首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

关于矩阵的研究方法论文

发布时间:

关于矩阵的研究方法论文

矩阵在许多领域都应用广泛。有些时候用到矩阵是因为其表达方式紧凑,例如在博弈论和经济学中,会用收益矩阵来表示两个博弈对象在各种决策方式下的收益。文本挖掘和索引典汇编的时候,比如在TF-IDF方法中,也会用到文件项矩阵来追踪特定词汇在多个文件中的出现频率。早期的密码技术如希尔密码也用到矩阵。然而,矩阵的线性性质使这类密码相对容易破解。计算机图像处理也会用到矩阵来表示处理对象,并且用放射旋转矩阵来计算对象的变换,实现三维对象在特定二维屏幕上的投影。多项式环上的矩阵在控制论中有重要作用。化学中也有矩阵的应用,特别在使用量子理论讨论分子键和光谱的时候。具体例子有解罗特汉方程时用重叠矩阵和福柯矩阵来得到哈特里-福克方法中的分子轨道。

矩阵的应用是很多的。尤其是在程序处理方面。在世界上存在的,都是离散的,那些理想的才是连续的~而矩阵可以很好地诠释世界上的各种东西~例如我们经常处理的图片,我们平时的数据等等。

矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦(F.Eisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的[2] 。1854年时法国数学家埃尔米特(C.Hermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。

矩阵的逆矩阵求解方法毕业论文

逆矩阵求法有三种,分别是伴随矩阵法、初等变换法和待定系数法。

一、伴随矩阵法。根据逆矩阵的定义(对于n阶方阵A,如果有一个n阶方阵B满足AB=BA=E,则A是可逆的。),可以得出逆矩阵的计算公式:A^(-1)=1/|A|乘以A*,其中,A*为矩阵A的伴随矩阵。例题如下:

伴随矩阵法解题过程

注:用伴随矩阵法计算逆矩阵时需要运用代数余子式和余子式的相关知识,即代数余子式(Aij)和余子式(Mij),其中,i表示第几行,j表示第几列。

二、初等变换法。根据矩阵初等行变换的计算方式,然后引入单位矩阵E(矩阵对角线所对应的三个数字均为1,其他数字均为0的矩阵)。矩阵 A与单位矩阵E组成一个大矩阵,而后通过行变换将原来A的位置转变为E,此时,变换后的E就是所求的逆矩阵。

本人手写笔记

三、待定系数法。根据矩阵定义的推论,利用矩阵A乘以它的逆矩阵A^(-1)等于单位矩阵E的计算公式求得逆矩阵的方法。这种计算过程繁琐,需要列多组方程组,耗时,不建议使用。

题主可根据以上三种计算方法计算逆矩阵,希望对题主有帮助。

矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。

A^*=A^(-1)|A|,

两边同时取行列式得

|A^*|=|A|^2 (因为是三阶矩阵)

又|A^*|=4,|A|>0,所以|A|=2

所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。

特殊求法:

(1)当矩阵是大于等于二阶时 :

主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以  , x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以  ,一直是正数,没必要考虑主对角元素的符号问题。

(2)当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。

(3)二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。

矩阵性质

矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。其中,E为单位矩阵。

典型的矩阵求逆方法有:利用定义求逆矩阵、初等变换法、伴随阵法、恒等变形法等。

矩阵分解论文研究方法

■ 雅可比正交相似变换,适用于实对称矩阵求特征值,且计算结果很准确;当用于非对称矩阵时收敛效果并不好。■ QR正交相似变换,一般认为对任意中小型矩阵都可求特征值,实际上最适合非对称矩阵,计算结果准确。对称矩阵用QR正交相似变换时,收敛效果反而不理想。

为什么要进行矩阵分解? 1、从矩阵变换的角度: 将复合变换后的矩阵分解成基本变换过程。具体请看奇异值分解之矩阵变换角度。 2、从 研究动机 的角度:

首先要理解基变换(坐标变换)再理解特征值的本质。 1、如果一个矩阵的行列式为0(非满秩),其特征值为0,这个证明比较简单: (单位矩阵有时候用 表示,有时候用 表示。) 如果 ,那么 ,进而 2、对于一个 的矩阵 ,其 ; 3、主对角线上的元素都不为0,其他元素都为0的矩阵叫对角矩阵,对角矩阵一定是正交矩阵,即其基两两垂直。

