的这种类型。应该说,生命起源我们研究生命起源它最好的证据,还是在地球上,40亿年到38亿年间的岩石和化石所包含的信息。但是,经过40亿年的变化,地球已经面目全非,现在的地球即使你有40亿年到38亿年的岩石,它也进入了大量的变种,信息也几乎全无。因此我们把目光不要局限在只是在地球上,如果说生命是宇宙之中一个普遍的现象的话,除了地球之外的其他天体上,是否也有类似于地球早期的这样的环境呢?如果有的话,也许能为研究生命起源打开新的窗户,我们第一个目标是什么地方呢?不是火星是月球,现在地质学家认为,月球是40亿年前,一颗大的行星撞击地球,而从地球上迸发出去。形成了当今的月球,这个时间正好是40亿年,如果地球上有生命起源的话,我们在月球上看看,那不就是解决这个问题了吗。在中国的古代神话中有嫦娥奔月的这个说法,月球上有月桂、有月兔,还有浪漫的爱情故事,但是二十世纪六十年代到七十年代,随着前苏联和美国的宇航员登陆的成功,这个神话彻底破灭了,月球其实是一个没有生命,没有水,没有氧气,不适合生命生存的荒漠的星体。那么我们第二个目标是什么呢?第二个目标是火星,因为火星也许在40亿年以前,有着跟地球类似的经历,火星的物质成分跟地球非常近似,它的轨道也跟地球非常近似,那么火星上是不是有生命呢?我们到火星上去干什么呢?我们寻找生命起源,要从哪几点入手呢?一般来说是三点,第一个在火星上寻找是不是有活的生命?如果有活的生命,那好了。那生命的话,可能真是在宇宙中起源的,或者地球上的生物也许来自火星,或者来自其他的彗星。第二个我们寻找液态水,因为我们知道,水是万物之源,水是生命之源。现在地球上我们所理解的生命形式是离不开水的,所以寻找液态水也是非常重要的一个指标。第三个寻找与生命有关的化合物,如果我们现在没有活的生物的话,过去有没有呢?过去的生物是不是形成了一些化合物?它是不是以化石的形式保存在这些岩石之中呢?所以我们到火星上寻找生命,抱着三个目的。1957年美国的海盗号航天器发回到地球的信息时,火星上没有生命,没有液态水的存在,它是一个荒芜干渴的红色的星球。但是人类并没有气馁,20世纪90年代,美国宇航局加大了对火星的探测力度,通过火星探测者号、火星拓荒者号航天器和哈博望远镜得到的图片,和其他的有关天体物理的信息资料显示,火星上过去很可能有过液态水的存在。一些航天资料显示,火星上有类似于像我们发生大洪水山前的冲积扇的构造,还有水、河道、像地球上干涸的河床的河道,还有水侵蚀岩石的痕迹。另外还有非常特别的一点,在火星的两极,发现了类似于地球上冻土解冻的情况,这是我们的航天资料。那么我们对火星的研究,那就束手无策了吗?现在至少在现阶段并不是,我们有来自火星上的陨石,非常幸运,在1984年,人们在南极的冰盖上面,发现了一颗陨石,这个陨石拿回来以后呢,对它进行它的元素和做气体化学分析,发现这个陨石呢,它的气体它的同位素,跟火星上非常类似。所以他们认为这个陨石是来自火星,这个陨石是在一万年前,掉在冰盖上,南极的冰盖上。通过这个陨石的放射性同位素年龄测定呢,这个陨石40亿年,距现在有40亿年左右,正好跟地球上生命起源的年龄是一样的。那么几十年来,科学家通过了大量研究这个陨石,一些研究者认为,这个陨石上含有了生命的迹象,有哪几个方面的证据呢?有三个,第一个这个陨石里面含有数种沉积矿物,因为沉积矿物它是有水的情况下形成的,所以科学家从中推断,火星上可能有水,特别这些矿物里面有一种是磁铁矿物。他认为这种磁铁矿,它只能由生命的形式存在,这是第一个证据。第二个,在这个陨石的表面通过化学分析,获得了多种多环的芳香烃,他认为这种多环的芳香烃的话,与生命的形式有关。第三个它是通过扫描电镜仔细观察,发现了形态非常类似细菌的生物化石。这化石并不是很大,只有几百个纳米,因此,在1996年,美国宇航局向全世界宣布,在40亿年前火星上曾经有过生命,当然这是一家之言。这颗陨石里面,这个有关生命存在的信息是不是真的呢?当然有很多学者对这些证据提出了置疑。第一个就拿磁铁矿来说,你认为只能由生命生存,我同意,你认为这个沉积矿物它也是由生命生存,我也同意。它是生命有水的形式下才能沉积,我也同意。但是你要知道这个陨石是在南极的冰盖上找到的,那冰全是水,你在陨石撞击冰盖的时候,可能有很多的水溶化了,陨石撞击这个地球的时候,它可能形成很多裂隙,如果有液态水,溶化的水,从这个裂隙进去的话,那不也可能形成一个自身的沉积矿物吗?另外你认为这个磁铁矿,你也可能,有人认为磁铁矿的话,也并不是说是生命特有的,在其他物质条件下也可以形成,所以第一条证据的话,就有很多科学家认为它占不住。第二就是多环芳香烃的问题,同样你看像南极冰盖,你是零下40度,或者50度也好,也有大量的菌藻的生存,它是不是污染的呢?现在的污染,也许是一万年以前污染的呢。所以这条证据的话,你也不能说是一个非常可靠的证据,百分之百的证据。第三个证据,特别是第三个证据它更加靠不住,就是把陨石把它劈开,你看见这些所谓的细菌的化石,这些化石,第一个它太小,它的直径的话只有几十个纳米,我们知道,你像一个铁的原子核的话,它可能就有0.6个纳米,所以你这个,所谓生物化石它的直径的话,它可能就是几百个,甚至由上千个原子核组成。所以这基本的话,在现在我们理解的这个具有细胞膜包裹的原始细胞最小形态是不可想象的。所以这个有关陨石上生命的存在,或者火星上生命的存在,还需要继续的研究。我们所观察的第三个天体,就是木星的卫星,特别是第二个卫星,叫木卫二,它的大小跟地球直径非常类似,在1997年美国的伽利略号航天器对木卫二进行了观察,他们发现在木卫二表面的话,有大量的裂痕存在,并且是多起的裂痕,通过天体物理学的方法研究,这个星球其实全是由水组成的,这个水是固态的冰,变成了固态的冰,我们从这些很多很多的裂隙可以看起来,多起裂痕看起来,这个星球也许在过去或者某个时候,某几个时候,这个水曾经溶化过。