首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

毕业论文要做spss分析

发布时间:

毕业论文要做spss分析

一般做描述,差异,相关和回归分析。

会。2022年,民办高校的本科毕业论文都要求做spss数据分析,抄袭率要求10%以下。SPSS,统计产品与服务解决方案软件。最初软件全称为“社会科学统计软件包”。

我建议你用卡方检验 就是crosstabs项 这是专门进行率的比较的 事先要把数据呈标准的状态建立在spss中 如何建立没法讲 自己看一下专业书 具体操作步骤:spss--analyze--descriptive statistics--crosstabs然后出现对话框 选入行与列 点开下面的statistics子对话框 选中chi-squrie和kappa 点continue 然后ok 你就看到结果了 结果中看sig值即可 就是p值

操作设备:戴尔电脑

操作系统:win10

操作软件:SPSS 23.0版

1、首先打开SPSS 23.0版软件,找到要编辑的数据,可以从下图中找到方框。

2、在接下来的过程中需要在上方菜单栏中找到分析菜单,将鼠标移动到一般线性模型,然后选择单个变量,单击鼠标左键选择。

3、可以看到界面中的红色框。在单变量对话框中,将变量分别移动到因变量和协变量。在这里,将高度移动到因变量,将药物移动到协变量。

4、单击右侧菜单中的选项,将鼠标移动到单变量选项,选择参数估计值,并将参数估计值标记为勾号。

5、选择完成后,点击选项中的继续选项,然后可以选择在单变量对话框中点击确定,即可查看编辑后的操作。

6、最后可以看到界面上的方框显示在SPSS查看器中可以看到药物对身高影响的显着性分析,红框内的显着性为0<0.05,为显着。

t检验

适用于计量资料、正态分布、方差具有齐性的两组间小样本比较,检验两个处理平均数的差异是否显著。

spss提供的T检验有3种形式,分别是单样本T检验(One-Sample T Test),独立样本T检验(Independent-Sample T Teat)和成对样本T检验(Paired-Sample T Test)。

毕业论文用spss做数据分析

需要演示结果,用科学的三线表,不用演示计算过程

具体要做什么分析,可以

三个参数对4个处理参数的差异,标“*”的是各方式有显著差异的,看看是不是这样好没问题给我个邮箱吧我把SPSS保存的文件给你里面数据都有看看方便么spss差异显著性分析

