首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

八年级数学论文800字

发布时间:

八年级数学论文800字

噢噢111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

又抄...数学班第一仲抄..

学习数学数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段,以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量。只有质量合格的考试才能有效地检测学生的学习质量。 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理。 我懂得了只有我们用心观察,才能发现数学。只有我们认识数学,在生活中善于利用数学,我们才能将数学溶入到方方面面。而且只有我们将数学溶入到方方面面,我们才能更加好的去研究数学。 真诚的希望大家用发现美的眼睛,去发现数学!感受数学。

自己网上去查一篇啊 而且悬赏分也没有.....

八年级物理论文800字

“谚”趣寻“理”——第一站

请闭上你的眼睛,想想我们在日常生活中会碰到的一些民谚俗语吧。想到没,我可想到咯!不知你是否听过“摘不到的是镜中月,捞不着的是水中花。”?这句话里蕴含着丰富的物理知识哦,找出来了没?对了,它就是我们熟悉的平面镜成像原理。如果你没听过,那我就说几个耳熟能详的吧。像“人心齐,泰山移”,想必大家都听过吧?你能找出物理的“藏处“吗?它可是力学家族的一员哦!聪明的你找到了没?它的意思是如果各个分力的方向一致,则合力的大小等于各个分力大小之和。很简单吧?这种”捉迷藏“式的学习很有趣吧?我要派个难找的出来和你“对战”咯,你准备好了吗?我的题是“破镜不能重圆”有人找到没?“是说当分子之间的距离较大时(大于几百埃),分子之间的引力很小,几乎为零。所以破镜不能重圆吗?”唉:“藏得这么隐秘还是给你找到了,好吧,我认输了。下次我一定会赢你的!”

或许,不是物理乏味,只是我们学习的方法存在误区。有时换种方式,像把物理融入谚语中来学物理效果会更好些,趣味也将会多到无穷无尽。这一站我们就先寻访到这了。要记得“捉迷藏”这个有趣的游戏哦。最后,我再给你们留一道题,题目是“猪八戒照镜子里外不是人”等你们找到它之后要记得告诉我哦!我期待着那天的到来!

特殊的感觉——第二站

这一站我们要拜访的是一名电家族的成员——电梯,不知当你们乘坐电梯时会不会有一种特殊的感觉呢?想要知道为什么会出现这种现象吗?如果想,就跟随我一起去探寻答案吧!

经过多天的努力我终于找到答案了,原来这和“超重”“失重”有关。那“超重”“失重”又是什么意思呢?其实这是两种物理现象。地球上任何的事物都受重力的作用,如果有力使物理克服重力向上加速运动。那么就会呈现超重现象。如果物体沿着重力向下加速运动,那就会呈现失重现象。这是不是很神奇啊?电梯还只是电家族中的一员,这也就意味着还有更多的奥秘等待细心的你去探索!

当你在生活中遇到问题时,不妨多问些为什么哦,希望你们都能够有满脑子的问号,并亲自去解开这个迷哦!这站的路途马上就要结束了,我们还是按照惯例吧。快快跟上我的脚步哦,我要出题咯:“微波炉为什么会加热均匀,而且热效率高呢?”让我们开动脑筋一起去生活中寻找答案吧!期待得到你满意的回答!现在请带上你们的心和我一起探索即将到达的第三站!

蛋的世界——第三站

第三站到了!同学们,是不是很不解呢?蛋!它和物理有什么联系呢?要不先想想应该如何把蛋煮得好看呢?介绍两种煮蛋的方法及其中物理知识给你们。一,温泉蛋:蛋清的凝固温度大约是70℃左右,而蛋黄的凝固温度却只有60℃左右,所以我们在煮鸡蛋时只要将水温控制在60℃——70℃之间,便可煮出一种奇特的蛋——温泉蛋:蛋黄已凝固,而蛋清却还是晶莹剔透的液体!很漂亮哦!淌心蛋:用急火煮鸡蛋,当水沸腾后,由于蛋清在外层,首先被煮熟凝固,而由于蛋清是热的不良导体,所以此时的蛋黄由于受热不充分,基本上还处于液态,如果此时就将鸡蛋取出,便就煮成了我们所说的淌心蛋了。挺有趣的吧?不凡在家试试看看效果吧。煮鸡蛋有花招,那玩鸡蛋是不是也有方式呢?也和物理有关呢?对了,有。一:转鸡蛋:将一枚生鸡蛋和一枚熟鸡蛋以同样的速度在桌面上转动,将会发现生鸡蛋很快就会停下来,而熟鸡蛋转的时间会较长一点。原因就是生鸡蛋在转动时,蛋清蛋黄由于惯性就会阻碍蛋壳的转动。二:想必不倒翁大家都很熟悉吧?知道如何制作吗?首先将生鸡蛋的一端敲一个小孔,将蛋清蛋黄慢慢甩出,凉干再在其中装入适量的沙子,滴入一些胶水以固定住沙子,在蛋壳外画上脸谱,便制成了一个不倒翁。希望我们每个人都能做个不倒翁,在探索物理和人生的道路上永远不被打倒!

这次的路程就快结束了,那三个站点还记得吗?我们一起回忆一下。第一个是在谚语的王国里,第二个是在电器家园,再后来我们就去了鸡蛋的世界。很有趣吧?是否还想继续探索呢?那就加油!“处处留心皆学问。”要努力学习,善于观察,勤于思考。我希望下个站点的导游是你哦。期待这天的到来哦!

从来没有想到离别会提前一年。根本就没有来及准备。很多时候都是这样。事情总是很突然。根本不会有时间让你准备。

我从来没有想到物理老师会走的这么快我以为是毕业后在走,如果是毕业后再走的话,我想我会平静的接受,因为那时候没有理由留下。因为毕业。而且早都准备好离别了。而现在提前了一年。

当数学老师和我们说这一件事情的时候,我当时就情不自禁的流下了眼泪。我不是一个忧伤的人。但是我喜欢哭泣。数学老师说,物理老师是因为身体不好,还有初三的压力。

压力太大?我不相信,因为当初她还对我们说初三也没有什么可怕的,只不过是时间紧了些.我只好把数学老师说的当做一个玩笑,一个不大不小的玩笑,可是我知道数学老师什么时候不到最后她是不会通知我们的。

而,当物理课再次到来时,站在讲台上的再也不是曾经的那个李老师的时候,心里真是说不出的感觉.所有的幻想都破灭了.只有接受事实了。我不得不承认。新来的物理老师很好,但我想,我不会特别喜欢她的,我更喜欢的是以前的物理老师,没有什么理由。

记得,有一次,他当了几天的裁判,回来后都变成了大熊猫,我们班同学都在笑,他风趣的说:我都变成卡西莫多了随后我们班同学又大笑,只见他又冒出一句:虽然容貌丑陋,但是心地善良啊!!嘿嘿!

记得,我去办公室送作业的时候,走路总是很轻,经常把物理考试吓一跳,每次物理老师都不得不感叹.还有一次,由于作业很多.我和另外一个同学去办公室送作业,走的还是很轻,物理老师对着历史老师发感叹:她们走路都轻飘飘的,嗯,还有门口的她也是嘿嘿,然后我和同学笑的走了,没有想到,那竟然是最后一次,那样的感叹了。

记得,物理老师对鲁迅等人的书籍,思想是很都研究,经常从物理题目上联想开去,侃起来了。我们都听得如痴如醉,而且都敬佩不已,从其中我们收获了除物理之外的知识.我们都经常感叹。物理老师不去当哲学家简直就是浪费人才.

记得.他说的“移植再生”“阿原定律”“老大,老2,老3……的公式。”“大自然最公平的礼尚往来”“平分秋色”……他总是把所学的知识赋予生动的名称。

记得,有一次,我们班同学都十分沉默,物理老师说:“不在沉默中爆发,就在沉默总死亡,鲁迅不是说吗?你们呢?”结果我们一部分同学很大声的回答:死亡老师扶了扶眼镜说:“哎!!真搞不懂你们?!”

记得……

物理老师,你既是我们的老师又是我们的朋友,一年的时间,让我们相互了解,相互学习……

真的不想你离开,舍不得……讲台上再也听不见你的话语。以后的日子,真是不敢想象……

而又有什么办法呢?

一切都成为回忆了。

有一种鲜花,我最惊羡,惊羡于它的粲然开放;有一种清茶,我最渴望,渴望在他的醉人浓香;有一种老师,我最喜爱,喜爱有他的课堂。

不知不觉中,我已经上初二了,我心中的好老师数不胜数,在我看来,老师都是好老师,只不过,有的老师严厉一些罢了,但他们都是希望每一个孩子成为栋梁之才的,难道不是吗?

一头乌黑的短发,一双又大又明亮的眼睛,笑的时候特别帅气,有时候又像一位慈祥的老爷爷一样呵护我们,关爱我们。这就是我心中的好老师——李老师。李老师是一位物理老师,他工作认证负责,上课生动幽默,特别是他的声音很好听,这可是他自己也认同的哦!