特征值分解就是矩阵的对角化,就是可以将 分解为 , 是由对应特征向量组成的矩阵--特征矩阵, 为对角矩阵,对角线上的元素为 的特征值。只有在一定条件下,一个变换可以由其特征值和特征向量完全表述,也就是说: 所有的特征向量组成了空间的一组基 。并不是所有方阵都可以对角化,方阵 可以被对角化的条件是 :

正交矩阵一定可以对角化 。以三维空间为例,正交矩阵就是歪着的立方体,对角化就是把这个立方体摆正(就是让它的某一个顶点放在原点上,同时这个顶点的三条边放在三条坐标轴上)。对角矩阵就是摆正后的立方体。

机器学习中的特征值分解, 往往是协方差矩阵,如PCA,所以我们要确保各个特征之间是线性无关的。

如何通俗地理解奇异值?

我们知道一个向量张成的空间是一条直线, 任意实数 可以得到非零向量 张成的空间是一条直线。那么如果一个 维空间中的向量 其所张成的空间——一条直线上的点,经过一个矩阵 变换到另一个 的空间中依然在同一条直线上,这个直线是 空间中的向量 所张成的空间,只是会有对应的缩放,这个缩放的程度就是奇异值。用数学形式表达为: , 是 空间中的向量, 是 的变换矩阵, 是 空间中的向量, 就是奇异值。

可以感觉到特征值是奇异值的特例,当m=n且 和 重叠的时候(方向可以不同),奇异值=特征值。

奇异值分解计算例子:

SVD(奇异值分解)Python实现:

矩阵分解为了解决传统协同过滤处理稀疏共现矩阵能力差的问题。使用矩阵分解相比传统协同过滤也提升了泛化性。

基于矩阵分解的模型又叫潜在因素模型、隐语义模型。

矩阵分解的开端是2006年的Netflix竞赛。

1、推荐系统中: 分解的是什么矩阵?共现矩阵 怎么共现矩阵分解? 1)特征值分解 要求待分解的是方阵,所以行不通 2)奇异值分解 要求待分解矩阵是稠密矩阵,而共现矩阵是稀疏矩阵,所以不行; 奇异值分解的复杂度是 ,复杂度很高,也不合适。 3)梯度下降法——也就是交替最小二乘法(alternating least squares,ALS),解决两个变量求解。 使用梯度下降法进行矩阵分解 (1)确定目标函数: ,就是一个MSE; (2)分别对 和 求偏导 (3)参数更新 (4)迭代 得到隐向量后,对某个用户进行推荐时,利用该用户的隐向量与所有物品的隐向量进行逐一内积运算,得到该用户对所有物品的得分,再进行排序,得到最终的推荐列表。 4)贝叶斯矩阵分解

2、PCA---奇异值分解

3.2.4.1 方法建立

就全国范围而言,我国地下水质量总体较好,根据国家《地下水质量标准》(GB/T 14848—93),我国63%的地区地下水可直接饮用,17%经适当处理后可供饮用,12%不宜饮用,剩余8%为天然的咸水和盐水,由此可见,不宜饮用的地下水和天然咸水、盐水占到了20%,对于这些地下水型水源地饮用水指标并不一定受到污染而存在超标现象,其水质可能受到地下水形成演化影响更为明显,因此,考虑选择反映地下水形成、演化的地下水水化学类型常规指标,进行影响因素解析。地下水水质指标在取样与分析过程中,由于取样和样品处理、试剂和水纯度、仪器量度和仪器洁净、采用的分析方法、测定过程以及数据处理等过程均会产生测量误差(系统误差,随机误差,过失误差)。从取样到分析结果计算误差都绝对存在,虽然在各个过程中进行质量控制,但无法完全消除不确定性的影响,为确保分析结果的可靠性,采用PMF法对地下水水质指标考虑一定的不确定性误差,使分析数据能够准确地反映实际情况。

PMF(Positive Matrix Factorization)与主成分分析(PCA)、因子分析(FA)都是利用矩阵分解来解决实际问题的分析方法,在这些方法中,原始的大矩阵被近似分解为低秩的V=WH形式。但PMF与PCA和FA不同,PCA、FA方法中因子W和H中的元素可为正或负,即使输入的初始矩阵元素全是正的,传统的秩削减算法也不能保证原始数据的非负性。在数学上,从计算的观点看,分解结果中存在负值是正确的,但负值元素在实际问题中往往是没有意义的。PMF是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法,在求解过程中对因子载荷和因子得分均做非负约束,避免矩阵分解的结果中出现负值,使得因子载荷和因子得分具有可解释性和明确的物理意义。PMF使用最小二乘方法进行迭代运算,能够同时确定污染源谱和贡献,不需要转换就可以直接与原始数据矩阵作比较,分解矩阵中元素非负,使得分析的结果明确而易于解释,可以利用不确定性对数据质量进行优化,是美国国家环保局(EPA)推荐的源解析工具。