你要先有论文的目的和分析思路,然后根据目的的论文和分析思路,确定需要收集的数据和类型,最后才考虑 应该用spss什么方法来实现。下面是我自己写的一个 带数据分析的论文写作指导首先,我要说明这里的指导并非常规意义的指导,我这里说的指导是到底应该如何写论文(应该还是很抽象,不过看完就知道了)。迄今为止,我大约也帮忙做了能有上千份的学生论文数据分析部分,包括一部分的整篇论文写作,其中涉及到有医学类、护理类、人文社科类、教育类、经济学类、心理学类等,单凡需要用到数据分析的论文。因为我是做市场研究与数据分析的,擅长的主要工具是spss,不敢说百分百精通spss,但是应付个八九十应该是足够了,很自然的平时就利用下班和业余时间帮学生做一些论文数据分析以及论文写作指导。很多论文的核心部分都包括数据分析,而统计学也应该是所有学科应该学习的一门重要课程,但是恰恰相反,很多学科只是把统计学和数据分析作为一项选修甚至不重要的课程对待,这样导致学生在最后做论文时完全不懂。而在这种情况下,很多学生因为对数据分析的一窍不通,导致论文从开始的设计到后续的数据收集、整理等都会出现问题,最终导致分析出问题。因此,在对数据分析一窍不通的情况下,应该如何从头构建论文及写作呢?很多论文虽然数据分析部分是核心,但是不管哪种论文的写作,都脱离不了论文的框架。因此,具体的过程应该如下:首先是选题,当然很多时候是导师直接给选题,这个没有太多讨论。其次是选题确定后,马上要做的不是想我应该怎么去写作,或者在哪抱怨“哎~~郁闷,完全不知道怎么写嘛”。而是先通过文献查找,看前人在这个选题方面已经做了哪些研究,都是如何做的。通过查找文献找到跟选题有关的资料,然后对这些资料进行整理,整理不需要计较参考文献的结论和数据细节等,而是要把每篇文献的研究目的、采用的研究方法、采用的分析方法整理出来。当然参考文献中的分析方法你可能还完全不懂,但是没关系,你先把这些参考文献中使用的分析方法全部罗列出来,如线性回归、方差分析、均值t检验、logistic回归等,把这些文献中常用的统计方法罗列出来,你需要弄清楚对应关系,即每种分析方法是用来支持和实现什么样的研究目的,以及能够得出什么样的结论,认真阅读文献就能实现这一步。第三.通过上一步,你应该朦胧的知道你选题相关的参考文献中常用的统计方法名称,以及这些统计方法能够帮助实现哪些目的,或者得出什么结论,同时也不会对自己的选题那么恐惧和迷茫了,因为可能你的选题已经有前人做过了,你的论文只是“复制”一遍而已了,我说的复制是重复一遍前人的研究。在这种情况下,可以构思下自己的选题,这一步属于纯理论层面的,你需要将自己的思路具体化,比如要实现什么目的,很自然的需要什么数据分析方法也就能确定了。当然很多论文会预先设计一系列待验证的假设,也是在这一步完成,因为你找到的文献中可能会存在矛盾的结论,可能会存在一些你认为的研究缺陷(文献看多了,自然自己就会有想法出来了),提出自己的一系列假设,能够很清楚的指导后面的数据收集和分析。第四.选题、假设还有研究方法这些经过前面几步都能确定了,接下来就是要考虑具体研究和收集数据的环节了。这个环节最重要的也是首要的是弄清楚你的数据应该是什么类型的,通过哪种方法来获取。其实也容易了,因为前面你已经确定了统计分析方法,而每种方法有它特定的数据类型要求,比如是分类数据(如性别、民族、年级等)、比如连续性数据(如年龄、身高、体重、温度、长度、距离等)。分类数据简单通俗点的理解就是这些数字本身是没有意义的,是人为赋予它一定的含义,这些数据之间不存在连续性,且加减乘除没有意义,而连续性数据是数据本身有意义,且能够进行一些加减乘除运算。确定了所需要的数据类型,就大致能够知道在数据收集时,应该注意的问题。比如一份问卷调查,其中应该如何设计问题也就大致清楚了,通常问卷设计时就要考虑两种数据类型的问题,因为不同的选项设计会导致不同的数据类型。如你设计一个问题的答案选项是“有/没有”、“是/否”这种是属于分类数据,如果你的答案选项是李克特量表式“非常满意----非常不满意”这种,在处理时可以按照分类数据,只能统计出一些百分比,也可能将其按照连续数据如12345打分形式,这样可以求均值,可以做很多其他多元统计分析。因此这一步确定数据类型很关键,如果数据类型弄错的话,则收集的数据完全无用。第五.具体收集数据过程,不细说了,收集回来之后就是数据的录入。记住一定要录入原始的数据,而不是经过加减整理汇总后的数据。数据录入格式也是有要求的,一般大致同样的情况下,都是一行代表一个个案或者一份问卷的数据,而一列对应表示的是问卷中的一个问题,即变量。因此数据录入完成后,应该是有多少样本数据,就有多少行,数据中包含多少个指标,那就有多少列。第六.这一步才是你应该开始头疼的数据分析不会了怎么办。因为到这里才开始是数据的具体分析过程了。不会怎么办,前面已经知道了分析方法,这种情况,只有找本教材,然后找对应的方法介绍学习即可,或者实在不行找人指导,找人帮忙等等。最后。分析完成后,开始整篇论文的写作。其实完成前面的每一步,到最后写文献综述以及讨论时,自然就会得心应手了,很少会需要绞尽脑汁甚至东拼西凑。

spss因子分析论文

只要你熟懂因子分析的原理你就可以看明白每个选项的意思以及处理的结果如果不会分析我可以帮你分析

不理想的原因主要是数据本身造成的你应该没做预调查对吧?那么你的设计是有缺陷的,会直接导致结果不理想你收集数据有没有严格标准,严格执行,没有的话,会有影响其他还有很多影响因素解决的方法,从专业上说,应该重新修改条目,根据因子分析的结果,调整问卷结构,说来就很多了至于你说的造假,那是世界上最复杂的事情,不信你可以自己试试,是不是最复杂的我经常帮别人做数据分析的