也就是说,它曾经有液态水的存在,有液态水存在,它是不是也有生命的存在呢?但是这个还是一个未知数,我们需要更进一步的研究。总之,随着航天科技和其他相关技术的进一步发展,地外生命的探索,为我们研究生命的起源开辟了一个新的途径。但无论怎么样生命起源的过程的话,这三个过程是跑不了:第一个是从无机物到有机小分子,这种过程,比如说你一氧化碳、二氧化碳、水、氢气、氨气、甲烷,这些东西你合成有机小分子,像氨基酸、嘌呤、啶、核苷酸、高能化合物、肪酸、有卟呤等这些东西,这个过程是跑不掉的,因为地球生命的起源的话,你从无机界到有机界,所以这个过程。一个过程是不管在什么地方,在海底也好,在热泉里面,在火星上或者在木卫二,都跑不了这个过程,所以研究生命起源的过程的话,是第一个。第二个呢,它是有机小分子到有机大分子这个形式,就是刚才说的氨基酸嘌呤嘧啶这个东西,有机大分子像蛋白质多糖,核酸这个过程,因为蛋白质是组成生物体的主要的物质,还有多糖、糖类、都是组成很多细胞的这个骨架,细胞壁的主要成分,还有核酸、这是遗传物质,所以这个过程的话,也是跑不掉的。第三个这些生物的大分子,演化到原始单细胞的生命,这也是跑不掉的。一个原始的单细胞,外面有一个膜包裹,里面有遗传物质,要进行新陈代谢的交换。所以生命起源的过程其实可以简单地分成这三个过程:对这三个过程我们现在做到哪一步呢?我们还有什么没解决的呢?第一个我们看看从无机物到有机小分子这个过程,其实这个过程的话,在热泉中,在深海的海底“黑烟囱”中,还是在实验室中,我们都能够合成这个米勒的实验就是一个最经典的实验,它就是把无机物合成了有机小分子。第二个过程,我们再看看,第二个过程是有机小分子,到有机大分子这个过程,这个过程的话,其实在热泉,像海底热泉口,还有陆地上,像黄石公园,我们国家云南的热泉都有这种过程,因为这个温度很高,它有机物在里面的话它可以进行热聚合脱水反应,能形成蛋白质,我们在实验室里面,这个过程也是可以重复的,所以生命起源的第二个过程也不是难的事情。最难的是生命起源的第三个过程,就是生物大分子到原始单细胞这个过程,可以说这个过程是迄今为止科学家们研究上遇到最大的难题。也是无机生命到生命,无机化合物到有机生命不可跨越的一个鸿沟,这个过程包括哪几部分呢?换句话说,我们要研究生物大分子,到原始单细胞生命,要从几个部分来入手呢?第一个我们要研究自我遗传系统,一个遗传系统,就是能自我复制的生物大分子这个系统的建立,DNA、RNA这种系统的建立。它怎么建立的?它怎么合成的?它们怎么有遗传的功能?第二个,蛋白质的合成,它要纳入到自我复制系统的控制,这是什么意思呢?就是它新陈代谢,它是能量和物质在细胞内的交换,接受太阳光、接受化学能,产生有机物,再用这有机物分解而产生能量,这个能量像一个马达一样,来运转这个细胞,是这个过程。这个过程也是非常难的一个过程,第三个过程,生物膜系统的形成,也就是说比如说像细胞壁、细胞膜,生物膜的系统,为什么重要呢?因为我们知道无机界是没有隔离的,没有这种隔离,只有在生物里面它有一个膜跟外界隔离,同时这个膜也不是绝对隔离,而是跟外面进行物质的交换。它有一些小的空隙,所以这个生物膜系统也是一个非常精密的生物机构,所以在生命起源之中这三个阶段或者三个步骤缺一不可,也是非常难的三个步骤。迄今为止,我们把生命起源可以描述成这样子的:在40亿年前的地球上,由无机分子合成的有机小分子,它聚集在热泉口,或者火山口附近的热水中,通过聚合反应,形成了生物的大分子,这些大分子进行自我复制,自我选择,进而通过分子的自我组织,并自我复制和变异,从而形成核酸和活性蛋白质,同时分隔结构同步产生,最后在基因的控制下的代谢反应,为基因的复制和蛋白质的合成提供能量,这样一个由生物膜包裹着的具有能自我复制的原始细胞,就在地球上产生了。这个原始细胞可能是异养的,或者是化学自养的,它可能类似于现代生物在热泉附近的嗜热古细菌,这个描述短短几百字,就把生命起源的过程描述过来了。但它有四个无法逾越的鸿沟,一个是自我选择,因为你组成生物大分子或者RNA,DNA,它这些分子都是非常有限的几种分子。在无机条件下,或者在闪电情况下、或者在热水中,它形成很多这样的分子,这些分子怎么能自我选择,能合成DNA,RNA,能把其他的大分子抛弃掉,这个过程的话,我们并不知道它,为什么这样子?第二个是自我复制,DNA,RNA它自己能够复制,能够为下一代遗传下去,这个过程我们也并不知道。第三个是分隔结构,就是细胞膜,比如细胞膜、或者细胞内部的膜结构,这个过程我们也不是很清楚,它怎么形成的?像磷脂、精细的生物结构怎么形成的,我们也并不是很清楚。另外是一个新陈代谢的问题,你怎么先是吸收外面的能量,这个过程我们并没有解决,但不管怎么样这种热泉中生命起源假说的话,它确实有很多有利证据的支持,特别是近年来,它取得了一系列最重要的进展。我们知道,热泉中含有大量的一氧化碳、硫化氢和硫化金属矿物,特别是黄铁矿物和硫,一方面硫化铁和硫,有新陈代谢的出现。硫化铁是一种非常重要的催化剂,很多化学反应在它的表面或者说在它的晶体骨架里,进行得非常非常的顺利,一些重要化合物已在在热泉中被发现。例如一种活性物质,像硫化脂就发现在热泉之中,它与一种非常重要的化合物,一些复合物非常类似,这种化合物提供了能量新陈代谢的一种途径。所以说这个新陈代谢的途径的话,可能跟热泉中的黄铁矿和硫,以及它们的聚合物有一定的关系。另一方面,遗传物质核糖核酸,RNA的出现的话,与硫化脂和硫的化学过程有着非常密切的关系。而脱氧核糖核酸,DNA它还可以直接用RNA脱氧演变而来。还有另一个的话,像黄铁矿的聚合物,就是这个热泉口中的这个黄铁矿的聚合物的话。其实,存在于很多重要的生化酶的中心,那些生化酶的话,可能就产生于含有大量的硫热泉之中。由此看来,地球上的生命也许就产生在距今38亿年到40亿年间这些充满硫磺味的热水池或者软泥之中。但是我们应该清醒的明白,我们距离揭开生命起源这一亘古之谜,还有一段遥远的科学历程。从无机物到有机物,到有机化合物到有机生命体的演化,同时还具有很多的偶然性,并不是有这种环境,有这种形成条件,它就能产生生命。有人曾经比喻说,这些无机物好像一个垃圾堆里面什么都有,塑料、塑料瓶子、铁,废弃金属、油,而生命,一个单细胞,就像一辆精美的奔驰车,在一阵台风过后,这些垃圾组装成了一个奔驰车。因此我们可以想像,这个生命起源的过程是非常非常地艰难。因此,也许我们在这个蓝色的星球,是生命的惟一的乐园,因此请保护我们的地球,珍惜地球上的生命,我们不能奢望地球上第二次的生命起源,谢谢大家。