3.2.4.2 技术原理

PMF:模型是一种基于因子分析的方法,具有不需要测量源指纹谱、分解矩阵中元素非负、可以利用数据标准偏差来进行优化等优点。目前PMF模型此方法成功用于大气气溶胶、土壤和沉积物中持久性有毒物质的源解析,已有成熟的应用模型 PMF1.1,PMF2.0,PMF3.0等。PMF模型基本方程为:

Xnm=GnpFpm+E (3.7)

式中:n——取样点数;

m——各取样点测试的成分数量;

p——污染源个数;

Xnm——取样点各成分含量;

Gnp——主要源的贡献率;

Fpm——源指纹图谱。

基本计算过程如下:

1)样品数据无量纲化,无量纲化后的样品数据矩阵用D表示。

2)协方差矩阵求解,为计算特征值和特征向量,可先求得样品数据的协方差矩阵,用D′为D的转置,算法为:

Z=DD′ (3.8)

3)特征值及特征向量求解,用雅各布方法可求得协方差矩阵Z的特征值矩阵E和特征向量矩阵Q,Q′表示Q的转置。这时,协方差矩阵可表示为:

Z=QEQ′ (3.9)

4)主要污染源数求解,为使高维变量空间降维后能尽可能保留原来指标信息,利用累计方差贡献率提取显著性因子,判断条件为:

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

式中:n——显著性因子个数;

m——污染物个数;

λ——特征值。

5)因子载荷矩阵求解,提取显著性因子后,利用求解得到的特征值矩阵E和特征向量矩阵Q进一步求得因子载荷矩阵S和因子得分矩阵C,这时,因子载荷矩阵可表示为:

S=QE1/2 (3.11)

因子得分矩阵可表示为:

C=(S′S)-1S′D (3.12)

6)非负约束旋转,由步骤5求得的因子载荷矩阵S和因子得分矩阵C分别对应主要污染源指纹图谱和主要污染源贡献,为解决其值可能为负的现象,需要做非负约束的旋转。

7)首先利用转换矩阵T1对步骤5求得的因子载荷矩阵S和因子得分矩阵C按下式进行旋转:

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

C1=T1C (3.14)

式中:S1——旋转后的因子载荷矩阵;

C1——旋转后的因子得分矩阵;

T1——转换矩阵,且T1=(C∗C′)(C∗C′)-1(其中:C∗为把C中的负值替换为零后的因子得分矩阵)。

8)利用步骤7中旋转得到的因子载荷矩阵S1构建转换矩阵T2对步骤5中旋转得到的因子载荷矩阵S1和因子得分矩阵C1继续旋转:

S2=S1T2 (3.15)

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

式中:S2——二次旋转后的因子载荷矩阵;

C2——二次旋转后的因子得分矩阵;

T2——二次转换矩阵,且T2=(S′1+S1)-1(S′1+ )(其中: 为S1中的负值换为零后的因子载荷矩阵)。

9):重复步骤7、8,直到因子载荷中负值的平方和小于某一设定的误差精度e而终止,最终得到符合要求的因子载荷矩阵S,即主要污染源指纹图谱。

3.2.4.3 方法流程

针对受体采样数据直接进行矩阵分解,得到各污染源组分及其贡献率的统计方法(图3.5)。

图3.5 方法流程图

(1)缺失值处理

正定矩阵因子分析是基于多元统计的分析方法,对数据有效性具有一定的要求,因此在进行分析之前首先对数据进行预处理。根据已有数据的特征结合实际情况主要有以下5种处理方法。

1)采样数据量充足的情况下直接丢弃含缺失数据的记录。

2)存在部分缺失值情况下用全局变量或属性的平均值来代替所有缺失数据。把全局变量或是平均值看作属性的一个新值。

3)先根据欧式距离或相关分析来确定距离具有缺失数据样本最近的K个样本,将这K个值加权平均来估计该样本的缺失数据。

4)采用预测模型来预测每一个缺失数据。用已有数据作为训练样本来建立预测模型,如神经网络模型预测缺失数据。该方法最大限度地利用已知的相关数据,是比较流行的缺失数据处理技术。