(1)用巴特利球形检验或KMO检验,判断学生的各科成绩是否适合因子分析;(2)构造因子变量,用主成分分析法,确定公共因子;(3)求因子载荷矩阵;(4)对因子载荷矩阵进行旋转,使各门课程在公共因子上的作用更加明显并易于解释;(5)计算因子得分系数矩阵,根据回归算法计算出因子得分函数的系数;(6)根据“ ”(其中 是第 个主成分的贡献率, 是第 个因子的得分)模型,计算每个学生成绩在 个公共因子上的得分并求和,以此作为综合评价的依据进行排序。

你好spss熟练掌握你怎么联系呢

spss时间序列分析毕业论文

3.3时间序列分析3.3.1时间序列概述1. 基本概念(1)一般概念:系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。它是系统中某一变量受其它各种因素影响的总结果。(2)研究实质:通过处理预测目标本身的时间序列数据,获得事物随时间过程的演变特性与规律,进而预测事物的未来发展。它不研究事物之间相互依存的因果关系。(3)假设基础:惯性原则。即在一定条件下,被预测事物的过去变化趋势会延续到未来。暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。 近大远小原理(时间越近的数据影响力越大)和无季节性、无趋势性、线性、常数方差等。(4)研究意义:许多经济、金融、商业等方面的数据都是时间序列数据。 时间序列的预测和评估技术相对完善,其预测情景相对明确。 尤其关注预测目标可用数据的数量和质量,即时间序列的长度和预测的频率。2. 变动特点(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不等。(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。(3)随机性:个别为随机变动,整体呈统计规律。(4)综合性:实际变化情况一般是几种变动的叠加或组合。预测时一般设法过滤除去不规则变动,突出反映趋势性和周期性变动。3. 特征识别认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法。(1)随机性:均匀分布、无规则分布,可能符合某统计分布。(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。)(2)平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数。 样本序列的自相关函数只是时间间隔的函数,与时间起点无关。其具有对称性,能反映平稳序列的周期性变化。 特征识别利用自相关函数ACF:ρk=γk/γ0 其中γk是yt的k阶自协方差,且ρ0=1、-1<ρk<1。 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋近于0,前者测度当前序列与先前序列之间简单和常规的相关程度,后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上,预测模型大都难以满足这些条件,现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。4. 预测类型(1)点预测:确定唯一的最好预测数值,其给出了时间序列未来发展趋势的一个简单、直接的结果。但常产生一个非零的预测误差,其不确定程度为点预测值的置信区间。(2)区间预测:未来预测值的一个区间,即期望序列的实际值以某一概率落入该区间范围内。区间的长度传递了预测不确定性的程度,区间的中点为点预测值。(3)密度预测:序列未来预测值的一个完整的概率分布。根据密度预测,可建立任意置信水平的区间预测,但需要额外的假设和涉及复杂的计算方法。5. 基本步骤(1)分析数据序列的变化特征。(2)选择模型形式和参数检验。(3)利用模型进行趋势预测。(4)评估预测结果并修正模型。3.3.2随机时间序列系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。(自变量不直接含有时间变量,但隐含时间因素)1. 自回归AR(p)模型(R:模型的名称 P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素)(1)模型形式(εt越小越好,但不能为0:ε为0表示只受以前Y的历史的影响不受其他因素影响) yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt 式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关; εt不同时刻互不相关,εt与yt历史序列不相关。式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定;yt当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系;yt-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值;φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达yt依赖于过去的程度,且这种依赖关系恒定不变;εt随机干扰误差项,是0均值、常方差σ2、独立的白噪声序列,通过估计指定的模型获得。