李老师给我印象最深的一节课,是初二刚开学的那一节课,他拿了一大堆东西进教室,让我们很是好奇,他先是自我介绍了一番:“啊!这学期呢!我负责教你们物理,我跟你们贾老师呢!以前合作过的,我姓李,以后你们叫我李老师,不要叫我物理老师啊!”全班七嘴八舌讨论开了,因为最后一句话许多老师都说过N遍了。接下来李老师拿起一块铁皮说:“你们看看这是什么?”“铁块”“对,这是一块铁皮,以后在物理课上呢,我们就会用到它,这可是我特意从我的自行车上拆下来的哦,拆的我累死了!”全班哄堂大笑。从那以后,我都特别希望能上物理课,我对物理产生了浓厚的兴趣。又一次。李老师为了做一次实验,还牺牲了他的手机呢!还开玩笑的对我们说:“让你们贾老是重新赔给我一只。”

这就是我心目中的好老师,也是我最喜爱,最敬爱的老师,她在黑板这片浩瀚的大海上,不停地滑动着船桨,用他的所有知识把我们喂饱。

我们的生活离不开阳光,通常我们认为阳光是一种单色光(单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。

广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅等等。

此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意。分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。

由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。摘要:分光计是一种能精确测量折射角的典型光学仪器,经常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。

由于该装置比较精密,控制部件较多而且操作复杂,所以使用时必须严格按照一定的规则和程序进行调整,方能获得较高精度的测量结果。

八年级数学论文600字

生活里???具体一点。一代数知识是在算术知识的基础上发展起来的,其特点是用字母表示数,使数的概念及其运算法则抽象化和公式化。初中一年级刚接触代数时,学生要经历由算术到代数的过渡,这里的主要标志是由数过渡到字母表示数,这是在小学的数的概念的基础上更高一个层次上的抽象。字母是代表数的,但它不代表某个具体的数,这种一般与特殊的关系正是初一学生学习的困难所在。为了克服初一新生对这一转化而引发的学习障碍,教学中要特别重视“代数初步知识”这一章的教学。它是承小学知识之前,启初中知识之后,开宗明义,搞好中小学数学衔接的重要环节。数学中要把握全章主体内容的深度,从小学学过的用字母表示数的知识入手,尽量用一些字母表示数的实例,自然而然地引出代数式的概念。再讲述如何列代数式表示常见的数量关系,以及代数式的一些初步应用知识。要注意始终以小学所接触过的代数知识(小学没有用“代数”的提法)为基础,对其进行较为系统的归纳与复习,并适当加强提高。使学生感到升入初一就像在小学升级那样自然,从而减小升学感觉的负效应。初一代数的第一堂课,一般不讲课本知识,而是对学生初学代数给予一定的描述、指导。目的是在总体上给学生一个认识,使其粗略了解中学数学的一些情况。如介绍:(1)数学的特点。(2)初中数学学习的特点。(3)初中数学学习展望。(4)中学数学各环节的学习方法,包括预习、听讲、复习、作业和考核等。(5)注意观察、记忆、想象、思维等智力因素与数学学习的关系。(6)动机、意志、性格、兴趣、情感等非智力因素与数学学习的联系。二学生对于数的概念,在小学数学中虽已有过两次扩展,一次是引进数0,一次是引进分数(指正分数)。但学生对数的概念为什么需要扩展,体会不深。而到了初一要引进的新数———负数,与学生日常生活上的联系表面上看不很密切。他们习惯于“升高”、“下降”的这种说法,而现在要把“下降5米”说成“升高负5米”是很不习惯的,为什么要这样说,一时更不易理解。所以使学生认识引进负数的必要是初一数学中首先遇到的一个难点。我们在正式引入负数这一概念前,先把小学数学中的数的知识作一次系统的整理,使学生注意到数的概念是为解决实际问题的需要而逐渐发展的,也是由原有的数集与解决实际问题的矛盾而引发新数集的扩展。即自然数集添进数0→扩大自然数集(非负整数集)添进正分数→算术数集(非负有理数集)添进负整数、负分数→有理数集……。这样就为数系的再一次扩充作好准备。正式引入负数概念时,可以这样处理,例:在小学对运进60吨与运出40吨,增产300千克与减产100千克的意义已很明确了,怎样用一个简单的数把它们的意义全面表示出来呢?从而激发学生的求知欲。再让学生自己举例说明这种相反意义的量在生活中是经常地接触到的,而这种量除了要用小学学过的算术数表示外,还要用一个语句来说明它们的相反的意义。如果取一个量为基准即“0”,并规定其中一种意义的量为“正”的量,与之相反意义的量就为“负”的量。用“+”表示正,用“-”表示负。这样,逐步引进正、负数的概念,将会有助于学生体会引进新数的必要性。从而在心理产生认同,进而顺利地把数的范畴从小学的算术数扩展到初一的有理数,使学生不至产生巨大的跳跃感。三初一的四则运算是源于小学数学的非负有理数运算而发展到有理数的运算,不仅要计算绝对值,还要首先确定运算符号,这一点学生开始很不适应。在负数的“参算”下往往出现计算上的错误,有理数的混合运算结果的准确率较低,所以,特别需要加强练习。另外,对于运算结果来说,计算的结果也不再像小学那样唯一了。如|a|,其结果就应分三种情况讨论。这一变化,对于初一学生来说是比较难接受的,代数式的运算对他们而言是个全新的问题,要正确解决这一难点,必须非常注重,要使学生在正确理解有理数概念的基础上,掌握有理数的运算法则。对运算法则理解越深,运算才能掌握得越好。但是,初一学生的数学基础尚不能透彻理解这些运算法则,所以在处理上要注意设置适当的梯度,逐步加深。有理数的四则运算最终要归结为非负数的运算,因此“绝对值”概念应该是我们教学中必须抓住的关键点。而定义绝对值又要用到“互为相反数”的概念,“数轴”又是讲授这两个概念的基础,一定要注意数形结合,加强直观性,不能急于求成。学生正确掌握、熟练运用绝对值这一概念,是要有一个过程的。在结合实例利用数轴来说明绝对值概念后,还得在练习中逐步加深认识、进行巩固。学生在小学做习题,满足于只是进行计算。而到初一,为了使其能正确理解运算法则,尽量避免计算中的错误,就不能只是满足于得出一个正确答案,应该要求学生每做一步都要想想根据什么,要灵活运用所学知识,以求达到良好的教学效果。这样,不但可以培养学生的运算思维能力,也可使学生逐步养成良好的学习习惯。四进入初中的学生年龄大都是11至12岁,这个年龄段学生的思维正由形象思维向抽象思维过渡。思维的不稳定性以及思维模式的尚未形成,决定了列方程解应用题的学习将是初一学生面临的一个难度非常大的坎。列方程解应用题的教学往往是费力不小,效果不佳。因为学生解题时只习惯小学的思维套用公式,属定势思维,不善于分析、转化和作进一步的深入思考,思路狭窄、呆滞,题目稍有变化就束手无策。初一学生在解应用题时,主要存在三个方面的困难:(1)抓不住相等关系;(2)找出相等关系后不会列方程;(3)习惯用算术解法,对用代数方法分析应用题不适应,不知道要抓相等关系。这头一个方面是主要的,解决了它,另两个方面就都好解决了。所以,小学数学第八册列方程解应用题教学时,一要使学生掌握算术法和代数法的异同点,并讲清列方程解应用题的思路;二要有针对性地让学生加强把实际中的数量关系改写成代数式的训练,这样对小学生逆向思维有好处,使较复杂的应用题化难为易。初一讲授列方程解应用题教学时,要重视知识发生过程。因为数学本身就是一种思维活动,教学中要使学生尽可能参与进去,从而形成和发展具有思维特点的智力结构。要让学生始终参加审题、分析题意、列方程、解方程等活动,了解列方程解应用题的实际意义和解题方法及优越性,这其中审题应是最为关键的一环。要想法弄清题意,找出能够表示应用题全部含义的一个相等关系。找不出相等关系,方程就列不出来,而找出这样的等量关系后,将其中涉及的待求的某个数设为未知数,其余的量用已知数或含有已知数与未知数的代数式表示出来,方程就列出来了。要教会学生通过阅读题目、理解题意、进而找出等量关系、列出方程解决问题的方法,使之形成“观察———分析———归纳”的良好习惯,这对于整个数学的学习都是至关重要的。另外,在教学中还要告诉学生,有些问题用算术法解决是不方便的,只有用代数解法。对于某些典型题目在帮助学生用代数方法解出后,同时与算术解法作比较,使学生有个更清晰的认识,从而逐渐摒弃用算术解法做应用题的思维习惯。总之,学生在小学数学中接触的都是较为直观、简单的基础知识,而升入初一后,要学的知识在抽象性、严密性上都有一个飞跃,作为初一数学教师,认真分析研究有关问题,对搞好中小学数学课堂教学的衔接和提高教学质量有很大的现实意义