[编辑]历史 古细菌这个概念是1977年由Carl Woese和George Fox提出的,原因是它们在16SrRNA的系统发生树上和其它原核生物的区别。这两组原核生物起初被定为古细菌(Archaebacteria)和真细菌(Eubacteria)两个界或亚界。Woese认为它们是两支根本不同的生物,於是重新命名其为古菌(Archaea)和细菌(Bacteria),这两支和真核生物(Eukarya)一起构成了生物的三域系统。 [编辑]古菌、细菌和真核生物 在细胞结构和代谢上,古菌在很多方面接近其它原核生物。然而在基因转录这两个分子生物学的中心过程上,它们并不明显表现出细菌的特徵,反而非常接近真核生物。比如,古菌的转译使用真核的启动和延伸因子,且转译过程需要真核生物中的TATA框结合蛋白和TFIIB。 古菌还具有一些其它特徵。与大多数细菌不同,它们只有一层细胞膜而缺少肽聚糖细胞壁。而且,绝大多数细菌和真核生物的细胞膜中的脂类主要由甘油酯组成,而古菌的膜脂由甘油醚构成。这些区别也许是对超高温环境的适应。古菌鞭毛的成分和形成过程也与细菌不同。 Image:PhylogeneticTree.jpg 基於rRNA序列的系统发生树,显示了可明显区别的三支:细菌(Bacteria)、古菌(Archaea)和真核生物(Eukarya)[编辑]生境 很多古菌是生存在极端环境中的。一些生存在极高的温度(经常100℃以上)下,比如间歇泉或者海底黑烟囱中。还有的生存在很冷的环境或者高盐、强酸或强碱性的水中。然而也有些古菌是嗜中性的,能够在沼泽、废水和土壤中被发现。很多产甲烷的古菌生存在动物的消化道中,如反刍动物、白蚁或者人类。古菌通常对其它生物无害,且未知有致病古菌。 [编辑]形态 单个古菌细胞直径在0.1到15微米之间,有一些种类形成细胞团簇或者纤维,长度可达200微米。它们可有各种形状,如球形、杆形、螺旋形、叶状或方形。它们具有多种代谢类型。值得注意的是,盐杆菌可以利用光能制造ATP,尽管古菌不能像其他利用光能的生物一样利用电子链传导实现光合作用。 [编辑]进化和分类 从rRNA进化树上,古菌分为两类,泉古菌(Crenarchaeota)和广古菌(Euryarchaeota)。另外未确定的两类分别由某些环境样品和2002年由Karl Stetter发现的奇特的物种纳古菌(Nanoarchaeum equitans)构成。 Woese认为细菌、古菌和真核生物各代表了一支具有简单遗传机制的远祖生物的后代。这个假说反映在了“古菌”的名称中(希腊语archae为“古代的”)。随后他正式称这三支为三个域,各由几个界组成。这种分类后来非常流行,但远组生物这种思想本身并未被普遍接受。一些生物学家认为古菌和真核生物产生於特化的细菌。 古菌和真核生物的关系仍然是个重要问题。除掉上面所提到的相似性,很多其他遗传树也将二者并在一起。在一些树中真核生物离广古菌比离泉古菌更近,但生物膜化学的结论相反。然而,在一些细菌,(如栖热袍菌)中发现了和古菌类似的基因,使这些关系变得复杂起来。一些人认为真核生物起源於一个古菌和细菌的融合,二者分别成为细胞核和细胞质。这解释了很多基因上的相似性,但在解释细胞结构上存在困难。 目前有22个古菌基因组已经完全结束了测序,另外15个的测序工作正在进行中。[1] [编辑]参见古菌分类表 [编辑]补充20世纪70年代,卡尔·乌斯(Carl Woese)博士率先研究了原核生物的进化关系。他没有按常规靠细菌的形态和生物化学特性来研究,而是靠分析由DNA序列决定的另一类核酸---核糖核酸(RNA)的序列分析来确定这些微生物的亲缘关系。我们知道,DNA是通过指导蛋白质合成来表达它决定某个生物个体遗传特征的,其中必须通过一个形成相应RNA的过程。并且蛋白质的合成必须在一种叫做核糖核蛋白体的结构上进行。因此细胞中最重要的成分是核糖核蛋白体,它是细胞中一种大而复杂的分子,它的功能是把DNA的信息转变成化学产物。核糖核蛋白体的主要成分是RNA,RNA和DNA分子非常相似,组成它的分子也有自己的序列。 由于核糖核蛋白体对生物表达功能是如此重要,所以它不会轻易发生改变,因为核糖核蛋白体序列中的任何改变都可能使核糖核蛋白体不能行使它为细胞构建新的蛋白质的职责,那么这个生物个体就不可能存在。因此我们可以说,核糖核蛋白体是十分保守的,它在数亿万年中都尽可能维持稳定,没有什么改变,即使改变也是十分缓慢而且非常谨慎。这种缓慢的分子进化速率使核糖核蛋白体RNA的序列成为一个破译细菌进化之谜的材料。乌斯通过比较许多细菌、动物、植物中核糖核蛋白体的RNA序列,根据它们的相似程度排出了这些生物的亲缘关系。 乌斯和他的同事们研究细菌的核糖核蛋白体中RNA序列时,发现并不是所有的微小生物都是亲戚。他们发现原来我们以为同是细菌的大肠杆菌和能产生甲烷的微生物在亲缘关系上竟是那么不相干。它们的RNA序列和一般细菌的差别一点也不比与鱼或花的差别小。