您当前的位置:首页 > 计算机论文>环境科学论文

渤海湾盆地车镇凹陷陡坡带沙河街组近岸水下扇

2015-07-24 10:01 来源:学术参考网 作者:未知

 0引言
  中国低孔低渗油气资源分布广、储量大,在油气勘探和开发中占据十分重要的地位[1]。目前,对低孔低渗和致密储层等非常规油藏的勘探与开发引起了众多学者的密切关注[212],前人建立了低孔低渗储层孔隙度定量演化模型[13],指出储层低渗特征具有沉积作用主控、压实作用主导、溶蚀作用改善、胶结作用强化的特征[14]。
 低渗储层概念最早出现于20世纪三四十年代的科技文献中,至今尚无统一定义。大多数研究者依据实际的地质情况及技术水平,将低渗储层的物性下限定为1×10-3 μm2[15],认为沉积作用、成岩作用和构造作用是低渗储层形成的主控因素,比如早期快速的压实作用、中期石英次生加大和碳酸盐胶结作用以及后期微弱的溶蚀作用形成了低孔低渗储层[2,1519]。
  中国东部中—新生代发育陆相断陷湖盆,这类湖盆的陡坡带因具有坡度陡、物源近、古地形起伏大和构造活动强烈的特点而发育多种成因的砂砾岩扇体[2022],这些扇体临近烃源岩区并与其呈指状接触,可形成多种类型的油气藏[23]。近年来,在中国东部断陷盆地中,近岸水下扇砂砾岩油气藏勘探取得了重大突破,渤海湾盆地车镇凹陷北部陡坡带近岸水下扇砂砾岩油气藏成功勘探便是典型实例。车镇凹陷北部陡坡带位于埕南断层的下降盘,从东营组至沙河街组发育了大量的近岸水下扇扇体,这些扇体规模大,沉积物粒度较粗,油源条件好,勘探潜力大[24]。据第3次石油资源评价,车镇凹陷北部陡坡带砂砾岩体油藏拥有剩余资源量约2×108 t,是胜利油区勘探的重要领域之一[25]。近年来,完钻的车66、车660井在车镇凹陷陡坡带近岸水下扇扇体中(对应次生孔隙发育带或“储层甜点”)获得日产百吨以上的高产油气流,标志着近岸水下扇砂砾岩储层的巨大勘探潜力。但由于陡坡带近岸水下扇构造背景特殊,近物源,沉积速率快,沉积分异差,内部结构及沉积规律复杂,加之对低孔低渗储层成岩序列和储层质量认识程度较低,制约了油气勘探开发工作。
  前人从不同角度对车镇凹陷陡坡带沙河街组近岸水下扇砂砾岩储层的成岩作用开展了研究。综合研究认为,研究区成岩作用类型多样,常见压实、溶解、胶结、交代作用,孔喉结构总体较差,储层物性随着埋深的增加而变差,但酸性水对长石颗粒及碳酸盐胶结物的溶蚀改善了储层质量[2631]。
  车镇凹陷是渤海湾盆地济阳坳陷的一个北断南超的次级凹陷,面积2 390 km2。其自南向北又可分为南部缓斜坡带、断阶带、中央洼陷带和北部陡坡带等4个次级构造单元。车镇凹陷充填沉积了新生界,其中古近系沙河街组自下而上划分为沙四段、沙三段、沙二段和沙一段。沙四段主要沉积红色泥质岩、蓝灰色泥质岩和碳酸盐岩、油页岩。沙三段至沙二段是湖盆从最大沉陷逐渐回返上升、直至河流与滨浅湖广布的沉积时期。沙三段主要沉积深湖油页岩和泥岩夹重力流以及三角洲砂岩。沙二段主要沉积三角洲砂岩、滨浅湖云质岩。沙一段发育较深湖的油页岩和泥云岩以及滨浅湖滩坝、生物滩成因的钙质砂岩和生物碎屑碳酸盐岩。
  车镇凹陷北部陡坡带沙河街组发育一系列近岸水下扇成因的低孔低渗砂砾岩储层, 目的层埋深为2 000~3 800 m,沙河街组内部具有丰富的油气或见有不同级别的含油显示。由于岩性变化大、成分和结构成熟度较低,储层成岩作用(流岩作用)和油水关系复杂,虽经多年研究,但成岩作用及其序列对储层质量影响机理及预测等关键问题还需探讨。因此,笔者以渤海湾盆地车镇凹陷沙河街组近岸水下扇低孔低渗储层为研究对象,通过系列岩芯和储层分析化验资料综合研究,分析低孔低渗储层中次生孔隙(“甜点”)的形成条件及控制因素,为低孔低渗油气藏勘探提供储层地质学依据。
  