魅力无比的定理证明——勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。1.中国方法画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是a2+b2=c2。这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。2.希腊方法直接在直角三角形三边上画正方形,如图。容易看出,△ABA’ ≌△AA’’ C。过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。于是,S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,即 a2+b2=c2。至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴ 全等形的面积相等;⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。如图,S梯形ABCD= (a+b)2= (a2+2ab+b2), ①又S梯形ABCD=S△AED+S△EBC+S△CED= ab+ ba+ c2= (2ab+c2)。 ②比较以上二式,便得a2+b2=c2。这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则△BCD∽△BAC,△CAD∽△BAC。由△BCD∽△BAC可得BC2=BD ? BA, ①由△CAD∽△BAC可得AC2=AD ? AB。 ②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有 BC2+AC2=AB2,这就是a2+b2=c2。这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0。所以a2+b2=c2。这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。人们对勾股定理感兴趣的原因还在于它可以作推广。欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。如此等等。【附录】一、【《周髀算经》简介】《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。《周髀算经》使用了相当繁复的分数算法和开平方法。二、【伽菲尔德证明勾股定理的故事】1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。转引自:中“数学的发现”栏目。图无法转贴,请查看原文。魅力无比的定理证明——勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。1.中国方法画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是a2+b2=c2。这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。2.希腊方法直接在直角三角形三边上画正方形,如图。容易看出,△ABA’ ≌△AA’’ C。过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。于是,S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,即 a2+b2=c2。至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴ 全等形的面积相等;⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。如图,S梯形ABCD= (a+b)2= (a2+2ab+b2), ①又S梯形ABCD=S△AED+S△EBC+S△CED= ab+ ba+ c2= (2ab+c2)。 ②比较以上二式,便得a2+b2=c2。这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则△BCD∽△BAC,△CAD∽△BAC。由△BCD∽△BAC可得BC2=BD ? BA, ①由△CAD∽△BAC可得AC2=AD ? AB。 ②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有 BC2+AC2=AB2,这就是a2+b2=c2。这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0。所以a2+b2=c2。这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。人们对勾股定理感兴趣的原因还在于它可以作推广。欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。如此等等。【附录】一、【《周髀算经》简介】《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。《周髀算经》使用了相当繁复的分数算法和开平方法。二、【伽菲尔德证明勾股定理的故事】1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。回答者:zhang_1118 - 江湖新秀 五级 2-19 17:47中“数学的发现”栏目。图无法转贴,请查看原文。补充回答:这又详细证法,还有图,自己看看

本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。 以上就是我的这篇“数学小论文-一次函数”,所有观点只是我个人之见,谢谢!

强烈鄙视楼上复制他人的答案!!!!

七年级数学论文800字

有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。 1、三角形很稳定,许多支架都是三角形的许多支架用三个脚支撑用了一个数学公理三点确定一个平面 2、一些人在木门上钉斜条,是为了克服四边形的不稳定性。卷闸门也是一样的道理。 3、河南登封观星台、南京中山陵都是中心对称图形 4、蚊帐的孔是六边形的~ 5、筷子是圆锥型的。光碟是圆形的。 6、电线是线段冰箱是长方体门是长方形轮胎是圆形地球是圆形 数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(引自《古今数学思想》第一册P1——作者注)。“在BC3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展”,而“在BC600—BC300年间古希腊学者登场后”,数学便开始“作为一名有组织的、独立的和理性的学科”(引自《古今数学思想》第一册P1——作者注)登上了人类发展史的大舞台。 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。由于这些内容所涉及的高中数学知识不是很多,在此就不赘述了。 由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。 例如:在教学“求两个数的最小公倍数”时,课始,我创设了这样一个情景:皇塘每6分钟有一辆中巴车开往常州(向东),8分钟有一辆中巴车开往丹阳(向北)。现在刚好有两辆中巴车同时分别开往常州和丹阳,问再过几分钟,又有两辆中巴同时开往常州和丹阳?数学在我们得生活当中是无处不在到,小到买菜的讨价还价,大到火箭的设计......其实我们在学习数学得过程中是为了培养自己得逻辑判断能力,让自己得思维更严谨,我们在学校学习数学,不单单只是为了去记住一个公式,而是在学习这个公式得推倒得过程中渐渐得培养了自己得思维逻辑能力,可以说,一个人的数学学好了,对于一件事得判断能力会大大增强,所以学好数学,不单单只是为了应付考试,而是在学习一项在社会生存得基本技能.

各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”

自己网上去查一篇啊 而且悬赏分也没有.....

由于 七年级数学 是重要的教学工作,教师要注重激发学生学习数学的兴趣。下面是我为大家整理的七年级数学教学论文,供大家参考。

【关键词】七年级新生 数学教学解决 方法

学生刚从小学升入中学时,心理和生理都发生着巨大的变化,而数学教学也发生着重大的转变,初中数学在小学数学的基础上增加了复杂的平面几何、代数、有理数、实数、一次函数与二次函数等,内容多,难度大,学生感到吃不消,因此对数学产生畏惧感。以下针对七年级学生学习初中数学时出现的问题,谈谈具体的解决方法。

一、提升学生的数学学习能力

初中数学较之小学数学更为复杂、抽象,特别是数字到字母的转变、具象到抽象的转变等,一些逻辑推理能力稍差的学生学习起来感到十分吃力,学生在七年级阶段学不好,会影响到今后对数学的深入学习。因此,提升学生的数学学习能力尤为重要。逻辑推理能力是学生学习初中数学的首要必备能力,在具体教学中,教师要注重对学生逻辑推理能力的培养。

例如,在几何教学中,培养学生将文字语言转化为数学语言的 逻辑思维 。

师:已知:HC是∠ACB的角平分线,同学们从已知条件可以知道什么?

生:因为HC是角平分线,所以∠HCA和∠HCB两个角相等。

师:没错,不仅∠HCA=∠HCB,而且别忘记∠HCA=∠HCB=∠ACB。

师:已知AB//CD,直线EF分别与直线AB和CD交于点G和H,请同学把图画出来。

学生根据对条件的理解画出图形,如图1。

师:∠AGH和∠GHD是内错角,所以∠AGH=∠GHD,同学们根据老师的思路,还能推理出什么?

生:因为AB//CD,所以∠FHD=∠FGB,并且∠AGH+∠CHG=180°。

教师先举例说明,再让学生自己进行观察推理,使学生不至于因为知识点理解有困难而走偏路。通过步步引导,逐渐提高学生的理解能力和逻辑推理能力。

二、把握教学内容的衔接

与小学数学相比,初中数学的内容更加系统丰富,如果教师处理不好中小学数学教学内容衔接的问题,会直接导致学生在初中数学的学习中脱轨。因此,在教学过程中,教师必须注意初中数学和小学数学的衔接,在接触一个新的知识点时,先分析小学数学与初中数学的差异,让学生意识到数学在初中阶段的系统化,同时,又要给予学生充分的信心,使学生不会因为初中数学与小学数学的巨大差异而产生恐惧心理。

例如,在“有理数”的教学中,我的教学过程如下:

师:小学数学是在算术数中研究问题的,我们现在开始学习一个新的知识――有理数。

学生从书上找到有理数的概念,师引入负数,并举例说明其用法。

师:同学们,我们怎样区别山峰的海拔高度与盆地的海拔高度这两个具有相反意义的量呢?

生:用负数,就像零上几度和零下几度一样。

师:没错。事实上,有理数与算术数的根本区别在于有理数由两部分组成:符号部分和数字部分,数字部分也就是算术数。

生:也就是说,有理数相比小学的算术数只是多了符号的变化。

师:对,例如:(-5)+(-3),同学们可以先确定符号是“-”,再把数字的部分相加。

生:答案是(-5)+(-3)=-(5+3)=-8。

在算术数到有理数这一重大转变中,教师明确了切入的方向和步骤,使教学内容与小学数学的内容很好地衔接,同时,又能帮助学生在小学的基础上理解有理数,使学生感受到初中数学与小学数学内容上的一脉相承,从而适应初中数学的学习。教师在教学中要注意由小学数学内容或生活中的实例引入教学,拉近学生与新知识的距离,加深对知识的理解,再实战练习,让学生不再对初中数学望而生畏。

三、培养学生良好的学习习惯

良好的学习习惯对于初中阶段的数学学习极其重要,在小学阶段,学生大多没有形成特定的学习习惯,往往以完成教师布置的作业为主要目标,临近考试才看书“临时抱佛脚”。大多数学生在进入初中后,面对快节奏的学习显得十分不适应。因此,教师要致力于培养学生良好的学习习惯,让学生面对高强度的学习任务也能游刃有余。在初中数学的学习习惯中,预习和复习尤显重要。

1.重视预习

进入初中阶段,数学教学进度陡然加快,学习难度也逐步加深,学生一时难以适应,在听课过程中,学生由于没有预览新知识,对教师所讲内容十分茫然,从而产生焦虑急躁的情绪,影响继续听讲。久而久之,不仅听课效率下降,更打击了学生学习初中数学的信心和兴趣。因此,教师应在布置当天学习内容的作业时,将预习次日学习内容作为一项作业布置给学生,并提出预习的具体要求,指导学生预习的方法,让学生逐渐养成预习的习惯。