(2)识别条件 当k>p时,有φk=0或φk服从渐近正态分布N(0,1/n)且(|φk|>2/n1/2)的个数≤4.5%,即平稳时间序列的偏相关系数φk为p步截尾,自相关系数rk逐步衰减而不截尾,则序列是AR(p)模型。 实际中,一般AR过程的ACF函数呈单边递减或阻尼振荡,所以用PACF函数判别(从p阶开始的所有偏自相关系数均为0)。(3)平稳条件 一阶:|φ1|<1。二阶:φ1+φ2<1、φ1-φ2<1、|φ2|<1。φ越大,自回归过程的波动影响越持久。(4)模型意义 仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量相互独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性等造成的困难。2. 移动平均MA(q)模型(1)模型形式 yt=εt-θ1εt-1-θ2εt-2-……-θpεt-p(2)模型含义用过去各个时期的随机干扰或预测误差的线性组合来表达当前预测值。AR(p)的假设条件不满足时可以考虑用此形式。总满足平稳条件,因其中参数θ取值对时间序列的影响没有AR模型中参数p的影响强烈,即这里较大的随机变化不会改变时间序列的方向。(3)识别条件 当k>q时,有自相关系数rk=0或自相关系数rk服从N(0,1/n(1+2∑r2i)1/2)且(|rk|>2/n1/2(1+2∑r2i)1/2)的个数≤4.5%,即平稳时间序列的自相关系数rk为q步截尾,偏相关系数φk逐步衰减而不截尾,则序列是MA(q)模型。 实际中,一般MA过程的PACF函数呈单边递减或阻尼振荡,所以用ACF函数判别(从q阶开始的所有自相关系数均为0)。(4)可逆条件 一阶:|θ1|<1。二阶:|θ2|<1、θ1+θ2<1。 当满足可逆条件时,MA(q)模型可以转换为AR(p)模型3. 自回归移动平均ARMA(p,q)模型(1) 模型形式 yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt-θ1εt-1-θ2εt-2-……-θpεt-p式中符号: p和q是模型的自回归阶数和移动平均阶数;φ和θ是不为零的待定系数;εt独立的误差项;yt是平稳、正态、零均值的时间序列。(2) 模型含义使用两个多项式的比率近似一个较长的AR多项式,即其中p+q个数比AR(p)模型中阶数p小。前二种模型分别是该种模型的特例。一个ARMA过程可能是AR与MA过程、几个AR过程、AR与ARMA过程的迭加,也可能是测度误差较大的AR过程。(3) 识别条件平稳时间序列的偏相关系数φk和自相关系数rk均不截尾,但较快收敛到0,则该时间序列可能是ARMA(p,q)模型。实际问题中,多数要用此模型。因此建模解模的主要工作是求解p、q和φ、θ的值,检验εt和yt的值。(4) 模型阶数AIC准则:最小信息准则,同时给出ARMA模型阶数和参数的最佳估计,适用于样本数据较少的问题。目的是判断预测目标的发展过程与哪一随机过程最为接近。因为只有当样本量足够大时,样本的自相关函数才非常接近母体的自相关函数。具体运用时,在规定范围内使模型阶数从低到高,分别计算AIC值,最后确定使其值最小的阶数是模型的合适阶数。模型参数最大似然估计时AIC=(n-d)logσ2+2(p+q+2)模型参数最小二乘估计时AIC=nlogσ2+(p+q+1)logn式中:n为样本数,σ2为拟合残差平方和,d、p、q为参数。其中:p、q范围上线是n较小时取n的比例,n较大时取logn的倍数。实际应用中p、q一般不超过2。4. 自回归综合移动平均ARIMA(p,d,q)模型(1)模型识别 平稳时间序列的偏相关系数φk和自相关系数rk均不截尾,且缓慢衰减收敛,则该时间序列可能是ARIMA(p,d,q)模型。(2)模型含义模型形式类似ARMA(p,q)模型,但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用ARMA(p,q)模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中d一般不超过2。若时间序列存在周期性波动,则可按时间周期进行差分,目的是将随机误差有长久影响的时间序列变成仅有暂时影响的时间序列。即差分处理后新序列符合ARMA(p,q)模型,原序列符合ARIMA(p,d,q)模型。3.3.3建模解模过程1. 数据检验检验时间序列样本的平稳性、正态性、周期性、零均值,进行必要的数据处理变换。(1)作直方图:检验正态性、零均值。 按图形Graphs—直方图Histogram的顺序打开如图3.15所示的对话框。 图3.15 将样本数据送入变量Variable框,选中显示正态曲线Display normal curve项,点击OK运行,输出带正态曲线的直方图,如图3.16所示。 图3.16 从图中看出:标准差不为1、均值近似为0,可能需要进行数据变换。(2)作相关图:检验平稳性、周期性。 按图形Graphs—时间序列Time Series—自相关Autocorrelations的顺序打开如图3.17所示的对话框。 图3.17 将样本数据送入变量Variable框,选中自相关Autocorrelations和偏自相关Partial Autocorrelations项,暂不选数据转换Transform项,点击设置项Options,出现如图3.18所示对话框。 图3.18因为一般要求时间序列样本数据n>50,滞后周期k