产甲烷的微生物在微生物世界是个异类,因为它们会被氧气杀死,会产生一些在其它生物中找不到的酶类,因此他们把产生甲烷的这类微生物称为第三类生物。后来又发现还有一些核糖核蛋白体RNA序列和产甲烷菌相似的微生物,这些微生物能够在盐里生长,或者可以在接近沸腾的温泉中生长。而我们知道,早期的地球大气中没有氧气,而含有大量氨气和甲烷,可能还非常热。在这样的条件下植物和动物无法生存,对这些微生物却非常合适。在这种异常地球条件下,只有这些奇异的生物可以存活,进化并在早期地球上占统治地位,这些微生物很可能就是地球上最古老的生命。 因此,乌斯把这类第三生物定名为古生菌(Archaea),成为和细菌域、真核生物域并驾齐驱的三大类生物之一。他们开始还没有如此大胆,只是称为古细菌(Archaebacteria),后来他们感到这个名词很可能使人误解是一般细菌的同类,显不出它们的独特性,所以干脆把“bacteria”后缀去掉了。这就是古生菌一词的来由。 [编辑]补充古菌的发现 人们对古菌的兴趣并非始于1970年代。古菌一些奇特的生活习性和与此相关的潜在生物技术开发前景,长期以来一直吸引着许多人的注意。古菌常被发现生活于各种极端自然环境下,如大洋底部的高压热溢口、热泉、盐碱湖等。事实上,在我们这个星球上,古菌代表着生命的极限,确定了生物圈的范围。例如,一种叫做热网菌(Pyrodictium)的古菌能够在高达113℃的温度下生长。这是迄今为止发现的最高生物生长温度。近年来,利用分子生物学方法,人们发现,古菌还广泛分布于各种自然环境中,土壤、海水、沼泽地中均生活着古菌。 目前,可在实验室培养的古菌主要包括三大类:产甲烷菌、极端嗜热菌和极端嗜盐菌。产甲烷菌生活于富含有机质且严格无氧的环境中,如沼泽地、水稻田、反刍动物的反刍胃等,参与地球上的碳素循环,负责甲烷的生物合成;极端嗜盐菌生活于盐湖、盐田及盐腌制品表面,它能够在盐饱和环境中生长,而当盐浓度低于10%时则不能生长;极端嗜热菌通常分布于含硫或硫化物的陆相或水相地质热点,如含硫的热泉、泥潭、海底热溢口等,绝大多数极端嗜热菌严格厌氧,在获得能量时完成硫的转化。 尽管生活习性大相径庭,古菌的各个类群却有共同的、有别于其他生物的细胞学及生物化学特征。例如,古菌细胞膜含由分枝碳氢链与D型磷酸甘油,以醚键相连接而成的脂类,而细菌及真核生物细胞膜则含由不分枝脂肪酸与L型磷酸甘油,以酯键相连接而成的脂类。细菌细胞壁的主要成分是肽聚糖,而古菌细胞壁不含肽聚糖。 有趣的是,虽然与细菌相似,古菌染色体DNA呈闭合环状,基因也组织成操纵子(操纵子为原核生物基因表达和调控的基本结构单位,生物活性相关的基因常以操纵子的结构形式协调基因表达的开启和关闭),但在DNA复制、转录、翻译等方面,古菌却具有明显的真核特征:采用非甲酰化甲硫氨酰tRNA作为起始tRNA,启动子、转录因子、DNA聚合酶、RNA聚合酶等均与真核生物的相似。 比较生物化学的研究结果表明,古菌与细菌有着本质的区别,这种区别与两者表现在系统发育学方面亲缘关系的疏远是一致的。 二分法和三域学说 地球上究竟有几种生命形式?当亚里士多德建立生物学时,他用二分法则将生物分为动物和植物。显微镜的诞生使人们发现了肉眼看不见的细菌。细菌在细胞结构上与动植物的最根本差别是,动植物细胞内有细胞核,遗传物质DNA主要储存于此,而细菌则没有细胞核,DNA游离于细胞质中。由于动物与植物的差别小于它们与细菌的差别,沙东(E. Chatton)于1937年提出了生物界新的二分法则,即生物分为含细胞核的真核生物和不含细胞核的原核生物。动植物属于真核生物,而细菌属于原核生物。 1859年达尔文发表《物种起源》以后,生物学家便开始建立基于进化关系而非表型相似性的分类系统,即所谓系统发育分类系统。可是,由于缺乏化石记录,这种分类方法长期未能有效运用于原核生物的分类。1970年代,随着分子生物学的发展,伍斯终于在这方面获得了意义重大的突破。 在漫长的进化过程中,每种生物细胞中的信息分子(核酸和蛋白质)的序列均不断发生着突变。许多信息分子序列变化的产生在时间上是随机的,进化速率相对恒定,即具有时钟特性。因此,物种间的亲缘关系可以用它们共有的某个具有时钟特性的基因或其产物(如蛋白质)在序列上的差别来定量描述。这些基因或其产物便成了记录生物进化历程的分子记时器(chronometer)。显然,这种记录生物系统发育历程的分子记时器应该广泛分布于所有生物之中。基于这一考虑,伍斯选择了一种名为小亚基核糖体核酸(SSU rRNA)的分子,作为分子记时器。这种分子是细胞内蛋白质合成机器——核糖体的一个组成部分,而蛋白质合成又是几乎所有生物生命活动的一个重要方面。因此,把SSU rRNA分子作为分子记时器是合适的。 在比较了来自不同原核及真核生物的SSU rRNA序列的相似性后,伍斯发现原先被认为是细菌的甲烷球菌代表着一种既不同于真核生物,也不同于细菌的生命形式。考虑到甲烷球菌的生活环境可能与生命诞生时地球上的自然环境相似,伍斯将这类生物称为古细菌。据此,伍斯于1977年提出,生物可分为三大类群,即真核生物、真细菌和古细菌。基于SSU rRNA分析结果的泛系统发育(进化)树随后诞生了。 进一步的研究表明,进化树上的第一次分叉产生了真细菌的一支和古细菌/真核生物的一支,古细菌和真核生物的分叉发生在后。换句话说,古细菌比真细菌更接近真核生物。 据此,1990年伍斯提出了三域分类学说:生物分为真核生物、真细菌和古细菌三域,域被定义为高于界的分类单位。为突出古细菌与真细菌的区别,伍斯将古细菌更名为古菌。真细菌改称细菌。三域学说使古菌获得了与真核生物和细菌等同的分类学地位。 自诞生之日起,伍斯的三域学说便遭到部分人,特别是微生物学领域外的人反对。