2.正确把握复习的节奏和掌握复习的方法

复习也是一个极其重要的学习习惯。根据艾宾浩斯遗忘规律曲线,在识记的最初阶段遗忘速度很快,以后逐步减缓。因此,在学习新知后若不及时加以巩固复习,学习效果将大打折扣。教师应向学生强调复习的重要性,明确要求学生在做作业之前先复习当天所学内容,并阶段性回顾单元章节知识,以强化学习效果。

复习主要包括两部分,一部分是新授课后对已学知识点的回顾和巩固,另一部分是考试前对知识的回忆和温习。首先是新授课后对已学知识点的回顾和巩固,在这一环节,学生总感觉学习时间不够,光是完成教师布置的作业就已经很吃力了,更别说复习,这就要求学生学会把握复习的节奏。教师应该适时在课堂上复习已学知识或点评新旧知识点的联系,用课堂讲习题的方式间接提醒学生复习的重要性,使学生在潜移默化中适应教师的复习节奏和方法,最终化为自己的习惯和方法。其次是考试前对知识的回忆和温习。教师应提醒学生,复习要以教材为本,深入理解知识点,把握重点内容。另外,考过的测试卷也是复习的好资料,考试中暴露的问题正是学生应该重视的复习内容,尤其是七年级新生,不知复习从哪儿下手时,更应该珍惜每一份试卷,认真分析,找出自身知识点的薄弱环节, 总结 失败的教训,从中得到成长与进步。

以上观点均是结合自身的教学 经验 所谈,教师应根据所教班级学生的特点因材施教,切勿生搬硬套。

摘要:学习数学对七年级的学生来说,首先是获得适应初中数学学习的能力,以缩短小学学习向初中学习的过渡期。要使数学教学更有效地帮助学生获取数学知识和适应能力,有些问题应在我们的数学教学中应予以重视。

关键词:七年级;数学;重视

1.重视“小练习”,以体现数学思想 教育

进行数学思想方法教学应遵循的几个原则:一是化隐为现原则。就是有意识地让学生将数学思想方法作为明确的学习对象,教学应当以知识为载体,把隐藏在知识中的思想方法揭露出来。二是循序渐进原则。必须结合教学内容和学生认知水平,反复孕育结论发展形成的过程,采用“小步走”、“多层次”的方式,以体现数学思想方法的教学。三是学生参与原则。应当认识到学生参与教学,是数学活动过程的教学,具有动态性、重思辨的特点,要求有学生积极参与其中,使学生逐步领悟、形成和掌握数学思想方法。

我们应当按照这些原则教学。例如,应用题对七年级学生来说是一个数学学习的难点。这个阶段的应用题,尽管在很大程度上还没有真正涉及到实际的应用题,即使这样,也有一些学生对此感到头痛。为了处理好这个问题,我们应按上述原则,在教学中重视设置一些与讲授问题相关、简单且有层次的小练习,让学生通过这些小练习,逐渐体会如何分析问题以及解决问题的方法或思路。例如:

甲、乙两站相距450km,一列慢车从甲站开出,每小时行驶65km ,一列快车从乙站开出,每小时行驶85km。(1)两车同时开出,相向而行,多少小时相遇?(2)快车先开出30分钟后慢车开出,两车相向而行,慢车行驶了多少小时与快车相遇?

讲解该问题前,我们可按解题思路先让学生想想两种车在具体时间内各走了多少路程,并推出x小时内所走路程的表达式;再让学生想想两车“相遇”在时间上有何特点,各自所走路程与两站间距离有何关系;然后让学生想想“快车先开出30分钟”对各自所走路程以及与两站间距离的关系会产生的影响等问题。通过这类小练习让学生沿着正确的解题方法做一遍,以理解解题的思想。

这类小练习应具有由浅入深、由简单到复杂、每步过渡都有铺垫等特点,若再加上适当的图示,学生做起来就不会感觉有太大困难。显然,小练习是在教师引导下由学生自己完成,符合“学生参与原则”;围绕原问题,小练习按“小步走”的方式依次提问题,难度由浅入深,符合“循序渐进原则”;小练习将原问题的基本面目逐步展现出来,让学生看到解决原问题的方法与自己熟悉的方法之间的关系,符合“化隐为显原则”。

2.要关注学生的个体差别

在曾经的教学中,学生常常是被动地学习,没有机会主动地学习和自主地选择决策,这样学生就失去了作为学习主人的创造力创新精神。新一轮基础教育课程改革十分重视尊重学生的个体差别,尊重学生的各式性,激发勉励学生各个方面进行发展,采用不一样的教育方法和评估标准,为每个学生的发展创造条件。作为初中数学老师需要在教育思想、教育观念上创新,要树立适应时代发展必要的新的教育观、人才观和质量观,在全面落实素质教育的基础上,不停改革 教学方法 ,提升教育教学质量,创建符合学生身心发展规律的班级课程授教体系,刺激引发学生学习的主动性和创造性,应对学生有充实的信心和支持带领学生在各个方面进行发展的基础上寻找本性突破(意为打开缺口突破难关)。值得注意的是,个性化(就是非一般大众化的东西。在大众化的基础上增加独特、另类、拥有自己特质的需要,独具一格,别开生面的一种说法。打造一种与众不同的效果。)的课程和教学条件正在逐步形成。信息技术的发展,多媒体计算机和网络(网络就是用物理链路将各个孤立的工作站或主机相连在一起,组成数据链路,从而达到资源共享和通信的目的)技术在学校教学整个过程中应用范围日益扩大,给个性化(就是非一般大众化的东西。在大众化的基础上增加独特、另类、拥有自己特质的需要,独具一格,别开生面的一种说法。打造一种与众不同的效果。)教学和对学习的人的志趣、能力等具体情况进行不同教育带来新的机遇,也给初中数学老师带来了新的挑战。

3.数学教师应正确认识数学教学的本质

树立正确的数学教学观教学曾被简述为“教师教、学生学的活动”。但这样说过于简单,不利于对数学教学的全面理解。苏联教育学家斯卡特金认为:教学是一种传授社会经验的手段,通过教学传授的是社会活动中各种关系的模式、图式、总的原则和标准。这是一种侧重于传授内容的总体叙述。美国心理学家布鲁纳认为:教学是通过引导学生对问题或知识体系循序渐进的学习来提高学生正在学习中的理解、转换和迁移能力。这是侧重于学生获得发展的叙述。不论是从认识心理学的角度构筑的数学教学理论,还是着眼于未来,注重 学习方法 的掌握与创造精神发挥的数学教学理论,都必须研究数学教学过程的本质、数学教学的原则和教学方式及方法的开拓,探讨数学教学的科学性与艺术性及其统一。特别地,要与信息社会发展的总体趋势相适应,着眼于促进学生全面、持续、和谐地发展。“义务教育阶段国家数学课程标准(实验稿)”第四部分“课程实施建议”中指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程”。这里,强调了数学教学是一种活动,是教师和学生的共同活动,这对广大教师树立正确的数学教学观具有重大的意义。在新课程中,教师将由传统的知识传授者转变为课堂教学的组织者、引导者和合作者。教学工作越来越找不到一套放之四海而皆准的模式。因此,教师必须在教学工作中随时进行 反思 和研究,在实践中学习和创造,这样才能得到发展。另外,数学教学过程不再是机械地执行教材的过程,而是师生从实际出发,利用更广泛的课程资源,共同开发课程和丰富课程的过程,教学真正成为师生富有个性化的创造过程。新的课程呼唤着创造型的教师,新的时代也将造就优秀的教师。

摘 要: 新世纪需要的是高素质人才,兴趣是各种素质培养的前提条件,培养学生的兴趣是数学教学的关键。数学兴趣的培养要从入门抓起,要从课堂教学抓起,要从学习习惯抓起。教师要以数学的趣味性、教学的艺术性感染学生,引起学生学数学的兴趣,同时培养学生各方面能力,真正实现素质教育。

关键词: 学习兴趣 课堂导入 实践操作 学习习惯

学生升入七年级伊始,对数学有着浓厚的兴趣,可是没多久,兴趣就慢慢消失了,这几乎成了七年级数学教学的普遍性问题。长期以来,教师为保持学生的学习兴趣一直进行着不懈努力。那么,如何提高七年级学生的学习兴趣呢?经过不断探索和实践,我认为应该从以下几个方面入手。

一、要充分把握入门阶段的教学

“良好的开端是成功的一半”,这是义务教育课程标准试验教科书编写者的指导思想。七年级学生翻开刚拿到的数学课本后,一般都感觉新奇、有趣,想学好数学的求知欲较为迫切。因此,教师要不惜花费时间,深下功夫,让学生在学习的入门阶段留下深刻的印象,产生浓厚的兴趣。为此教师在教学七年级数学上册第一章“几何图形的初步认识”时,可多运用几何体教具进行教学,还有多让学生观察日常生活中的几何体,课上多动手操作,来引发学生的学习兴趣。如在教学第三节“几何体表面展开图”时,让学生以组为单位,剪、展纸盒,通过动手实际操作激起学生的学习兴趣。这样通过第一章的学习,一点点诱发学生的学习兴趣,消除学生害怕学数学的心理,以数学的趣味性、教学的艺术性给学生以感染,使其像磁铁上的铁屑离不开磁铁一样。