SPSS软件是“统计产品与服务解决方案”软件,是数据统计分析的一个重要的工具。下文是我为大家整理的关于spss统计分析论文的 范文 ,欢迎大家阅读参考!

统计分析软件SPSS的特点和应用分析

【摘要】通过文献资料法,介绍了统计分析软件SPSS的特点,并通过实例:用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的应用做了详细的介绍,旨在为学习SPSS软件的人们提供参考。

【关键词】统计分析软件;SPSS;独立样本;非参数检验

一、前言

统计分析软件SPSS是一款统计产品与服务解决方案的软件,其全称为“统计产品与服务解决方案(Statistical Product and Service Solutions)”。该软件是一款在统计中应用很广的统计分析软件,目前在各专业 毕业 论文经常可以看到它的身影,其应用范围广、方便快捷等特点吸引着众多的 爱好 者。本文通过对统计分析软件SPSS的功特点进行介绍,通过举例用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的操作用做了详细的介绍,为学习SPSS软件的人们提供参考。

二、SPSS软件的特点

(一)操作简便

SPSS软件的界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。

(二)编程方便

具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计 方法 的各种算法,即可得到需要的统计分析结果。对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。

(三)功能强大

具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。

(四)全面的数据接口

能够读取及输出多种格式的文件。比如由dBASE、FoxBASE、FoxPRO产生的*.dbf文件,文本编辑器软件生成的ASCⅡ数据文件, Excel 的*.xls文件等均可转换成可供分析的SPSS数据文件。能够把SPSS的图形转换为7种图形文件。结果可保存为*.txt,word,PPT及html格式的文件。

(五)灵活的功能模块组合

SPSS for Windows软件分为若干功能模块。用户可以根据自己的分析需要和计算机的实际配置情况灵活选择。

(六)针对性强

SPSS针对初学者、熟练者及精通者都比较适用。并且现在很多群体只需要掌握简单的操作分析,大多青睐于SPSS,像薛薇的《基于SPSS的数据分析》一书也较适用于初学者。而那些熟练或精通者也较喜欢SPSS,因为他们可以通过编程来实现更强大的功能。

三、实例分析――两个独立样本的检验(Test for Two Independent Sample)

例题:为了调查甲、乙两地土壤对 种植 同一种西瓜有没有影响,从这两个产地分别随机抽取同种的8只和7只西瓜,称重后得重量(市斤)如下:

甲(斤):9.31、9.57、10.21、8.86、8.52、10.53、9.21、9.14

乙(斤):9.98、8.46、8.92、10.14、10.17、11.04、9.43

问:根据样本数据检验两地的土壤对种植西瓜在重量上是否有显著差异?

解:建立假设 H0:甲乙两地的西瓜重量没有显著差异;

H1:甲乙两地的西瓜重量有没有显著差异。

然后根据上面给出的数据建立数据文件,注意数据文件中有一个表示重量数据的变量和一个表示地区分组的变量。最后在数据编辑窗口进行检验。检验的具 体操 作过程如下:

第一步:单击Analyze Nonparametric Test 2 Independent Sample,打开Two-Independent-Sample对话框(见图1)。

第二步:选择检验的变量进入检验框中,选择分组变量进入Grouping Variable框中,单击Define Group键,打开Define Group对话框,将分组变量值分别键入两个框中,单击Continue返回主对话框(见图2):

第三步:在Test Type栏中,确定检验方法。

SPSS中提供了四种检验方式,几种检验方法侧重点不同,但都是先把两样本数据混合排序,再从不同的角度分析并检验两个独立总体的分布是否有显著的差异。有时这几种检验结果可能不一样,所以要结合数据的探索分析考察数据的分布状况作出结论。本文选择了常用的Mann-Whitney U曼―惠特尼检验和Kolmogorov-Smirnov Z K-S检验。

第四步:选择输出的结果形式及缺失值处理方式;

第五步:单击OK,得输出结果。

所以,以上两种检验结论是一致的。也就是说在两地种植的同一种西瓜地重量没有显著差异。

参考文献

[1]杜志渊.常用统计分析方法―SPSS应用[M].山东人民出版社,2011.