反对者坚持认为:原核与真核的区分是生物界最根本的、具有进化意义的分类法则;与具有丰富多样性表型的真核生物相比,古菌与细菌的差异远没有大到需要改变二分法则的程度。但在詹氏甲烷球菌基因组序列测定完成前的近20年中,采用多种分子记时器进行的系统发育学研究一再证明,古菌是一种独特的生命形式。 三域学说的第一个基因组学证据 尽管对古菌已有了上述认识,当人们第一次面对詹氏甲烷球菌的全基因组序列时,还是大吃了一惊。詹氏甲烷球菌共有1738个基因,其中人们从未见过的基因竟占了56%!相比之下,在这之前完成测序的流感嗜血菌(Haemophilus influenzae)和生殖道枝原体(Mycoplasma genitalium)基因组中未知基因仅占20%左右。于是人们终于在基因组水平上认识到,古菌是一种崭新的生命形式。 更有趣的是,詹氏甲烷球菌基因组中占总数44%的那些功能或多或少已经知道的基因似乎勾勒出了古菌与另两类生物之间的进化关系:古菌在产能、细胞分裂、代谢等方面与细菌相近,而在转录、翻译和复制方面则与真核生物类似。换言之,一个生活在大洋底部热溢口处的、习性古怪的微生物,在遗传信息传递方面竟有着与人(而不是与人的消化道中细菌)相似的基因!在赞叹生命奇妙的同时,许多人开始欢呼三域学说的最终确立。美国《科学》周刊在把詹氏甲烷球菌基因组序列测定工作列为1996年度重大科学突破之一时宣称,这一成果使围绕三域学说的争论差不多可以结束了。 对伍斯进化树的新挑战 就在古菌的悬念似乎行将消失时,接踵而来的新发现却使人们重新陷入困惑之中。各类完整的微生物基因组序列一个接一个出现在人们轻点鼠标便可查阅的数据库中,在已发表的18种生物基因组序列中,古菌的占了4个。采用更灵敏的方法对这些基因组(包括詹氏甲烷球菌基因组)进行分析,得到了令人吃惊的结果:詹氏甲烷球菌基因组中只有30%(不是先前估计的半数以上)的基因编码目前未知的功能,这与细菌基因组相近。古菌的神秘性和独特性因此减少了许多。 对三域学说更为不利的是,在詹氏甲烷球菌的那些可以推测功能的基因产物(蛋白质)中,44%具有细菌蛋白特征,只有13%的像真核生物的蛋白质。在另一个古菌,嗜热碱甲烷杆菌(Methanobacterium thermoaotutrophicum)的基因组中也有类似情况。因此,从基因组比较的数字上看,古菌与细菌间的差异远小于古菌与真核生物间的差异,不足以说服三域学说的反对者。 更令人难以理解的是,利用同一生物中不同基因对该物种进行系统发育学定位常常会得到不同的结果。最近,一种能在接近沸点温度下生长的细菌(Aquifex aeolicus)的基因组序列测定完成。对该菌的几个基因进行的系统发育学研究表明:如果用参与细胞分裂调控的蛋白质FtsY作为分子记时器,该菌与伍斯进化树上位于细菌分枝的一个土壤细菌——枯草芽孢杆菌相近;如果以一种参与色氨酸合成的酶为准,该菌应属于古菌;而当比较该菌和其他生物的合成胞苷三磷酸(DNA的基本结构单位之一)的酶时,竟发现古菌不再形成独立的一群。看来不同的基因似乎在诉说不同的进化故事。那么,古菌还能是独特的、统一的生命形式吗? 属于真核生物的啤酒酵母基因组序列测定完成后,三域学说遇到了更大危机。酵母细胞核基因中,与细菌基因有亲缘关系的比与古菌有亲缘关系的多一倍。有人还对在三种生命形式中都存在的34个蛋白质家族进行了分析,发现其中17个家族来源于细菌,只有8个显示出古菌与真核生物的亲缘关系。 如果伍斯进化树正确、古菌与真核生物在进化历程中的分歧晚于两者与细菌的分歧的话,那么怎样才能解释上面这些结果呢? 根据细胞进化研究中流行的内共生假说,真核细胞细胞器(线粒体、叶绿体)的产生源于细菌与原真核生物在进化早期建立的内共生关系。在这种关系中,真核细胞提供稳定的微环境,内共生体(细菌)则提供能量,久而久之,内共生体演变为细胞器。真核生物细胞核中一部分源于细菌的基因可能来自线粒体,这些为数不多的基因通常编码重新运回线粒体的蛋白质分子。可是,现在发现许多源于细菌的核基因编码那些在细胞质、而不是线粒体中起作用的蛋白质。那么,这些基因从何而来呢?显然,内共生假说已不足以挽救伍斯进化树。 不过,伍斯进化树也不会轻易倒下,支撑它的假说依然很多。最近,有人提出了新版的“基因水平转移”假说。根据这个假说,基因组的杂合组成是进化过程中不同谱系间发生基因转移造成的。一种生物可以采用包括吞食等方式获得另一种、亲缘关系也许很远的生物的基因。伍斯推测,始祖生物在演化形成细菌、古菌和真核生物三大谱系前,生活于可以相互交换基因的“公社”中,来自这个“史前公社”的生物可能获得了不同的基因遗产。这一切使得进化树难以枝杈分明。不过,伍斯相信,基于SSU rRNA的进化树在总体上是正确的,三种生命形式是存在的。 争 论 在 继 续 三年前詹氏甲烷球菌基因组序列的发表,似乎预示着一场延续了20多年的、关于地球上到底有几种生命形式的争论的终结。古菌似乎被认定为生命的第三种形式。如今,仅仅过了三年,即使最乐观的人都无法预料伍斯进化树的命运。这场仍在继续的争论中,尽管古菌的分类地位遭到质疑,但古菌这一生命形式的独特性依然得到不同程度的肯定。 目前,古菌研究正在世界范围内升温,这不仅因为古菌中蕴藏着远多于另两类生物的、未知的生物学过程和功能,以及有助于阐明生物进化规律的线索,而且因为古菌有着不可估量的生物技术开发前景。古菌已经一次又一次让人们吃惊,可以肯定,在未来的岁月中,这群独特的生物将继续向人们展示生命的无穷奥秘。
地球陆地表面大部分被生命(生物)所覆盖,它们强烈地影响着地表景观的形成过程。然而,从最近获得的图像显示,火星与地球的地貌惊人地相似。这便提出一个有趣的问题:如果我们拿出一幅高分辨率地貌图,把明显的生命痕迹从上面抹去,我们能否仅仅从地貌判断地球上有无生命?
