论文摘要:高职高等数学课程体系的模块化构建,是数学教学适应学分制模式的最有效途径,对数学课程模块体系构建提出方案。将支撑学生后续专业课程学习的、为适应学生个性需求的、从业需要的数学知识生成模块内容体系,并在模块化教材建设实践中进行创新性探索。
论文关键词:学分制;高等数学;课程体系;课程模块
一、问题提出
近年来,随着高职教育的快速发展和课程改革的不断深人,与高等教育大众化相适应,各地高职院校都在进行不同形式的学分制改革试点。学分制的实施为高等数学课程的改革提供了广阔的平台,但在实施学分制的过程中,数学课程的适应性教学改革相对滞后。在对重庆市十一所高职院校的高等数学教学现状进行调研后,发现数学课程体系与学分制模式极不适应,主要表现在以下几个方面:
(一)教师观念滞后。教师从观念到行动均不适应学分制管理模式的要求,“以学生为本、因材施教、个性发展”等先进教育理念比较薄弱,质量观、学生观、评价观等方面不适合高等教育大众化趋势;教育科研意识、适应学分制模式的高等数学课程改革创新意识缺乏。
(二)数学选修课程设置不科学。适合学生专业方向与个性培养的备选科目不足、课程模块开发力度不够,模块的针对性、适应性较差,学分制的灵活性和优越性难以体现,课程设置和学分制改革前没什么根本的改变。
(三)教材建设滞后。教材总的框架和体系设计上没有根本性的突破,基本上还是沿袭原有的体系、结构、模式,表现在:第一,与“工学结合”的人才培养模式结合不够、与专业培养目标脱离;第二,与多元化的生源结构对数学的多样性需求不适应。wwW.133229.COm目前,高职生源呈现多元化结构,绝大多数专业文、理、三校生兼收,计划统招生与单独招生并存,多元化的生源结构必然形成对数学的多样化需求;第三,教材形式单一,多以纸质的、静态的为主,少有配套的电子版、网络版、动画版。教材体系没有形成立体化与网络化,与学生自主学习能力培养不相适应。
(四)学生对数学课程的价值认识不足。表现在:第一,数学教育对学习者理性思维的培养及素质与能力的提高,是一个隐性的、相对较慢的、潜移默化的过程,学生由于认知境界的局限,导致他们无法感知高等数学对他们可持续发展、适应社会潜在的影响力;第二,高等数学在专业课程中的应用是延后的、异步的,离散的、点上的,学生思考问题的局限性与浓烈的功利性,导致他们对高等数学在专业课程中的作用与价值产生质疑。而目前高等数学教材建设的滞后性与不适应性,又势必负强化了学生对数学的认识偏见。
二、基于学分制的高等数学课程体系研究现状与思考
目前,基于学分制的高等数学课程体系建设的研究非常薄弱。唐守宪等撰文“实施学分制下的高职数学课程改革探索”(辽宁教育行政学院学报2005年12月),对数学课程的开发与教材建设提出要开设“数学实验”与“数学建模”,对教材建设只有寥寥数语;童宏胜撰文“学分制背景下的高职院校高等数学教学研究与实践”(教育与职业2008年9月中),文章只是对数学课程的模块化原则与框架构建提出了自已的看法,但是模块内容的构建与现阶段高职数学教学实际和学生实际脱离;刘杰撰写“学分制下高职数学课程改革的思考与探索”(高教论坛2008年5月),文章对学分制下数学内容体系的整合与修订提出分层分模块的教学模式,模块分为核心基础模块与拓展提高模块,但是缺乏模块内容的构建,显得抽象而不具体。目前,对基于学分制的数学课程体系建设领域的研究,尚缺乏较为系统的、操作性强的研究成果。
本文从两个方面探讨与学分制相适应的数学课程体系建设:第一,课程内容的模块体系构建,使课程体系在框架构建上与学分制模式相适应;第二,基于“以学生为本、因材施教、自主学习”的理念,创新教材体系与教材建设,使教学改革从内涵上与学分制模式的内涵相适应。
三、高等数学课程体系建设研究与实践
(一)高等数学课程的模块体系构建
1.模块体系构建原则。学分制以选课制为基础,为学生开出足够的、适应个性需要的备选科目是学分制得以顺利实施的根本保障。与学分制模式相适应,数学课程内容的模块化体系构建是最为有效的途径。模块体系构建应遵循以下原则:(1)遵循“必需、够用”的原则。模块内容构建首先以“必需”为原则解决“教什么”。以应用为目的,不同专业对数学需求的差异性要在内容设置中凸现,与专业课程对数学的要求相适应,即要“面向专业”;其次以“够用”为原则解决“教学要求”。内容设置要有一定的弹性,要适应于个体差异,与学生的现实数学基础和认知特点相适应,在满足人才培养方案基本要求“够用”的前提下,考虑部分学生专业拓展的要求以及学生的可持续发展,即要“面向学生”。以“必须、够用”为原则,对高等数学知识体系进行解构与重构,以能力为本位,重构“服务型”课程模块体系。根据学生后续专业课程的学习、社会对职业岗位的要求以及适应科技进步的要求,向学生提供支持其一生发展的“文化数学”、为从业服务的“实用数学”、为专业服务的“工具数学”;(2)遵循“淡化理论、注重应用”的原则。高职教育培养的是“高技能应用性专门人才”,在数学方面学生更需要从业中实际应用的归纳性数学经验与数学策略,而抽象的数学理论与复杂的数学演绎过程则居于需求的从属地位。因此,在模块内容的构建上应以学生从业中实际应用的经验和策略的习得为主,以适度够用的概念和原理的理解为辅;(3)遵循“科学性”原则。课程内容重构与序化时应置于数学学科自身的、以逻辑为中心的框架之中,注重内容的逻辑性与系统性,遵守数学自身的内在秩序,避免将数学整体性的知识当作离散的点被人为的肢解,从而背离数学的关系系统;(4)遵循“实用性”原则。课程模块体系要相对系统而完整、相对独立而科学,对学生的专业发展、数学素质的培养及可持续发展提供较完备的知识模块体系,适应学生专业发展与个性化需求,为学生的自由选课提供多种目标模式;课程模块的“容量”要科学、合理,具有可操作性,便于教学管理与教学组织。
另外,课程模块还应具备灵活性的特点。课程模块以较强的灵活性适应社会对职业的需求变化,易于及时更新与调整以保持课程的先进性;学生可根据自己的实际情况选择学习时间和学习方式,达到模块课程的目标,体现模块教学思想的开放性与自我决策的学习。
2.模块体系的构建。高等数学课程是高职教育课程体系中不可缺少的基础课程,对学生后继专业课程的学习、数学素质的提升、创新思维能力的培养和学生的可持续发展取着无可代取的作用。基于这样的认识,我们将高等数学课程定位为文化素质基础课。与课程定位和学分制模式灵活的选课制相适应,将高等数学内容体系经重构设置为“基础模块、专业应用模块、素质提高模块”。课程类型分为必修课与选修课,选修课又分为公共选修课和专业限选课。必修课为基础模块,构建的所有模块均纳入公共选修课,专业限选课为专业应用模块。