二、要保持课堂教学的生动性、趣味性

学生对数学学习有了初步兴趣后,要保持七年级学生学数学的永久兴趣,教师还应抓住七年级学生情绪易变、起伏较大的心理、生理特点,要求以“活的东西去教活的学生”,来培养学生持久的学习兴趣。对此,我的具体做法:

(一)注重课堂教学中的导入环节

一个好的导入设计,能使这堂课先声夺人,引人入胜,更为重要的是,好的导入能激发学生的学习兴趣和旺盛的求知欲,并创造良好的学习氛围,为授课的成功奠定良好的基础。以下是我教学实践过程中总结的几种课堂导入的方法。

1.设置情境,激发兴趣。

创设良好的导入情境,激发探索动机是引导学生探索学习的前提。因而,在导入阶段教师应注重情境的创设,创设好奇、疑惑、生动、有趣的情境,让学生对学习产生兴趣,进而产生主动探索的强烈欲望。如在教学“用平面截几何体”时教师可用实际切豆腐演示的方法导入,从而激发学生的学习兴趣。

2.设置疑点,引起兴趣。

“学贵有疑”,这是常理。学生在学习数学的过程中不断发现问题,学习数学才有兴趣,才会主动。亚里士多德曾说过:“思维是从疑问和惊奇开始的。”因此教师在导入教学过程中,还可以设置障碍,故意制造疑团和悬念,提出一些必须学习了新知识才能解答的问题,点燃学生的好奇之火,激发学生的求知欲,从而形成一种学习的动力。

3.联系生活,灵活应用。

生活中处处有数学的存在。要培养学生数学的应用意识,教会学生去观察生活,领悟生活的数学因素,教师就应注意课堂中实际生活的渗透,巧妙设置情境;启发学生从生活实际中发现某些规律,从而导入新课,这种方法可使学生在发现的喜悦中提高学习的兴趣,同时有利于学生对新知识的理解和记忆。

(二)课堂教学中充分让学生参与实践操作

教材针对七年级学生喜欢观看、喜欢动手的性格特征,安排了大量的实践性内容,以激发学生的学习兴趣。教师要抓住教材这一编排特点在教学中让学生参与实践操作,如在教学“有理数的混合运算”一节时,教师可把学生分成几个小组,每组一副扑克牌(去掉大、小王牌),让学生任意抽取四张牌,然后根据牌面上的数字进行加、减、乘、除、乘方混合运算,使运算结果为24或-24,来激发学生的学习兴趣和求知欲。

此外,教师可讲与数学知识有关的小 故事 ,做小游戏等,适当增加趣味成分,使看似枯燥的数学变得形象具体,这样也可以使课堂教学变得生动有趣。

三、教学中要注重培养学生学习习惯

七年级数学在每章节内容的编排上安排了“观察与思考”、“一起探究”、“做一做”、“大家谈谈”等栏目,独具匠心、面目一新。其宗旨是设法使学生学有趣、学有法、学有得。为此我在教学实践中从培养学生学习兴趣入手,逐渐使学生养成良好的学习习惯,使数学兴趣真正变成永久兴趣。具体做法:

(一)培养观察习惯

学生对图形、对实验的观察特别感兴趣,教师就可以引导他们有的放矢、积极主动去观察,边观察、边提问、边引导学生进行讨论。根据他们观察、分析的情况逐步引导出知识点。这样能使学生体会观察的收获与兴奋,自觉养成观察的习惯。

(二)培养思考习惯

具体方法是课前或课中出示思考题,如教学“用一元一次方程解决实际问题”时,可出示思考题:你还能想出另外的方法解这道应用题吗?鼓励学生思考多种方法,表扬回答正确的学生,使学生有获得成功之喜悦,从而产生兴趣,养成爱思考的习惯。

(三)培养探究的习惯

教师通过提问,引发学生积极探讨数学知识,逐步培养学生合作探究的习惯。特别是一题多解的题目或需要分类讨论的问题,如在教学“平行线的特征”时,可以让学生进行分组探究。通过探讨,归纳出平行线的性质。

以上只是我个人在七年级数学教学过程中对如何培养学生学习兴趣方面一点粗浅的看法,还望各位同仁给予指教。教师在实际教学中,其方法、 措施 是多种多样的,体会也各不相同,对于数学教学还有待于我们共同的研究和探讨。

参考文献:

[1]尹安群编著.有效教学――初中数学教学中的问题与对策.东北师范大学出版社.

1. 浅谈七年级数学相关论文

2. 初中数学的教学论文

3. 关于初中数学教学论文

4. 初中数学教学论文范文

5. 初中数学教育教学论文

数学论文八年级下册2000字

还是自己写比较好啦

在数学教学中,只有把数学理论知识和现实问题相结合,才能激发学生的数学思维,调动他们的积极探究欲望,使学生在探究数学知识时能够不断获得发展。本文是我为大家整理的初二的数学教学论文内容,欢迎查看!

一、注重概念教学理念的创新

(一)以适学情境的构建激发学生学习兴趣

在教学理念方面,教师应改变以往完全将概念教学集中在抽象的教学材料方面,可适时引入一定的情境素材以激发学生学习的动机。具体实践中可引入相关的数学 故事 或数学趣闻等。如关于数学概念的形成,可引入“杨辉三角形”概念的提出或祖冲之对圆周率的计算过程等,也可将国外许多如哥德巴赫猜想或象棋发明者塞萨的 事迹 等内容融入课堂中,集中学生注意力的同时也能加深学生对数学知识的理解。以初中数学“平面直角坐标系”教学内容为例,教学中教师可首先为学生讲述笛卡尔的故事,笛卡尔通过对蜘蛛结网的观察而推出由点的运动可以形成直线或曲线,进而得出直角坐标系的概念。此时学生便会对平面直角坐标系的概念产生一定的求知欲望,既增强了与教师之间的互动交流,也能够满足以学生为主体的教学目的。

(二)注重对概念教学“形式”与“实质”关系的处理

教学中的“形式”可理解为初中数学教学中的相关概念与定理,而“实质”为数学知识的具体应用。概念教学中教师可充分发挥自身的引导作用,如关于代数式教学过程中,不必对代数式给予更多繁琐的定义,其会为学生带来更多抽象性问题,可首先在概念引入前列举相关的代数式使学生从中体会代数式的内涵。再如,初中数学中的乘法公式教学内容,只需使学生理解字母a与b即可,不必要求学生完全进行文字叙述,如(a+b)(a-b)=a2-b2,对括号内项特征掌握后便能理解该公式,当面对其他如(a+b-c)(a-b+c)类型题时,学生能够直接通过平方差公式的概念对其进行解答。另外,在其他内容教学中如平行线判定或方程教学中也需注意“形式”与“实质”关系的处理,确保学生能够得到实质性的训练。

二、对概念教学内容的创新

现阶段,大多初中数学课堂教学在教学内容体系上仍存在以本为本、以纲为纲的现象,使学生的学习过程中以及教师的教学受到一定程度的制约,所以需改变这种照本宣科的教学方式,注重对教学内容进行创新,具体创新策略主要表现在以下两方面。

(一)把握教材整体内容与概念层次特征

初中数学教材中的概念内容本身具有螺旋式上升特点,无法一次为学生所理解,需要教师对教材的相关概念进行整体把握,并注重各部分概念能够层层推进。以初中数学教学中的绝对值概念为例,教材中对其定义为正数绝对值为其本身,负数绝对值为其相反数,而零的绝对值仍为零。若单纯依靠此定义,学生很难理解,所以在教材内容中又对绝对值概念提出其主要为原点与此时数的点的距离,学生能够初步认识绝对值概念。而在二次根式教学内容时,教学内容又涉及到绝对值概念,学生可将开平方运算联系到绝对值,领会概念的实质。因此,实际概念教学过程中教师需在掌握教学内容整体的基础上按照概念层次性特点进行教学。

(二)概念知识与实际应用的结合

数学学习的目的在于使学生将习得的概念与规律运用在实际生活中,促进实践动手能力的提高。然而大多数学教师为防止信息丢失,对所有的概念内容在讲授中面面俱到,如在学生未练习应用因式分解概念的情况下,便将因式分解可在哪种数系范围中进行或具体分解为哪种形式等进行系统讲解,但是学生尚未掌握前一部分概念的应用便涉及更多内容,很难形成良好的知识体系。因此,要求教师在概念知识教学中应在保证不脱离教材的前提下,对教材内容适当取舍,使学生能够边学边用。

三、注重 教学 方法 的创新

素质 教育 的推行更强调对学生创新意识的培养。以往教学中过于陈旧的教学模式很难构建良好的课堂氛围,促进学生思维能力的提高,因此需要在概念教学中改变以往“满堂灌”或“填鸭式”的教学方法,引入一定的问题情境以调动学生参与课堂积极性。