5)对低于数据检测限的数据可用数据检测限值或1/2检测限以及更小比例检测限值代替。

(2)不确定性处理

计算数据不确定性。

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

式中:s——误差百分数;

c——指标浓度值;

l——因子数据检出限。

(3)数据合理性分析

本研究所用数据在放入模型前以信噪比S/N(Signal to Noise)作为标准进行筛选,信噪比S/N为:

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

式中:xij——第i采样点第j个样品的浓度;

sij——第i采样点第j个样品的标准偏差。

信噪比小,说明样品的噪声大,信噪比越大则表示样品检出的可能性越大,越适合模型。

(4)数据输入及因子分析

与其他因子分析方法一样,PMF不能直接确定因子数目。确定因子数目的一般方法是尝试多次运行软件,根据分析结果和误差,Q值以及改变因子数目时Q值的相对变化等来确定合理的因子数目。

3.2.4.4 适用范围

PMF对污染源和贡献施加了非负限制,并考虑了原始数据的不确定性,对数据偏差进行了校正,使结果更具有科学的解释。PMF使用最小二乘方法,得到的污染源不需要转换就可以直接与原始数据矩阵作比较,PMF方法能够同时确定污染源和贡献,而不需要事先知道源成分谱。适用于水文地质条件简单,观测数据量较大,污染源和污染种类相对较少的地区,运用简便,可应用分析软件进行计算。

3.2.4.5 NMF 源解析

NMF在实现上较PMF算法简单易行,非负矩阵分解根据目的的不同大致可以分为两种:一是在保证数据某些性质的基础上,将高维空间的样本点映射到某个低维空间上,除去一些不重要的细节,获得原数据的本质信息;二是在从复杂混乱的系统中得到混合前的独立信息的种类和强度。因此,基于非负矩阵分解过程应用领域的不同,分解过程所受的约束和需要保留的性质都不相同。本书尝试性地将NMF算法应用于水质影响因素的分离计算中(表3.2)。

表3.2 RMF矩阵分解权值表

依照非负矩阵分解理论的数学模型,寻找到一个分解过程V≈WH,使WH和V无限逼近,即尽可能缩小二者的误差。在确保逼近的效果,定义一个相应的衡量标准,这个衡量标准就叫作目标函数。目标函数一般采用欧氏距离和散度偏差来表示。在迭代过程中,采用不同的方法对矩阵W和H进行初始化,得到的结果也会不同,算法的性能主要取决于如何对矩阵W和H进行初始化。传统的非负矩阵算法在对矩阵W和H赋初值时采用随机方法,这样做虽然简单并且容易实现,但实验的可重复性以及算法的收敛速度是无法用随机初始化的方法来控制的,所以这种方法并不理想。许多学者提出改进W和H的初始化方法,并发展出专用性比较强的形式众多的矩阵分解算法,主要有以下几种:局部非负矩阵分解(Local Non-negative Matrix Factorization,LNMF)、加权非负矩阵分解(Weighted Non-negative Matrix Factorization,WNMF)、Fisher非负矩阵分解(Fisher Non-negative Matrix Factorization,FNMF)、稀疏非负矩阵分解(Sparse Non-negative Matrix Factorization,SNMF)、受限非负矩阵分解(Constrained Non-negative Matrix Factorization,CNMF)、非平滑非负矩阵分解(Non-smooth Non-negative Matrix Factorization,NSNMF)、稀疏受限非负矩阵分解(Nonnegative Matrix Factorization with Sparseness Constraints,NMF-SC)等理论方法,这些方法针对某一具体应用领域对NMF算法进行了改进。

本书尝试应用MATLAB工具箱中NNMF程序与改进的稀疏非负矩阵分解(SNMF)对研究区11项指标(同PMF数据)进行分解,得到各元素在综合成分中的得分H,初始W0,H0采用随机法取初值。r为分解的基向量个数,合适的r取值主要根据试算法确定,改变r值观察误差值变化情况,本书利用SMNF算法计算时,r分别取2,3,4,采用均方误差对迭代结果效果进行评价,结果显示当r取2,4时误差值为0.034,取3时误差值为0.016,因此r=3是较合理的基向量个数。采用NNMF算法进行计算时,利用MATLAB工具箱提供的两种计算法分别进行计算,乘性法则(Multiplicative Update Algorithm)计算结果误差项比最小二乘法(Alternating Least-squares Algorithm)计算误差值小且稳定,但总体NNMF计算误差较大,改变初始W0,H0取值和增加迭代次数误差均未明显减小,调整r取值,随着r值的增大误差逐渐减小。