  1岩石学特征
  渤海湾盆地车镇凹陷北部陡坡带车西地区车66井区沙三段主要发育成分和结构的成熟度均较低近岸水下扇(图1)。储层岩性主要为岩屑质长石砂岩,少量岩屑砂岩(图2),砂岩粒度变化较大,有粗粉砂岩、细砂岩、中砂岩、含砾不等粒砂岩等。在砂岩颗粒中,石英平均体积分数为44%,长石平均为32%,岩屑平均为24%,分选中等偏好,磨圆次棱角状,颗粒支撑。
  
  2储层物性特征
  车镇凹陷北部陡坡带车66井区沙三段65个样品点的物性数据表明(图3),近岸水下扇砂体为典型的低孔特低渗储层。储层孔隙度最大为275%,最小为49%,平均为139%,其中孔隙度为10%~15%的样品占4688%,孔隙度为5%~10%的占2031%,孔隙度为15%~20%的占1719%,孔隙度小于5%的占1.56%;渗透率最大为511218×10-3μm2,最小为0251×10-3μm2,平均为5765×10-3 μm2,主要集中在(1~10)×10-3 μm2和(10~100)×10-3 μm2,分别占全部样品的42%和30%。
  图件源自中国石油化工股份有限公司胜利油田分公司地质科学研究院2006年的内部资料
  图1车镇凹陷车西地区车66井区沙三段沉积相
  Fig.1Sedimentary Facies of the Third Member of Shahejie Formation in Well Che66 Area of
  Chexi Area, Chezhen Depression
  
  3成岩作用类型及其特征
  3.1压实作用较强
  镜下观察发现,车镇凹陷北部陡坡带近岸水下扇沙三段储层岩石颗粒之间的接触关系主要为点、线点、点线接触,偶见云母变形。当埋深浅于2 500 m时,以点、线点接触为主;当埋深大于2 500 m时,主要表现为点线接触,说明压实作用较强。随着埋藏深度的增加,可出现线、线凹凸接触,如大675井、大677井2 800~3 000 m井段。
  
  3.2胶结物类型多
  车镇凹陷车西地区车66井区近岸水下扇沙三段存在4种胶结作用,包括石英次生加大胶结、碳酸盐胶结、黏土矿物胶结以及重晶石胶结作用,其中以碳酸盐胶结为主。
  3.2.1石英次生加大胶结
  石英次生加大胶结在浅层发育较少,深层出现较多,如在大51井3 800 m左右,加大边明显,宽度为0.1~0.2 mm。
  
  3.2.2碳酸盐胶结
  图中数值为体积分数
  图2车66井区沙三段岩石学特征
  Fig.2Lithology of the Third Member of
  Shahejie Formation in Well Che66 Area
  沙三段胶结物成分主要有方解石、白云石、铁方解石、铁白云石、 菱铁矿等。方解石晶形较好,充填于颗粒之间,或充填在裂缝中;白云石晶体较方解石小得多,分布于颗粒之间;铁方解石以方解石的加大边形式存在,或充填在颗粒之间;铁白云石自形程度较差,晶体较细,充填孔隙(图4)。随着埋深增加,方解石胶结物含量有减小趋势。埋深处于2 100~2 800 m时,白云石胶结物平均含量(质量分数,下同)为6.8%;埋深小于2 500 m时,其含量小于5%;埋深处于2 500~3 200 m时,白云石的胶结作
  
  图3车66井区沙三段储层物性分布直方图
  Fig.3Histogram of Physical Properties of the Third
   Member of Shahejie Formation in Well Che66 Area
  用较强,其最大含量可达28%,说明深层主要为白云石胶结。
  
  图4车66井区近岸水下扇砂岩碳酸盐胶结物显微照片
  Fig.4Photomicrographs of Carbonate Cements of the Third Member of Shahejie Formation in Well Che66 Area
  