(一)对数学概念本质的揭示

概念教学过程中,问题情境的引入需考虑到素材的选择问题,避免造成数学概念内容失去自身的层次性特征与连续性特征。以函数的概念为例,若从字面概念定义,可引入x,y两个变量,在一定范围中y都存在与x值相对应的确定值,此时y为x的函数,而x为自变量。此时,教师可将生活中的摩天轮运动引入其中,提出假设学生坐在摩天轮上,运动过程中与地面高度会存在那种变化,不同时间内高度能否确定等,学生便会寻找相关的函数数学语言去分析摩天轮运动时间与高度存在的关系,以此使抽象化的函数概念具体化,通过对事物本质的揭示促进数学思维能力的增强。

(二)对数学教学信息的概括

数学概念本身是对事物本质的反映,具有极为明显的抽象特点,要求教学过程中教师能够采用正确的教学方法使概念中的内容特征与表现规律展示出来,引导学生对信息内容进行概括,这样数学概念将更为清晰。例如,数学教学中引入摩天轮旋转实例,其旋转的时间与高度本身存在一定函数关系,且保持相互对应。通过学生对摩天轮旋转特征的描述,找出与时间相对应的高度,这样在教师的适时引导下将会完整的概括出函数的概念,习得函数知识的同时也提高学生对数学概念的概括能力。因此,概念教学中教师应采取切合实际的教学方法,避免脱离学生生活,使学生能够自然掌握数学概念。

四、注重教学手段的创新

信息化时代的到来使传统数学教学手段受到一定的冲击,要求初中数学教学过程中应引入更具形、色、声等特征的多媒体教学手段,使原本较为枯燥的课堂教学更为生动,并将抽象的数学概念形象化,有效地提高数学教学效果。

(一)充分发挥多媒体教学设备的作用

在教育心理学内容中,提出学生 抽象思维 能力的培养要求采用直观教学的方式,无论在数学概念掌握或数学知识结构形成方面都需充分发挥教学中形象直观教学的应用。而传统初中数学教学中并未注重引入更加生动的教具,不具备可感性,所以可通过多媒体设备的引入,将较为抽象的概念以及图形参数等融入其中。例如,平面几何教学过程中,教师可利用计算机进行图形的绘制,将整个过程向学生展示,这样关于平面几何的相关概念与图形都可为学生所理解。

(二)课堂演示与实践过程的结合

多媒体手段应用过程中,在课堂演示方面需由教师操作完成,可使关于数学概念的电子课件利用教学网络向终端屏幕传送,讲解的同时应向学生提问确保学生能够参与到课堂活动中,并对学生学习情况给出适时的评价。例如,关于平面几何中“圆”的概念,讲解过程中可将圆心为O、半径为R的圆在屏幕中画出,然后引导学生利用数学概念对圆的画法进行描述,并实际操作验证。教师可组织学生利用数学概念自行画圆,对于完成情况较好的可在屏幕中体现出来,以此增强学生的自信心,激发学生学习兴趣并促进实践动手能力的提高。

作者:陈建芳 单位:昆山市周庄中学

一、问题探究教学模式的基本涵义与基本原则

要想让问题探究教学模式在初中数学教学中获得良好的教学效果,教师就要准确把握问题探究教学模式的基本涵义和基本原则.问题探究教学模式的主要内容是教师通过各种方式,让学生在教学过程中,能够自主地发现问题、提出问题和解决问题,并且在探索问题的过程中获取知识和培养能力.在初中数学教学中有效运用问题探究教学模式的基本原则:(1)以学生为主体的原则.在问题探究教学模式中,要注重教师的主导作用,更要充分发挥学生的主体作用,让学生能够积极主动地参与到教学过程中.(2)以问题为核心的原则.以问题为核心就是指在教学过程中培养学生的问题意识,学生具有良好的问题意识是实施问题探索教学模式的源头,教师要让学生知道如何去发现问题、提出问题和解决问题,这也是决定问题探究教学模式能否成功的关键原则.(3)以情感为依托的原则.在教学过程中,教师要注重知识的传授,还要注重与学生之间的情感交流.构建和谐的课堂师生情感关系,对实施问题探究教学模式具有十分重要的促进作用,也是问题探究教学模式获得良好效果的保证.

二、在初中数学教学中有效运用问题探究教学模式的策略

初中数学课堂实施问题探究教学模式的目的主要是:为了促进学生综合能力的发展和提高课堂教学效率和质量.

1.准确把握学生实际的认知水平

任何教学方式要想获得良好的教学效果,都必须要遵循课堂教学中学生实际的认识结构才行.不然的话,就算再好的教学模式,也是不可能获得良好教学质量和效果的.学生实际的数学认知结构是整个问题探究模式的出发点.因此,在初中数学教学中运用问题探究教学模式时,教师一定要对学生现有的认知结构有准确的把握和认识,这样才能有针对性地对学生开展问题探究教学模式.

2.注重培养学生课堂教学中的问题意识

培养学生课堂教学中的问题意识是整个问题探索教学模式的核心内容,也是该教学模式能否成功的关键因素.因此,在初中数学教学中运用问题探究教学模式时,教师一定要认真研究,并运用多种方式,将要教授的学习内容转化为数学问题思维情境,让学生在问题思维模式下自主学习,真正遵循初中数学教学中“提出问题—建构数学—解决问题”的探究过程.例如,在讲“相似形”时,教师可以设计这样一个问题情境:用多媒体播放埃及的金字塔,让学生观察大小金字塔的外形之间有什么相似之处,之间有什么联系.根据这个问题情境,教师可以设置如下两个问题:(1)根据相似形能否测出大金字塔的高度?(2)相似形各边比例是否相等?各个对应的角是否相等?为什么?让学生自己去寻求解答.通过教师创设的这种问题情境,再由学生自主去探索,这种让学生亲身去经历提出问题、解决问题、应用 反思 的过程,就能使学生切实感受到在探索中学习的快乐,而且这种模式也能使教师课堂教学的知识目标、能力目标都得到较好的落实.

3.探索课堂师生之间的情感体验模式

初中数学教学中运用问题探究教学模式,不仅要关注学生数学学习的效果和质量,也要关注学生在数学课堂活动中所表现出来的情感与态度.因为问题探究式教学模式就是让学生在课堂中根据教师创设的问题进行探索、讨论和交流,这就使学生只有在态度上真正接受、喜欢和参与,才能使相关的讨论或探索获得良好的效果.因此,学生的情感态度对开展问题探究式教学是有重要影响的,也是教师需要认真去关注的一个问题.教师在运用问题探究式教学向学生传授知识的同时,也要采取各种方式在课堂上构建一个和谐、民主的师生情感关系,这对培养学生的学习兴趣是非常重要的.总之,本文对初中数学教学中有效运用问题探究式教学进行了一些理论和实践的探讨,其中最主要的就是对初中数学问题探究式教学如何开展的问题,无论采用探究什么形式和方法,最重要的是要适合学生的发展,扬长避短,最终使数学教学优点发挥到最大化,让这种探究模式成为教学的主流,让数学教学发展得更好,这对今后初中数学教学改革有非常重要的意义.

作者:李权 单位:江苏沭阳县马厂中学

关于数学论文范文2000字

现如今,大家或多或少都会接触过论文吧,论文是我们对某个问题进行深入研究的文章。如何写一篇有思想、有文采的论文呢?下面是我整理的数学论文范文2000字,供大家参考借鉴,希望可以帮助到有需要的朋友。

论文题目: 学生自主学习能力培养提升小学数学课堂教学效果

摘要: 在新课程理念的指引下,小学数学课堂呈现充满教育契机的、富有挑战性的新气象,在注重小学生全面发展的能力培养下,对小学生自主学习能力、交流合作能力和创新思维能力的培养成为教育重点,这要求教师具有教学的智慧,对学生有深入的了解,在这样的教育氛围之下,才可以培养出学生的创意想象和创造性、探究性思维,在自主学习的过程中增强知识性的体验,创设出最佳的课堂效果。

关键词: 自主学习能力;创新思维;小学数学

在全新的教育理念下,教育视角由原来的“要我学习”转为了“学会学习”,教师在对小学生能力培养的过程中,注重小学生全面素质的培养,包括自主学习能力和创新思维能力,使小学数学的教学课堂展现出主动参与的学习过程,数学课堂在学生的主体行为下显露出智慧的光芒,这就需要教师在教学过程中要采用适合小学生的方式和策略,注重学生学习的过程,而不是学习的结果,发挥出小学生自主探索和自由发现的天性,促进学生健康全面的发展。

一、小学数学教学中的现状及反思

小学生由于其年龄特点和个性特征,呈现出对新异、生动的事物有强烈好奇的兴趣,而且大多数小学生都有强烈的求知欲、自尊心和好胜心。教师在教学过程中要根据小学生的年龄特点和个性,培养学生的自主学习能力,但是,目前小学数学教学尚存在些许不足,需要我们加以反思。