[2]刘宁元.运用SPSS对高职专业课程成绩进行相关分析[J].电脑与电信,2007(3).

[3]井海立.SPSS在数学试卷统计分析中的应用[J].科技信息(学术版),2006(10).

试谈SPSS软件在考试数据统计分析中的应用

摘要: SPSS软件是数据统计分析的一个重要的工具。本文作者利用SPSS软件对考试数据的相关性、检验假设进行了统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤,文中的方法对考试研究人员具有一定的指导意义。

关键词: SPSS软件 考试数据 统计分析 操作步骤

1. 引言

一份好的试卷须有好的测量指标来表明它的优良程度,试题有难度和区分度指标,试卷有效度和信度指标,这些是评价考试最主要的测量指标,但是仅有这些指标不足以反映一份试卷的实际测量效果,考试研究人员希望从考生的试卷统计分析中获取更多的信息来评价一份试卷。在计算机未普及的年代,考试成绩统计主要依靠人工阅卷,考试数据无法电子化存储,对考试数据分析统计难以实现。随着计算机的普及和信息化的推广,各种分析数据的软件应运而生,这些软件中汇集了统计学和测量学的分析工具,使得应用电子信息技术分析统计考试成绩数据成为可能,这些统计信息可以为教研部门、考试行政部门进行行政决策等提供非常重要的帮助。在众多的统计分析软件当中,SPSS是应用最多、影响最广泛的分析工具之一。在本文中,我们以SPSS软件为工具,对 教育 招生考试成绩的数据进行统计分析,分析主要着重于考试数据的相关性、假设检验等几个方面。

2. SPSS分析软件简介

“SPSS统计分析软件”的英文名称为“Statistical Package for the Social Science”,中文名称为“社会科学统计软件包”,它是世界著名的统计分析软件之一,在自然科学、社会科学的各个领域均有非常广泛的应用。SPSS是一个组合式软件包,它集数据整理、分析于一身,主要功能包括数据管理、统计分析、图表分析、输出管理等,该软件的统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类。

下面我们利用SPSS软件对考试数据的相关性、检验假设进行统计分析,介绍使用SPSS进行统计分析的一般方法和步骤。

3. 相关性分析

教育考试中,考试结果的信度,试题的区分度,每个题目得分与试卷总分的关系,以及题目之间的关系,等等,都是考试研究的重要内容,最主要的研究方法就是数据的相关性分析。在众多的教育考试数据的相关性分析方法中,Pearson相关系数法、Spearman相关系数法和Cronbach α信度系数法是比较常用的几种方法。

Pearson相关系数法计算公式:

式中x为第i个考生第j题的得分,y为第i个考生第k题的得分,为第j题的平均分,为第k题的平均分,n为测试样本量。该公式既可以计算两个连续变量之间的相关性,又可以计算一个双歧变量与一个连续变量之间的相关性。

Spearman相关系数法计算公式:

r=1-(2)

式中D为两个变量的秩序之差,n为样本容量。

Cronbach a信度系数法计算公式:

α= 1-(3)

式中n为试题数,s为第i题的标准差,s为总分的标准差。该公式实际上就是将考试中所有试题间相关系数的平均值(又称内部一致性)作为α信度系数。

对于给定的一组考生成绩数据,利用SPSS统计分析软件可以非常容易地定量分析考生某学科试卷总分和该学科某道题的相关性,以及各个题目之间的相关性。我们以Pearson相关系数分析为例,利用SPSS软件进行统计分析。

数据统计分析的对象是某省高考数学6道解答题的得分情况(不是整张试卷),数据源于该省的高考数据成绩。研究的目的是测量6道解答题每两个题目之间的相关性。

我们以SPSS 13.0版本的软件为例,介绍利用SPSS进行数据统计分析的步骤(以Pearson相关系数法为例):