微生态免疫时代的益生菌之路 在现代生活中,对于益生菌,相信每个人都不陌生。谈及益生菌的历史,要追溯到九千多年前的新石器时代。有资料记载,当时,中国河南贾湖地区的人们将稻米、蜂蜜和水果混合,通过酵母发酵,制成饮料,这也是现今能找到的最早关于益生菌食用的记录。 益生菌对使用者的身体健康能发生的有效作用有哪些? 科学界研究发现:益生菌可以帮助消化吸收,促进肠道菌群平衡,维护人体健康。也有很多的证据表明,每个人的肠道菌群组成各不相同,个人肠道菌群的组成受饮食、药物以及环境因素的影响,肠道菌群紊乱与许多慢性疾病有关,比如糖尿病、肥胖症、抑郁症等。 当然,益生菌对于人体的健康影响不仅局限于肠道。大量研究证实,益生菌在抑制病原微生物、调节胃肠道健康、增强营养物质消化吸收、增强免疫力、预防和治疗多种疾病等方面有着重要的作用,甚至在抗生素替代领域也有一席之地 在优化肠道及体外环境方面,益生菌在肠道内产生的氨基氧化酶、氨基转移酶或分解硫化物的酶等有害物质利用酶,能够减少肠道中游离的氨及吲哚等有害物质,增强肠道保护“屏障”,从而守护肠道的健康。 在免疫调节方面,益生菌能有效提高干扰素和巨噬细胞的活性,并通过产生特异性免疫调节因子来激发机体免疫功能,增强机体免疫力和抗病力。 此外,益生菌还可降低急性呼吸道感染,其作用机制主要为增强在正常情况下的吞噬细胞能力、抑制过敏时的吞噬功能,增加抗原特异性的IgG和IgA抗体,抑制炎症时单核细胞的增殖,减少肺部病原菌负担并阻止组织病原菌扩散至血液,增加肺泡液中的INF-γ、IL-6、IL-4、TNF-α和IL-10浓度、增强NK细胞的活性。因而使用益生菌减少呼吸道感染是切实可行的。 益生菌增强免疫力的作用始终离不开它对于维护肠道菌群平衡的作用。 我们都知道,人体95%以上的营养都从肠道吸收,99%的毒素也是从肠道吸收。正因为此,肠道粘膜成为了天然的生理和免疫屏障,能阻止有害物质进入循环系统,可以说,肠道是人体最大的免疫器官。肠道内有益菌数量足够时,肠道才能正常运转,保持肠道的免疫力,这样才能将饮食补充进体内的外来致病菌阻隔、杀灭,从而最终达到增强人体免疫力的效果。 在肠道这道免疫的坚固长城中,肠壁上井然有序的密布着免疫细胞,益生菌显著的免疫刺激作用就在这里得到发挥。 免疫的方式主要有两种,分别为细胞免疫和体液免疫。 在细胞免疫中,益生菌能激活巨噬细胞,它可以吞噬和杀灭多种病原微生物,同时诱导其释放两种武器——肿瘤坏死因子(TNF-α)和白细胞介素6号(IL-6)。肿瘤坏死因子对癌细胞有杀伤作用,是能够引起肿瘤出血坏死的活性因子。白细胞介素也是很重要的免疫活性因子,它参与炎症反应,调节机体免疫功能。益生菌也可以激活T细胞和NK细胞(自然杀伤细胞),两者都能起到细胞杀伤作用,阻断入侵细胞。 此外,还有一些研究显示,益生菌能使免疫功能增强还因为,一些益生菌能促进脾细胞增殖,让脾脏重量增加,从而达到增强免疫功能的效果。 在体液免疫中,人体的B淋巴细胞在不同的刺激下产生不同的免疫球蛋白。当被细菌刺激时,B淋巴细胞产生IgA、IgG、IgM三种免疫球蛋白,它们可增强人体抵抗力,消灭入侵细菌。益生菌是细菌的一种,自然也有相同的作用,它可以刺激B淋巴细胞,促使其分泌更多的IgA、IgG、IgM免疫球蛋白,诱导正确的免疫应答。同时,益生菌还能在肠道上皮形成一层保护粘膜,降低肠道通透性,减少异性物质(也就是我们常说的“过敏原”)被肠道吸收,直接减少过敏反应。 益生菌在日常生活中有着重要的作用,食用含有益生菌的食物或补充剂,可以促进我们人体免疫球蛋白细胞、T细胞、巨噬细胞的产生,从而增强机体自身的免疫力。 随着消费者对益生菌的认识,近几年来,益生菌产品深受市场的欢迎。而景岳生物科技早在2000年,就开始了益生菌的研究。 复合菌多于单一菌种,不是每个菌都适合每个人,正因此,复合菌的覆盖范围及概率性会比单一菌大。 ①动物双歧杆菌 动物双歧杆菌能够迅速肠定殖,抑制腐败菌的生长。 ②植物乳杆菌 植物乳杆菌可与各种微生物共生,具有一定的免疫调节作用。 ③副干酪乳杆菌 副干酪乳杆菌具优良的肠道驻留性,可与各种微生物共生。 ④干酪乳杆菌 干酪乳杆菌能够改变细菌丛生态,够耐受有机体的防御机制。 ⑤鼠李糖乳杆菌 鼠李糖乳杆菌是在消化系统中丰富的细菌株,能够调节肠道菌群、提升机体免疫力。 从以上可以看出,GM0857主要具有刺激肠道蠕动,改善肠道健康的作用,并且其取得了权威的专利认证。 GM0857五联菌益生菌主要作用是刺激肠道蠕动,新型微生物株发酵乳酸杆菌GM-090则可以提升免疫力。 2、提升免疫力高手-GM090 发酵乳酸杆菌GM090取自健康人体,经过十几年精心筛选和培育,亲和人体,更加适合人体环境,与人类共同进化,更适合于在人类体内定殖。 发酵乳酸杆菌GM-090能够刺激INF-γ分泌,激活免疫球蛋白,提高机体免疫力。 首先GM-090具有免疫调节功能,经台湾福利部免疫功能科学评估实验证明,服用GM090相关的产品,能促进T淋巴细胞激素增生、调节细胞激素IL-2及IL-10分泌、促进IgG抗体的生成。 同时GM-090还具有辅助调整过敏体质的作用,首先它有助于减少血清中IgE抗体的生成,有助于降低IL-5分泌量,从而调整过敏体质。