(一)情境教学中过多地引入情境,丧失了教学目标

一些数学教师在课堂引入时,过多地运用了情境,而分散了小学生的注意力。如:在课堂导入时,教师突发奇想,要用“喜羊羊与灰太狼”作为课堂导入情境,学生睁大眼睛,竖起耳朵,开展了斗智斗勇的想象,却忘记了教师是在上数学课。又如:在一年级《加减混合》的数学计算中,教师想用“春游”作为情境导入数学课堂,可是在运用情境时过多地介绍了风景,使学生沉溺于风景的想象中而偏离了数学课堂的传授目标,缺失了数学教学目的。

(二)成人化的想象对小学生缺乏新奇的吸引性

数学教师在进行教学课堂的情境创设时,用成人的眼光和视角去进行设想,忽视了童趣和纯真的眼睛,简单的情境创设平淡无奇,缺乏挑战性。例如:在小学数学教学中《7的乘法口诀》一课,教师用“一个星期有几天”来进行问题式的课堂导入,这对于学生而言缺乏新奇,对乘法口诀也缺乏记忆。

(三)课堂教学中“数学味”的弱化和缺失

在小学数学的教学课堂中,教师利用各种情境创设导入教学,却没有及时地将情境引入到数学知识的学习当中,弱化了数学学科所应有的“数学味”,使学生自主性学习的兴趣降低。如:在《统计》的数学知识教学中,教师通过分组教学的形式,让学生开展讨论和记录,可是学生们却停留在小组成员间体重的比较讨论等内容,而没有真正进入到数学统计知识的学习之中来。

二、自主学习的概念及其重要性

在小学数学的教学中,学生要通过能动的创造性活动,在教师的指导为前提下实现以学生为主体的良性发展。学生可以通过多种途径和手段,自主地有选择地学习,并创造性对所学的知识进行整合和内化,从而达到自主学习能力水平。小学生进行自主学习的重要性主要体现在以下几方面。

(一)提高数学知识吸收的质量

自主学习的方式是积极主动的方式,是小学生进行自主习惯的培养方式,它在激起求知欲望的前提下,转化为认知的内驱力,激发出学习的内在动机,并将之内化为学习习惯,真正提高数学知识吸收的主动性。

(二)为后续的数学知识学习奠定基础

小学阶段是数学知识学习的起始阶段,在这一关键阶段中,要培养学生的自主学习习惯,用他们自发的数学学习兴趣和自主发现的能力,掌握学习数学知识的策略,为后续数学更高层次的学习奠定基础。

(三)自主发现和自主学习能力的培养

小学生多数都有一双好奇的眼睛,他们对周围的世界很好奇,也拥有自主发现的能力,在这一过程中,对其自主发现的能力挖掘越多,那么,学生自主学习的能力就越强,自主学习的习惯就容易产生知识性的迁移。

三、自主性学习的小学数学课堂教学策略

小学数学的自主性学习课堂教学充分发挥了学生的主体性,以学生的自主探究和实践能力和创新思维能力为宗旨,在良好的教学氛围和自主参与的环境下,实现多种形式的自主性学习,在不同的活动中获取数学知识,掌握小学数学知识学习的一般规律和学习方法。

(一)数学课堂有效导入,激发学生的自主参与性

合适而有效的数学情境导入,是进行高效数学课堂的有效方法和途径,要在课堂导入的过程中创造良好的氛围,用宽松、愉悦、智慧的方式激发学生对数学知识的自主性学习过程,其具体方法如下。

1.以生活为教学情境进行数学知识的迁移。生活是无痕的,生活对学生的体验是最深刻的体验,而“生活中的数学”与“数学中的生活”又是紧密相联和息息相关的,学生在生活的体验中感知到数学的价值,可以在身临其境的体会中感受到数学的奥妙,数学情境的生活度越高,学生内在的生活体验越容易被激活,数学知识掌握的程度就越深。例如:在“人民币的认识”教学中,让学生们进行分组进行人民币的购买情境,把不同的物品贴上不同的价格标签,再由分组的学生进行不同面值的假人民币的购买情境,使学生在购买的过程中体会到数字的变换。[1]

2. 以游戏为教学情境激发学生的自主性参与意识。游戏环节是小学生最乐于参与和互动的环节,数学教学可以适当地引入游戏环节,使小学生增强对数学知识的学习兴趣,感受到数学探索的成功体验。如:在小学50以内的加法练习中,不是单纯让学生进行数字的相加,而可以采用“邮递员送信”游戏的形式,增添学生的学习自主性,教师可以事先准备好标有不同两位数的信箱,并准备不同加法练习题的信封,选择几名学生作“送信邮差”,将这些信封和信箱匹配,学生在争先恐后的选择中掌握了数学知识,它犹如一块无形的磁石,深深地吸引着小学生的数学知识的注意力,增强了趣味性和主动性。

3.以故事导入引导学生进行自主性的学习。小学生都酷爱故事,因此教学中可以利用故事增加数学的趣味性,引导学生用创意的思维想象,进行自主性的学习。例如:在一年级的数学“10以内的数字”的教学中,为了让学生建立起数字的相关概念的学习,可以引入故事进行形象的学习:在0~9的数字王国里,数字9发现自己是最大的,于是就很神气和骄傲,它对其他数字说:“你们都是小不点儿,都比我小,所以你们都要听我的。”其他的数字为了消灭它的嚣张气焰,商量好让数字1和0组成一个新的两位数,数字9看到后低下了头,意识到了自己的错误,于是,再也不狂妄自大了,和大家成为了好朋友。学生们在教师故事的讲述中,也展开了对数字的思维和想象,认识到了10以内数字的基数、序数意义,进行自主性的认知学习。[2]

4.用数学问题引导学生进行自主性的学习。问题可以调动学生的积极性,让学生在带着困惑、怀疑和探索的心理,进行数学知识的自主性学习,这也是教学引入策略之一。在问题设置的数学教学中,要注意问题提出的难易程度,要根据学生的思维层次进行问题的导入,逐渐进入数学知识的学习,而不能以深奥、难解的问题来给教学设置障碍,使学生缺乏探究的动力和兴趣。

(二)师生共学———尝试自主参与的探究学习过程

教师对学生的教育,流传着一句名言:告诉的知识,容易忘记;分析出来的知识,可以记住;自主参与的知识,就会真正理解。这意味着只有让学生自己动手、动脑自主参与,才能在动手实践、自主探索、合作交流的过程中,掌握数学知识的内化,培养自主学习能力。

1.引导学生进行自主性的探索学习。在数学“认识钟表”一课中,为了让学生对其有数学性的认知,需要引导学生进行对实物钟表的观察、触摸与参与,让小学生在观察的过程中注意到长针和短针的区别,并观察相邻两个数字之间的大小相等的格,学生在对钟表的触摸、观察和实践操作的过程中,完成了对数学知识的认知。

2.根据学生层次进行小组合作式自主式学习。小组合作必须在教师的指导和辅导之下完成,要引导学生仔细观察、对比,如在“长方形”的认知中,要各小组进行分组比赛,寻找出最多的长方形者获胜,在大家踊跃参与的过程中,教师要引导学生注意观察长方形和正方形的区别,通过对比、测量等不同手段,了解对生活中“长方形”的认知,如:课本、长方形的长桌、黑板的形状等,大家在分组合作的过程中掌握了数学知识的规律,并主动性地获取了相应的知识。

(三)数学知识的应用———巩固数学知识的自主性探索

小学生在教学的过程中掌握了基本的数学概念和规律,教师还要将数学知识进行巩固和运用,要充分利用“温故而知新”的记忆特点,对数学知识进行巩固和实际应用。例如:在数学“做一做”的课后练习中,可以组织学生进行同桌互检式的巩固,还可以进行板演练习、课堂评价的方式进行巩固,这样可以激励学生自主进行数学知识的实践性的巩固和运用,将更多的数学知识转化为内在的知识。在知识的巩固过程中要灵活加以整合和运用,如小学生学习完了图形这一课,对三角形、圆形、长方形、正方形、平行四边形等进行准确的认知后,就要进行灵活多变的图形拼板练习,让学生通过对不同图形的修剪和粘贴,进行图形自由空间的想象和布局,增强数学知识的应用能力。

四、结束语

小学数学教学的重点在于培养学生的自主学习能力,根据小学生的年龄特点和思维层次,进行动手、动脑的习惯培养,在生活引入、故事引入、游戏引入、情境引入的教学策略之下,用自主性、参与性、积极性进行数学知识的感知,并在自主探索、交流合作的过程中增加对数学知识的学习和巩固,提升小学数学的课堂教学效果。

参考文献:

[1]牟瑛.营造充满探索的数学课堂环境[J].商业文化(学术版),2010,(08).

[2]张大明.引导自主探究促进主动发展[J].成功(教育),2010,(04).

[3]周波儿.数学教学中如何捕捉和利用“动态生成”[J].山西师范大学学报(自然科学版),2010,(S1).