对比SNMF和NNMF算法所得权值结果,两种方法所得权值趋势一致,但得分值有所不同,由于SNMF算法对矩阵进行了稀疏性约束,计算结果中较小的权值更趋近于0,两次结果中在三个基向量上总体权值较大的元素项为T-Hard、 、Mg2+、Ca2+、 ,从盲源分离的角度来看该几种元素对地下水具有较大的影响,但从地下水水质影响因素来看,该方法对数据的分析偏重于突出局部数据的特征,在各因素相关性较大但含量不高的情况下,容易忽略了关键的影响因素。从权值得分来看,SNMF法解析的第一个基向量上的元素包括EC、T-Hard、NH4—N、 、 、TDS;第二基向量主要有Na+、Mg2+、Cl-;第三个基向量 、Ca2+,从结果可以看出该方法进行矩阵分解并未得到可合理解释的源项结果,方法有待进一步研究及验证。

矩阵的性质研究论文

我明白这个道理你选涡

伴随矩阵的性质与应用的Word文档,我给你!!!其实论文任何一个课题的研究或开发都是有学科基础或技术基础的。综述部分主要阐述选题在相应学科领域中的发展进程和研究方向,特别是近年来的发展趋势和最新成果。可以帮你写个提纲或者开题要吗?

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦(F.Eisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的[2] 。1854年时法国数学家埃尔米特(C.Hermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。

关于正交矩阵的论文题目

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

课程论文选题参考1.《高等代数》课程学习感悟2.《高等代数》中的。。。。思想3.《高等代数》中的。。。。方法4.高等代数与解析几何的关联性5.高等代数有关理论的等价命题6.高等代数有关理论的几何描述7.高等代数有关理论的应用实例8.高等代数知识在有关课程学习中的应用9.数学软件在高等代数学习中的应用10.应用高等代数知识的数学建模案例11.高等代数理论在金融中的应用12.反例在高等代数中的应用13.行列式理论的应用性研究14.一些特殊行列式的应用15.行列式计算方法综述16.范德蒙行列式的一些应用17.线性方程组的应用;18.线性方程组的推广——从向量到矩阵19.关于向量组的极大无关组20.向量组线性相关与线性无关的判别方法21.线性方程组求解方法综述 22.求解线性方程组的直接法与迭代法23.向量的应用24.矩阵多项式的性质及应用25.矩阵可逆的若干判别方法26.矩阵秩的不等式的讨论(应用)27.关于矩阵的伴随矩阵28.矩阵运算在经济中的应用29.关于分块矩阵30.分块矩阵的初等变换及应用31.矩阵初等变换及应用32.矩阵变换的几何特征33.二次型正定性及应用34.二次型的化简及应用35.化二次型为标准型的方法36.矩阵对角化的应用37.矩阵标准形的思想及应用38.矩阵在各种变换下的不变量及其应用39.线性变换的应用40.特征值与特征向量的应用41.关于线性变换的若干问题42.关于欧氏空间的若干问题43.矩阵等价、合同、相似的关联性及应用44.线性变换的命题与矩阵命题的相互转换问题45.线性空间与欧氏空间46.初等行变换在向量空间Pn中的应用47.哈密顿-凯莱定理及其应用48.施密特正交化方法的几何意义及其应用49.不变子空间与若当标准型之间的关系50.多项式不可约的判别方法及应用51.二次型的矩阵性质与应用52.分块矩阵及其应用53.欧氏空间中的正交变换及其几何应用54.对称矩阵的性质与应用55.求两个子空间的交与和的维数和一个基的方法56.关于n维欧氏空间子空间的正交补57.求若当标准形的几种方法58.相似矩阵的若干应用59.矩阵相似的若干判定方法60.正交矩阵的若干性质61.实对称矩阵正定性的若干等价条件62.欧氏空间中正交问题的探讨63.矩阵特征根及其在解题中的应用64.矩阵的特征值与特征向量的应用65.行列式在代数与几何中的简单应用66.欧氏空间内积不等式的应用67.求标准正交基的若干方法研究68.高等代数理论在经济学中的应用69.矩阵中的最小二乘法70.常见线性空间与欧式空间的基与标准正交基的求法

相关百科

热门百科

首页
发表服务