温度过高会导致益生菌受到破坏。因为温度过高会导致益生菌受到破坏,失去了本身应有的价值,所以人们在使用益生菌的时候要格外注意这方面的问题。益生菌是通过定殖在人体内,改变宿主某一部位菌群组成的一类对宿主有益的活性微生物。
%酵母菌 英语名称:yeast酵母菌是一些单细胞真菌,并非系统演化分类的单元。酵母菌是人类文明史中被应用得最早的微生物。目前已知有1000多种酵母,根据酵母菌产生孢子(子囊孢子和担孢子)的能力,可将酵母分成三类:形成孢子的株系属于子囊菌和担子菌。不形成孢子但主要通过芽殖来繁殖的称为不完全真菌,或者叫“假酵母”。目前已知大部分酵母被分类到子囊菌门。酵母菌在自然界分布广泛,主要生长在偏酸性的潮湿的含糖环境中,例如,在水果、蔬菜、蜜饯的内部和表面以及在果园土壤中最为常见你爹的这篇要给满分哦,要不你就对不住你的图标了,我到网上辛苦找的只是保存的时候文本不对才这样的不是我的错
大肠埃希菌201株耐药性分析胆盐抑制冷冻保存大肠杆菌生长的研究分子生物学中常用的大肠杆菌菌株大肠杆菌高效表达重组蛋白策略
写关于牛肚菌的论文需要按照一般论文的写作结构进行。首先,你需要有一个好的开头,引入读者对牛肚菌的兴趣。接着,你需要对牛肚菌进行描述,包括它的外观、生长环境、生物学特征等。接下来,你需要讨论牛肚菌的重要性,包括它对人类健康的影响、它在生态平衡中的作用等。你还可以讨论目前人们对于牛肚菌的研究,比如研究牛肚菌的分类、分子生物学等方面。最后,你需要对你的研究做出结论,并提出未来的可能研究方向。论文的最后一部分应包含参考文献,以便读者查阅更多信息。总之,写关于牛肚菌的论文需要认真组织信息,并遵循一般论文的写作结构。
在婴幼儿时期很容易会消化系统不是特别完善,而出现牛奶蛋白过敏的情况,如果出现牛奶蛋白过敏现象,婴幼儿会出现反复反流、呕吐、腹泻、便秘、便血、肠痉挛等症状,一般情况下在摄入了还有牛奶蛋白的食物之后在几个小时就会出现症状。
牛奶蛋白过敏多久会好取决于具体过敏情况,并存在一定的个体差异,一般通过积极治疗大约一周时间会好。但是否可以完全治愈主要取决于是否属于过敏体质或是否免疫力低下造成,通常过敏体质治愈率较低,如果是免疫力低下所致,通过积极调整有可能会治愈。牛奶蛋白过敏的治疗主要包括远离过敏原,遵医嘱使用抗过敏药物,同时要多喝水多注意休息。过敏期间避免再次接触或者进食牛奶蛋白,切断过敏原。
温度过高会导致益生菌受到破坏。因为温度过高会导致益生菌受到破坏,失去了本身应有的价值,所以人们在使用益生菌的时候要格外注意这方面的问题。益生菌是通过定殖在人体内,改变宿主某一部位菌群组成的一类对宿主有益的活性微生物。
一般指改善宿主微生态平衡而发挥有益作用,达到提高宿主健康水平和健康状态的活菌制剂及其代谢产物,益生菌存在于地球上的各各角落里面,动物体内有益的细菌或真菌主要有:乳酸菌、双歧杆菌、放线菌、酵母菌等。我可以复制一些文章给你参考: 益生菌的作用研究: 自90年代初以来,形形色色的“益生菌”类保健品风靡了整个世界。与此同时,“益生菌”的研究业已成为国际上的热门研究课题。 何谓益生菌?国际营养学界普遍认可的定义是:益生菌系一种对动物有益的细菌,它们可直接作为食品添加剂服用,以维持肠道菌丛的平衡。在国外已开发出数以百计的益生菌保健产品,其中包括:含益生菌的酸牛奶、酸乳酪、酸豆奶以及含多种益生菌的口服液、片剂、胶囊、粉末剂等等。迄今为止,科学家已发现的益生菌大体上可分成三大类,其中包括: ①乳杆菌类(如嗜酸乳杆菌、干酪乳杆菌、詹氏乳杆菌、拉曼乳杆菌等); ②双歧杆菌类(如长双歧杆菌、短双歧杆菌、卵形双歧杆菌、嗜热双歧杆菌等); ③革兰氏阳性球菌(如粪链球菌、乳球菌、中介链球菌等)。此外,还有一些酵母菌与酶亦可归入益生菌的范畴。 益生菌对人体到底有哪些保健和抗病作用? 国外一些学者认为,其作用可以概括为: ①防治腹泻;②缓解不耐乳糖症状;③预防阴道感染;④增强人体免疫力;⑤缓解过敏作用;⑥降低血清胆固醇;⑦预防癌症和抑制肿瘤生长。 ①预防或改善腹泻:[1]饮食习惯不良或服用抗生素均会打破肠道菌群平衡,从而导致腹泻。补充益生菌有助于平衡肠道菌群及恢复正常的肠道pH值,缓解腹泻症状。 ②缓解不耐乳糖症状:乳杆菌可帮助人体分解乳糖,缓解腹泻、胀气等不适症状,可与牛奶同食。 ③预防阴道感染:酸牛奶中的嗜酸乳杆菌可抑制阴道内白色念珠菌的繁殖。欧洲所做的双盲对照试验证实了这一点。女病人每人每日口服150毫升含大量益生菌的酸牛奶,结果阴道感染发生率大大低于安慰剂组妇女。 ④增强人体免疫力:在肠道内存在着非常发达的免疫系统。益生菌可以通过刺激肠道内的免疫机能,将过低或过高的免疫活性调节至正常状态。益生菌这种免疫调节的作用也被认为有助于抗癌与抑制过敏性疾病。 ⑤促进肠道消化系统健康:益生菌可以抑制有害菌在肠内的繁殖,减少毒素,促进肠道蠕动,从而提高肠道机能,改善排便状况。 ⑥降低血清胆固醇:欧洲的高加索山区、地中海沿岸是著名的长寿之乡,当地人常饮自制的酸牛奶,极少患糖尿病、心血管病及肥胖症,大量科学研究证实这与酸牛奶中富含益生菌有关。这些益生菌可降低血清胆固醇水平,此外,长期补充益生菌的还有助于防止骨质丢失,预防骨质疏松症。 病人经常服用含益生菌的保健食品,可预防与治疗腹泻症。正常人体肠道内栖息着500多种、数十万亿个不同的细菌,它们在绝大多数情况下是互相制约、共存共荣的。