  3.2.3黏土矿物胶结
  发育的黏土矿物主要有高岭石、伊利石、绿泥石和伊/蒙混层等。随着埋藏深度的增加,黏土矿物含量随之改变。在2 800~3 200 m井段内,高岭石含量较高,相对含量最高超过80%。伊利石、绿泥石、伊/蒙混层含量较低,含量在10%左右。
 图5车66井区沙三段砂岩溶蚀作用
  Fig.5Sandstone Dissolution of the Third Member of Shahejie Formation in Well Che66 Area
  3.3长石溶蚀作用
  铸体薄片分析表明,沙三段近岸水下扇砂体的溶蚀对象主要为长石,其次为碳酸盐胶结物,在2 000~2 400 m和2 600~3 100 m井段内溶蚀作用较发育。如大801井2 310~2 330 m井段,长石溶蚀现象明显,局部也有少量碳酸盐胶结物,生物碎屑被溶蚀,形成孔隙;大677井2 870~2 920 m井段也出现长石以及碳酸盐胶结物溶蚀的现象;大671井2 950~3 100 m井段,除发育长石溶蚀外,还可见岩屑被溶,形成粒内溶孔(图5)。
  3.4交代作用
  车66井区沙三段主要发育长石的高岭土化、绢云母化和碳酸盐的交代作用。前者普遍发育;后者主要表现为方解石、铁方解石对长石、岩屑的交代作用以及白云石对方解石的交代作用。
  
  4成岩阶段与成岩序列
  根据镜质体反射率(Ro)和黏土矿物混层比随埋深的变化,车镇凹陷北部陡坡带车66井区埋深大于1 500 m的碎屑岩储层经历了早成岩B期、中成岩A期和中成岩B期等成岩阶段(图6)。
  当砂岩埋深为1 500~2 400 m时,岩石进入早成岩B期,Ro值为035%~050%。该阶段主要发生碳酸盐胶结、高岭石胶结以及碳酸盐胶结物的溶蚀作用。长石颗粒以及碳酸盐胶结物的溶蚀作用出现以原生孔隙为主的原生次生混合型孔隙。随着长石溶蚀作用弱→强→弱的变化趋势,高岭石的胶结作用也呈现对应变化趋势;碳酸盐胶结作用主要以方解石胶结作用为主,方解石胶结物含量可达到25%左右,白云石为5%左右;随着方解石胶结作用减弱,白云石胶结作用逐渐增强;石英次生加大、伊利石胶结作用都比较弱(图6)。
  图中宽窄的差异是指成岩作用相对强度的不同
  图6车66井区储层成岩演化模式
  Fig.6Sandstone Diagenetic Evolution of the Third Member of Shahejie Formation in Well Che66 Area
  
  当砂岩埋深为2 400~3 100 m时,岩石处于中成岩A期。Ro值为050%~130%,黏土矿物混层比迅速降低,该阶段主要发生长石溶蚀、高岭土胶结、碳酸盐胶结以及石英次生加大作用。碳酸盐胶结作用以白云石、铁白云石胶结作用为主,含量可达到15%,方解石、铁方解石胶结作用相对弱,含量为10%左右;高岭石胶结作用逐渐增强,黏土矿物相对含量可达到80%;伊利石的胶结作用呈现出先逐渐增强、后逐渐减弱的变化趋势;石英次生加大有增强的趋势。长石颗粒和碳酸盐胶结物溶蚀较为明显,因此形成了大量次生孔隙(图6)。
  
  储层埋深大于3 100 m时,砂岩进入中成岩B期。Ro值为130%~200%,该阶段主要发生黏土胶结、碳酸盐胶结以及石英次生加大作用,孔隙仍以次生孔隙为主。溶蚀作用、晚期铁方解石和铁白云石胶结作用、高岭石胶结作用相对减弱,含量约5%;石英次生加大、伊利石胶结作用相对增强,伊利石胶结物的相对含量可达到40%左右(图6)。
  