随着科技的进步和社会的发展,数学这一基础学科已与其他学科相结合,且应用愈来愈广,已渗透到生产和生活的各个方面。我国从1992年开始举办大学生数学建模竞赛。近年来,大学生数学建模竞赛迅猛发展,为高等数学的应用型教学指引了方向,同时也激发了大学生的创新思维,锻炼了大学生的实践能力,受到了社会各界人士的关注和好评。

一、数学建模和大学生数学建模竞赛

何为数学建模?有人认为,数学模型即以现实世界为目的而做的抽象、简化的数学结构;也有人认为,数学模型就是将现实事物通过数学语言来转化为常见的数学体系。事实上,数学建模是运用数学知识从实际课题中抽象、提炼出数学模型的过程,主要方法是通过合理假设、引进自变量、借助各种数学工具实现对现实事物的数字化转变,进而描述或解决实际问题。

那么,受广大高校师生青睐的大学生数学建模竞赛又是什么呢?数学建模竞赛是全国大学生参与规模最大的课外科技活动,从一个侧面反映一个学校学生的综合能力,为学生提供了展示才华的舞台。大学生数学建模竞赛具有一定的开放性和应用性,同时兼具一定的综合性和挑战性。成果以一篇论文的形式上交,要求必须包含完整的建模步骤,包括问题的提出、模型的假设、变量的引入、建模过程、模型求解与分析、模型检验及应用。

二、大学生数学建模竞赛与课程教学培训中存在的问题

通过对山西工商学院历年来参加大学生数学建模竞赛的选手及其相关指导老师进行调查、走访,并考察其他高校的'情况,笔者发现,相比往年的成绩,各大高校在近几年的竞赛成绩上有了飞速的提高,在学校的组织和鼓励下,参赛人数逐年递增,数学建模教学每年都在不断改革,同时除了参加竞赛,还在课堂外实践了数学与生产实际的结合过程。然而,通过参阅文献和访谈笔录资料,笔者也总结了近几年来大学生数学建模竞赛及竞赛培训教学中存在的相关问题。

第一,参赛学生的学习能力和综合素质有待提高。在思想品质方面,数学建模的参赛过程极其艰苦,需要学生具备意志力、求知欲、团队意识。我们的队员往往在此三方面表现一般。同时,在数学能力方面,学生的数学基础知识储备不足,软件处理的方法单一,实际问题转化为数学结构的创新思维并不能良好地展现。

第二,根据上述学生所表现出的问题不难发现,教师团队在数学建模培训教学过程中,教学观念滞后,创新能力有待提高,教学模式亟待突破,数学建模的教师团队应当做好学生的表率,要吃苦耐劳,要通力合作。

第三,正因为上述问题,数学建模培训也出现了弊端。培训方式单一,培训只讲求深入而不探索广度,培训时间安排不合理,培训的内容与建模竞赛不对接。

第四,经过调查发现,部分高校对组织数学建模竞赛的前期工作没有给予足够的重视,少数高校在竞赛的组织和开展中急功近利。另外,大多数高校在数学建模教学教育的过程中缺乏完整的制度和保障体系。

三、大学生数学建模课程教学培训策略

大学生建模竞赛除了能为部分大学生及其指导老师和高校获得荣誉外,更能培养大学生综合运用所学专业的意识,提升大学生的创新思维和抽象思维,以及自主学习能力和团队协作能力。因此,在数学建模课程教学培训中,应做好如下工作。

(一)教师层面

首先,数学建模课程教学培训应当以创新为起点。建模不是凭空而来的,教师要引导学生从生活实际中抽象出数学模型,真正在选题上下功夫,培养学生的创新思维。

其次,数学建模课程教学培训应当以数学知识体系为基础。教师不能仅仅将自己的专业知识传授给学生,数学博大精深,自身要不断涉猎新知识,不仅要注重数学学习的深度,更应当拓展数学学习的广度,为数学建模竞赛打下坚实的基础。

最后,数学建模课程教学培训应当回归实践。建模的目的是为了解决实际问题,无论多么复杂的数学模型,最后都要落到解决后的结果中。因此,教师既要教会学生建模,又要教会学生将建模的方法真正应用于解决实际问题,做到学以致用。

(二)学校层面

首先,制定系统的数学建模课程体系,包括合理的学时、学制,保证学生的学习,不能在竞赛前急抓一批学生现学现用。

其次,学校要做好数学建模竞赛的宣传和指导工作,尽量保证每位学生都能于在校期间参加比赛,获得锻炼。

最后,学校要时刻以学生为主,不能一味地为了获奖而出现教师代替学生的现象。

参考文献:

[1]刘建州.实用数学建模教程[M].武汉:武汉理工大学出版社,2004.

[2]李尚志.数学建模竞赛教程[M].南京:江苏教育出版社,1996.

[3]赫孝良.数学建模竞赛赛题简析与论文点评[M].西安:西安交通大学出版社,2002.

摘要:随着我国基础教育的不断改革和完善,创新形势下的课程标准已经逐渐落实,相比于以往的教育机制,新课程标准更加关注学生的发展能力,鼓励教师根据学生的特点开展教育活动,进而全面提高我国的教育质量和教学效率。新课程标准要求教师在制定教学计划时要准确定位自己和学生之间的关系,以便于开展更加高效的课堂教育。

关键词:小学数学;高效课堂;教学策略

数学是一门逻辑思维较强的学科,因此数学基础教育质量极其重要。高效的小学数学课堂不仅可以让学生的成绩得到有效提高,还能让学生在生活中体会到数学的魅力,加强学生对于理性思维的拓展和延伸,同时还能将学生对数学的兴趣调动起来。

1重视学生对数学概念的理解

学生开始接受小学教育的年龄在6周岁左右,该年龄阶段的孩子对故事的兴趣比公式的兴趣大的多,因此,教师可以在数学课程开始之前让学生先了解该节课程涉及到的历史故事,让学生不要认为数学是很难理解的课程,让学生在更加放松的心态中去完成教学任务。传统教育中,数学教师都会给学生大量的题目来巩固知识点和公式,部分学生在还没有完全理解课堂内容时就开始做题,答案准确率肯定很难得到保障。因此,教师应当重视学生对数学概念的理解程度,让学生先理解数与数之间的关系再开始做习题。同时,教师应当在课堂上为学生留出提问和解疑的时间,教师在和学生的问答互动中拉近彼此之间的距离,提高学生对数学的认知度和敏感度。

2积极开展数学情境教学模式

数学课程的开展必须要有严谨的逻辑性作为支持,如果教师只用数字的形式为学生讲解无实物情境下的运算知识,很难让学生理解这个运算在生活中的价值,而且单纯的思维计算会对小学生产生很大的困扰,小学生更倾向于涉及到生活经验的数学情境模式。教师在开展运算知识点授课的过程中,可以使用不同种类的水果来创建情境教学的条件,将水果的价格和数量制定好,让学生随意取用一部分水果来计算这些水果的总价格。学生在计算水果价格的时候会减轻对数学的抵触,把思维的重点放在水果的种类和形状上,教师可以在学生分组计算的同时查看学生对于价格结果的讨论情况,发现公式以及口诀上的问题及时提出并解决,让学生在不知不觉中牢记乘法和加法的运算规律,减轻公式记忆法的枯燥和乏味,促进小学数学高效课堂教学质量的提高。

3培养学生课前预习的好习惯

数学是一门实践性质很强的学科,解题过程中需要对课题内容及运算方式进行思考,而这个过程需要学生在课前预习环节中掌握,教师应提前告诉学生即将学习的单元和知识点,让学生在有准备的情况下,更有信心的参与到数学课堂中来。教师可以鼓励学生在陪同家长购物时关注买卖运算的方式,然后在课堂上将自己的理解和发现的问题进行阐述,教师可以在与家长互动之后将学生反馈的问题一一解答,并就超市买卖中遇到的问题和课本上的知识点有效结合,让学生了解到数学在生活中的作用,学生在预习的过程中也会加深对运算公式的印象,进而提高学生对数学的兴趣和学习效率,让小学数学教学质量更加高效。

4鼓励学生从多角度解决问题

数学并非一种固定思维的学科,很多数和图形的运算都不止一种解题方式,虽然正确的答案只有一个,但是其过程有着很灵活的多变性,因此,教师应当在数学课堂上鼓励学生以不同的形式来解决问题。教师在发现学生的答案与标准答案不同时,应该首先询问学生的解题思路,而不是直接否定学生的答案,否则很容易打消学生对于数学学习的积极性。在教学条件允许的情况下,教师应当尽量使用解题方式不唯一的例题,让学生了解到集思广益的效果,在之后的课堂小组讨论中也能更加用心,有助于活跃教学气氛和教学效果,做到高效的小学数学课堂教学。综上所述,学生对于科目的兴趣和能力都不是与生俱来的,教师的引导和鼓励会使学生在课堂上的表现更加优秀。在开展小学数学课程的过程中,教师应当注重数学概念、课堂情境、课前预习以及思维扩展带来的高效影响,为学生探索欲和求知欲的提高做出贡献。

参考文献

[1]杨小生.小学数学高效课堂教学的“三三”策略[J].现代中小学教育,2011(11):21~23.

[2]潘海燕.探究小学数学数与代数的高效课堂教学策略[J].中国校外教育,2015(02):72.

[3]王粉粉.新课程背景下小学数学高效课堂教学策略探究[D].延安:延安大学,2016.

相关百科

热门百科

首页
发表服务