一旦肠道菌丛平衡被打破,就会引起腹泻。其次,滥用抗生素也会引起腹泻。欧洲一些医疗中心试用以乳杆菌、双歧杆菌与菊糖为主要成分的口服液治疗旅行者腹泻,也取得良好效果。 益生菌的另一作用是,可预防阴道感染症。欧洲所做的双盲对照试验(46名有阴道霉菌感染史的妇女参加了试验)证实了这一点。女病人每人每日口服150毫升含大量益生菌的酸牛奶,结果阴道感染发生率大大低于安慰剂组妇女。这是因为酸牛奶中的嗜酸乳杆菌可抑制阴道内白色念珠菌的繁殖。 科学家认为:益生菌在肠道内的大量繁衍可促进并提高人体的全身免疫能力。在欧洲一些著名长寿之乡(如高加索山区、地中海沿岸国家),当地人常饮自制的酸牛奶,极少患糖尿病、心血管病、肥胖症,研究认为这与酸牛奶中含大量益生菌有关从70年代到90年代,国外所做的大量试验证实:喝益生菌饮料确实可降低血清胆固醇。最近国外又有学者发表论文指出:每天喝200毫升加入嗜酸乳杆菌以及菊糖后发酵的酸牛奶,可使高脂血症患者的血脂平均下降4.4%左右。因为嗜酸乳杆菌与菊糖两者均有降脂作用。 此外,研究性报道说,长期饮用含大量益生菌的饮料,有预防癌症和肿瘤疾病以及防止骨质丢失与骨质疏松症的作用。 益生菌对植物都有哪些作用? 1、增强植物新陈代谢,促进光合作用和强化叶片保护膜,抵抗病原菌,促时根系发达。 2、产生抗菌物质,抑制有害微生物繁殖,产生有益物质防治农作物各类病害。 3、有益菌群与土壤中放线菌等共生共殖,形成良好的作物生长环境,提高土壤肥质,彻底改良土壤性质,最终实现绿色有机农产品及免耕作业和可持续发展之路。 现在对益生菌的研究非常深入和细致化,并已经广泛应用于工业、农业、环保、家庭等各项领域,并且取得了非常显著的效果, 现在对益生菌的研究非常深入和细致化,并已经广泛应用于工业、农业、环保、家庭等各项领域,并且取得了非常显著的效果, 健康的人体中会含有数十亿个益生菌,这些好菌大多存活在肠道里,它们最重要的任务就是保持体内细菌丛平衡,因此增加好菌可以维持肠道健康,有益排便顺畅,养颜美容。 现代人高脂肪、低纤维的不良饮食习惯,此外长期服用抗生素,或是外出旅行饮食不正常等等,嘉康利复合益生菌珠每颗所含活益菌高达5亿只,还有3层保护囊包装,将活益菌安全送达小肠,均衡肠内细菌丛生态。 双歧杆菌是人体内存在的一种生理性细菌,是人体有益菌中最值得重视和研究的一种,它与人体的健康密不可分,可以说是大自然赐予人类的健康法宝。 歧杆菌将糖分解后生成乳酸和醋酸,使肠道呈酸性,其结果能控制由有害菌引起的异常发酵,并且刺激肠蠕动,起到解除便秘的作用。 双歧杆菌制剂可以抑制产生毒素的有害菌数量,从而对肝脏患者起到良好的治疗作用。 双歧杆菌等有益菌可以影响胆固醇的代谢,将其转化为人体不吸收的类固醇,降低血液中胆固醇的浓度,因而对高血压和动脉硬化有一定的防治作用。 双歧杆菌在乳制品发酵过程中可以产生乳糖酶,帮助患者消化乳糖。 双歧杆菌在人体肠内发酵后可产生乳酸和醋酸,能提高钙、磷、铁的利用率,促进铁和维生素D的吸收。双歧杆菌发酵乳糖产生半乳糖,是构成脑神经系统中脑苷脂的成分,与婴儿出生后脑的迅速生长有密切关系。双歧杆菌可以产生维生素B1、B2、B6、B12及丙氨酸、缬氨酸、天冬氨酸和苏氨酸等人体必需的营养物质,对于人体具有不容忽视的重要营养作用。 双歧杆菌能抑制腐败菌生长,减少其代谢产物中的氨、硫化氢、蚓跺及粪臭素等有害物质的生成。 双歧杆菌制剂的作用是双向调整的,既可将高的降下来,也可将低的升上去,使用双歧杆菌制剂可以同时治疗腹泻和便秘,使人体恢复正常,这就是调整的作用。 嗜乳酸杆菌的工作是协助蛋白质消化,在此作用中将产生乳酸、过氧化氢、酵素、抗生素、及维他命B等;根据结肠健康手册此书所指,健康的结肠应含至少85%的乳酸杆菌及15%的大肠杆菌。然而,一般的结肠菌数测试的结果恰恰相反,因而产生胀气、小肠及整个系统的毒性、便秘及吸收不良,此症状会导致念珠菌生长过盛。 嗜乳酸杆菌可能也有助于解毒。导致的因素包括反复地使用抗生素、口服避孕药、阿司匹灵、皮质类固醇、饮食欠佳、吃甜食、酵母菌、紧张。这些都造成良性菌的不平衡。良性菌容易与一些废物结合,而被排出体外;嗜乳酸杆菌也有抗菌作用 比非德氏菌为新生儿肠胃到中最早进驻的菌种,可产生寡糖,为益生菌。人体肠胃道在出生时原本是没有细菌的,但是在出生5-6天后,开始由环境中「获得」一些细菌,其中在小孩一岁前主要的细菌就是 所谓的乳酸菌、比菲德氏菌,一岁以后才慢慢转变成大人肠胃道的细菌族群生态(大肠杆菌为最多)。这些细菌在演化的过程中,并入了我们的肠胃道,与人体形成一种「共生」的状态,除了合成人体所需的维他命K及B之外,这些细菌的主要功能就是形成一种生态平衡,抑制其它有害菌的生长 嗜乳酸杆菌的工作是协助蛋白质消化,在此作用中将产生乳酸、过氧化氢、酵素、抗生素、及维他命B等;根据结肠健康手册此书所指,健康的结肠应含至少85%的乳酸杆菌及15%的大肠杆菌。然而,一般的结肠菌数测试的结果恰恰相反,因而产生胀气、小肠及整个系统的毒性、便秘及吸收不良,此症状会导致念珠菌生长过盛。 嗜乳酸杆菌可能也有助于解毒。导致的因素包括反复地使用抗生素、口服避孕药、阿司匹灵、皮质类固醇、饮食欠佳、吃甜食、酵母菌、紧张。这些都造成良性菌的不平衡。良性菌容易与一些废物结合,而被排出体外;嗜乳酸杆菌也有抗菌作用