(1)将考试数据导入SPSS软件,在SPSS数据窗口中,顺序点击【Analyze】→【Correlate】→【Bivariate...】,系统弹出变量相关系数设置对话框。

(2)在该对话框中,将待计算的变量从左侧的变量列表中导入到右侧的“Variables”变量列表中,在本例中导入t1、t2、t3、t4、t5、t6共6个变量(t1―t6是6道解答题的变量名称)。在“Correlation Coefficients”相关系数选项中,选取“Pearson”复选框。

(3)在该对话框的“Test of Significance”设置区域,可以点选“Two-tailed”选项或者“One-tailed”,我们采用系统默认值。

(4)对话框中的 其它 选项取软件系统的默认值,点击【OK】,开始相关系数计算,系统弹出新的窗体输出运算的结果。本次输出的情况如下:

上表的统计结果可用于题目之间相关性的分析。表中的大部分题目的相关系数都比较适中,但题目T4和题目T5之间的相关程度远高于其它几个题目,我们可以确信这两者之间一定存在着比其他题目之间更紧密的关系,这是我们通过分析获取的重要信息,该信息表明这两个题目之间的相关性高于其他几个题目之间的相关性,这在大规模考试中是不应该出现的,需要在以后的命题考试中加以改进。

Spearman相关系数分析方法和上述分析方法类似,只需要在上述SPSS操作的第二个骤中选取“Pearson”复选框,程序就会按Pearson相关系数法进行统计分析,如果同时选中“Spearman”和“Pearson”复选框,程序将会同时计算按两种分析方法统计分析的数据,并会以不同的图表进行显示,而Cronbach a信度系数法计算方法与上述方法略有不同,其操作步骤如下:

(1)在SPSS数据窗口中,顺序点击【Analyze】→【Scale】→【Reliability Analysis...】,系统弹出“Reliability Analysis”信度分析设置对话框。

(2)将待计算的变量从左列的变量列表中导入到右侧的“items”变量中,在左下列的“model”选择项的下拉列表中确保选中“Alpha”(信度系数),点击“Statistics”选择项可以进行更为详细的参数设置,我们采用系统的默认值即可。

(3)参数设置完毕之后,点击【OK】,软件开始相关系数计算并输出运算结果。

4. 选择题的选项分析

在目前的教育招生考试中选择题是一种较常见的题型,考试研究人员关注较多的是对选择题基本特征、测量功能及其优缺点的理论探讨[1][2],对选择题干扰项的设计及其施测后的实际效果关注甚少,事实上施测后对题目各选项的有效性作出判断可为评价试题质量提供重要参考依据。我们利用统计中χ检验假设,对试卷中常见的选择题选择项进行统计分析。

教育考试的单项选择项一般设置为4个,其中仅有1个选择项是正确的。命题人员在设计选择项时,应当也必然对每道题目所有的选择项(正确选择项和干扰选择项)的考生作答情况作出预测,对考生作答的分布情况作出预估。考试结束后,研究人员应该对实测的情况与命题教师预测的情况进行对比分析,以检验考试效果是否达到了预测的目标。这和χ拟合度检验的思想具有一致性,因此可以尝试使用χ检验假设进行分析。

我们依据文献[3][4]的方法来介绍χ检验假设在考试数据分析中应用的基本原理,设变量E是命题者对某道试题的期望值,E=nP,n为样本容量,P为期望的相对频率,引入以下统计量:∑(O-E)/E,其中O为观察频数。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

我们需要进行的假设检验是:零假设H:选项的实测分布与期望分布相同;非零假设H:选项的实测分布与期望分布不同。

检验假设的思想:拟合度检验的统计量在确定的某种显著性水平下如果零假设是真,则检验统计量∑(O-E)/E呈近似χ分布,其自由度为研究变量的可能值减1;如果实测分布与期望的分布相当吻合,就不排除零假设,否则就排除零假设;最后对检验假设的结果进行解释。

数据分析的目的是判断考生实际的应答结果(实测数据)与命题期望的选择概率(期望数据)是否一致。我们随机抽取某省5542个高考考生的数学有效数据构成分析样本,利用SPSS进行统计分析。

SPSS数据统计分析的步骤如下:

(1)将考试数据导入SPSS软件,依次点击【Analyze】→【Nonparametric Tests】→【Chi-Square...】,弹出“Chi-Square Tests”对话框。

(2)将变量列表中待分析的题目序号导入到“Test Variables List”(检验变量列表)中,本例中题目的序号为t7。

(3)将对选择试题的每个选项的期望值依次输入到“Expected Values”所属的方框,具体操作方法是选中单选框“Values”,输入具体的期望数值,点击“Add”按钮,依次重复上述的步骤直至所有的选项的期望值输入完毕。

(4)点击【OK】,输出软件运算结果。

我们需要进行的假设检验,H:选项的实测分布与期望分布相同;H:选项的实测分布与期望分布不同。

假设检验的显著性水平为α=0.05,χ=∑(O-E)/E,自由度为df=4-1=3,查χ分布表或利用相关软件可得P=0.0626,由于P>α,因此不能拒绝零假设,即选项的实测分布与期望分布相同。因此,检验结果在0.05显著性水平时,没有足够的证据拒绝零假设,即可认为本题选项的实测分布与期望分布相同,也就是说本题的实际测试效果与命题教师预测的效果是一致的,命题教师准确地估计了考生的实际水平,这是分析获得的很重要的结论。

5. 结语

SPSS软件在考试数据统计分析中应用广泛,但大部分是集中在试题难度、均值、方差统计、考试数据的图表显示等几个方面,本文从一个新的角度利用SPSS软件对考试数据的相关性、检验假设等几个方面进行了尝试性统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤。从上述分析来看,软件操作步骤和统计分析过程十分简单、快捷,对于测量学和统计学基础不太好的数据分析统计人员来说,只要遵循一定的操作步骤,就可以进行分析。

参考文献:

[1]王孝玲.教育测量(修订版)[M].上海:华东师范大学出版社,2006.

[2]雷新勇.大规模教育考试:命题与评价[M].上海:华东师范大学出版社,2006.

[3]李伟明,冯伯麟,余仁胜.考试的统计分析方法[M].北京:高等教育出版社,1990.

[4]雷新勇.考试数据的统计分析和解释[M].上海:华东师范大学出版社,2007.

猜你喜欢:

1. 统计学数据分析论文

2. spss统计分析实习心得

3. 统计学学年论文

4. 统计学分析论文

毕业论文问卷用spss分析方法

选择什么分析方法,主要依据研究数据的数据类型以及研究目标选择。

可以分为几个步骤:1)确定分析目标、2)判断数据类型、3)选择分析方法。

一、 确定分析目标

确定研究目标,即确定研究的思路,也就是你想研究什么,从哪些题中得到什么结果?

一般在开始分析前都需要先对自己的问卷确定一个大致的研究思路,这也是最重要的部分。

缺少思路,或者不知道从哪里开始入手,可以查看spssau关于问卷思路框架的总结。

参考资料:分析思路总结-SPSSAU

二、 判断数据类型

有了基本框架后,就进入到具体的分析方法选择。

所有数据大致可以分为两种:定量数据和定类数据。

定量数据是年龄、身高这类数字大小有具体意义的。定类数据如性别、职业数字大小没有实际意义。

三、选择分析方法

变量的关系最常见有:相关关系、影响关系、差异关系,及其他关系。

结合数据类型和所要研究的目的,即可选出分析方法,spssau中就有详细的方法选择说明。

参考资料:分析方法选择-SPSSAU

最后就是分析数据,spssau提供标准三线表格式结果和智能文字分析,方便快速解读结果撰写分析报告。

量表类问卷最大的特点是:非常多的量表题,而且量表题对应着‘变量’或者‘维度’。便于研究‘变量’间的关系情况。

量表题可以使用信度、效度、因子分析等方法进行分析。具体可以参考下面的量表类影响关系研究框架。

I服了U

问卷就自己输呗,如果没时间找别人……

Epidata是一个比较方便的问卷输入工具,但是个人认为你还是不会……

--------

涉及到分析……要根据你的论文的整体要写的内容来……

这个调查问卷是你自己设计的嘛?

对这类分析困难的话还是掏的rmb找人分析吧,可靠又省心。

--------

当然也可以找我们

问卷调查输入execl 再倒入spss软件进行分析

相关百科

热门百科

首页
发表服务