  5储层孔隙类型与次生孔隙发育特征
  5.1储层孔隙类型
  铸体薄片分析表明,车镇凹陷车西地区车66井区沙三段砂岩储层中存在2种类型孔隙,即原生孔隙和次生孔隙。原生孔隙可细分为压实剩余的原生粒间孔隙、胶结剩余粒间孔隙和杂基中的微孔隙。次生孔隙以长石、岩屑颗粒溶蚀形成的粒内溶孔和胶结物溶蚀形成的粒间溶孔为主,铸模孔、超大孔和构造作用形成的裂缝较少(图7)。
  储层孔隙经历了由原生到次生的演化过程。当沙三段砂岩埋深浅于2 400 m时,储层处于早成岩B期,以原生孔隙为主,发育少量次生孔隙,属于原生次生孔隙混合发育带;当沙三段砂岩埋深大于2 400 m时,储层已进入中成岩期,次生孔隙发育,保留少量残余的原生孔隙(图6、7)。
  
  5.2次生孔隙发育深度
  图7表明车镇凹陷车66井区储层次生孔隙发育在2 300~3 100 m井段。在对应的次生孔隙发育带(储层“甜点”),车镇凹陷陡坡带车66、车660井在近岸水下扇扇体中获得日产百吨以上的高产油气流也证明了该观点。在2 300 m井段次生孔隙发育带内,平均孔隙度约18%,最大孔隙度可达29%,平均渗透率为93×10-3 μm2,最大渗透率可达690×10-3 μm2;在3 100 m井段次生孔隙发育带内,平均孔隙度为15%,最大孔隙度约25%,平均渗透率为19×10-3 μm2,最大渗透率只有200×10-3 μm2左右。
  图7车66井区沙三段储层孔隙度、碳酸盐胶结物含量的纵向变化
  Fig.7Relationships of Porosity and Carbonate Cement to Depth of the Third Member of
  Shahejie Formation in Well Che66 Area
  5.3次生孔隙成因
  镜下观察表明:次生孔隙的形成以长石溶蚀为主,碳酸盐胶结物溶蚀次之;随着埋藏深度的增加,碳酸盐胶结物(方解石)溶蚀的程度逐渐增强。依据碳酸盐胶结物在纵向上的分布可以发现,当埋深大于3 100 m时,碳酸盐胶结物含量具有较为明显的降低趋势,碳酸盐胶结物含量约10%,说明在该深 度存在碳酸盐溶蚀(图7)。高岭石纵向分布特征也反映出其与长石溶蚀深度的关系,在2 300 m井段次生孔隙发育带附近,高岭石相对含量可达到50%,在3 100 m井段附近,高岭石含量异常高,相对含量可达60%~90%,而超过3 300 m深度的井段,高岭石含量很快下降,平均含量只有10%左右。
  6结语
  (1)渤海湾盆地车镇凹陷北部陡坡带沙河街组沙三段近岸水下扇砂体储层质量明显受沉积条件和成岩作用影响。近岸水下扇砂体主要由长石质岩屑砂岩组成。在埋藏成岩演化过程中,储层经历了压实、胶结、溶解和交代等成岩过程,多种成岩作用明显影响了储层质量,总体形成了低孔低渗储层。
  (2)车镇凹陷北部陡坡带沙三段近岸水下扇砂体储层埋深2 000~3 800 m,储层处于中成岩阶段。在成岩演化过程中,溶蚀作用对于改善储层质量起到了重要作用,也就是说,储层质量的改善明显与溶蚀作用及其形成的次生孔隙发育深度有关。车镇凹陷沙河街组沙三段有利储层主要发育在2 300~3 100 m井段,形成的粒间和粒内孔隙不仅增加了储层孔隙度,而且提高了储层渗透率,改善了储层质量,形成了储层“甜点”(孔隙度可达25%,渗透率达50×10-3 μm2)。显然,近岸水下扇有利储层主要发育在有机酸溶蚀长石形成的次生孔隙发育深度段(2 300、3 100 m井段左右)。
  (3)发现溶蚀作用及其形成的次生孔隙发育深度带是一项综合研究工作,应该在沉积砂体成因和分布规律研究的基础上,开展流岩相互作用和岩石物理相研究,采用定量岩石物理相研究方法,科学预测有利储层空间分布。
  参考文献:
  References:
  [1]冉新权,朱筱敏,杨华,等.大型内陆坳陷湖盆低渗储层富油理论与实践[J].地学前缘,2013,20(2):147154.
  RAN Xinquan,ZHU Xiaomin,YANG Hua,et al.Petroleum Enrichment Theory and Practice for Low Permeability Reservoir in Large Continental Basin[J].Earth Science Frontiers,2013,20(2):147154.

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页