首页

毕业论文

首页 毕业论文 问题

初等几何变换毕业论文

发布时间:

初等几何变换毕业论文

我从初中开始就对初等几何非常感兴趣,后来哪怕是在高考前几个月也一直在看初等几何方面的书 结合我跟一个数学系教授的讨论,基本上初等几何已经不能算是研究了,能够被发现的定理都已经有人提出来了初等几何本身有一种魔力,作为智力的挑战而言的话它的价值是不言而喻的,但是它的价值也就仅此而已了 说到这,不得不提近现代几何学的发展初等几何通常指的是欧几里德的二维平面几何,发展了两千年,经过了笛卡尔的坐标系与代数紧密结合之后一直到了非欧几何的出现,几何才有了全新的活力,从那以后几何开始大放异彩,从黎曼几何到爱因斯坦的广义相对论,从陈省身的纤维丛理论到杨振宁的规范场论,乃至于超弦理论,这里面都有着几何的身影。这里提到的是几何的现代发展,主要是在微分几何领域,这可就跟初等几何有着天壤之别。总之,我的看法是初等几何作为业余爱好而言很有味道,作为研究的话那就乏善可陈了,不过几何是一种十分重要的思想,假如说真的很感兴趣的话不妨去接触一些微分几何的东西,毕竟初等几何的视野还是太窄了仅供参考。。。

现实意义:

1、培养人的逻辑思维能力;

2、逻辑能力的培养不能被数学的其他科目完全取代;

3、学习初等几何可发展人的空间想象能力和识图能力;

4、学习初等几何有助于在生活现实中独立自主,提高动手能力,更是继续学习的基础。

初等几何学是指用几何方法来解决数学问题的学科。几何方法主要是图形以及图形中所产生产生的公理、定理等。

几何方法:

1、基本逻辑方法:贯彻于整个初等几何中的基本方法,主要是指分析法与综合法,是其他几何方法的基础,这是初等几何的本质,所以初等几何也有叫它为综合几何。

2、度量化方法:就几何图形内在性质的表现形式的转化而言的,它是初等几何的常用方法。

3、变换(化)方法:就几何图形内在关系结构的转化而言的,它是初等几何的辅助方法。

4、代数化方法:就空间关系结构表现形式的转化而言的,它是超脱于几何图形性质本身的辅助方法。

5、机械化证明方法:就几何关系结构转化为按程序计算而言的,它是超脱于人们对初等几何问题原有思路的现代化的科学方法。

浅谈初等数学中数形结合的构造法解题的思路及其应用,

毕业论文初等几何

我从初中开始就对初等几何非常感兴趣,后来哪怕是在高考前几个月也一直在看初等几何方面的书 结合我跟一个数学系教授的讨论,基本上初等几何已经不能算是研究了,能够被发现的定理都已经有人提出来了初等几何本身有一种魔力,作为智力的挑战而言的话它的价值是不言而喻的,但是它的价值也就仅此而已了 说到这,不得不提近现代几何学的发展初等几何通常指的是欧几里德的二维平面几何,发展了两千年,经过了笛卡尔的坐标系与代数紧密结合之后一直到了非欧几何的出现,几何才有了全新的活力,从那以后几何开始大放异彩,从黎曼几何到爱因斯坦的广义相对论,从陈省身的纤维丛理论到杨振宁的规范场论,乃至于超弦理论,这里面都有着几何的身影。这里提到的是几何的现代发展,主要是在微分几何领域,这可就跟初等几何有着天壤之别。总之,我的看法是初等几何作为业余爱好而言很有味道,作为研究的话那就乏善可陈了,不过几何是一种十分重要的思想,假如说真的很感兴趣的话不妨去接触一些微分几何的东西,毕竟初等几何的视野还是太窄了仅供参考。。。

你自己写吧,抄袭可不好

勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方. 勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究,希腊著名数学家毕达哥拉斯(前580至568- 前501至500)曾对本定理有所研究,故西方国家均 称此定理为毕达哥拉斯定理,据说毕达哥拉斯十分喜爱这个定理,当他在公元前550前年左右发现这个定理时,宰杀了百头牛羊以谢神的默示.但毕达哥拉斯对勾股定理的证明方法已经失传.著名的希 腊数学家欧几里得(前330-前275)在巨著《几何原本》(第Ⅰ卷,命题47)中给出一个很好的证明(如图1):分别以直角三角形的直角边AB,AC及斜边BC向外作正方形,ABFH,AGKC及BCED,连FC,BK,作AL⊥DE.则欧几里得通过△BCF及△BCK为媒介.证明了正方形ABFH与矩形BDLM及正方形ACKG与矩形MLEC等积,于是推得AB2+AC2=BC2. 在我国,这个定理的叙述最早见于《周髀算经 》(大约成书于公元前一世纪前的西汉时期),书中有一段商高(约前1120)答周公问中有“勾广三 ,股修四,经隅五”的话,意即直角三角形的两条直角边是3及4、则斜边是5.书中还记载了陈子( 前716)答荣方问:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之、得邪至日”,古汉语中邪作斜解,因此这一句话明确陈述了勾股定理的内容.至三国的赵爽(约3世纪),在他的数学文献《勾股圆方图》中(作为《周髀算经》的注文,而被保留于该书之中).运用弦图,巧妙的证明了勾股定理,如图2.他把三角形涂成红色,其面积叫“朱实”,中间正方形涂成黄色叫做“中黄实”,也叫“差实”.他写道:“按弦图,又可勾股相乘为朱实二,倍之为朱实四,以勾股之差相乘为中黄实,加差实,亦称弦实”.若用现在的符号,分别用a、b、c记勾、股、弦之长,赵爽所述即2ab+(a-b)2=c2,化简之得a2+b2=c2.

几何变换思想毕业论文

几何变换是指将一幅图像映射到另一副图像内的操作,根据映射关系的不同,有缩放、翻转、仿射变换、透视、重映射等。 在OpenCV中使用函数()实现对图像的缩放: (src, dsize[,fx[,fy[, interpolation]]]) src  :代表要缩放的原始图像; dsize : 代表输出图像大小,第一个值为目标图像的宽度,第二个值为目标图像的高度 fx  : 代表水平方向的缩放比 fy  : 代表垂直方向的缩放比 interpolation: 代表插值方式。插值是指在对图像进行几何处理时,给无法直接通过映射得到值的像素点赋值。当缩小图像时,使用区域插值方式( INTER_AREA)能够得到最好的效果;当放大图像时,使用三次样条插值(INTER_CUBIC)方式和双线性插值(INTER_LINEAR)方式都能得到较好的效果。三次样条插值方式速度较慢,双线性插值方式速度相对较快且效果并不逊色。 【注】:fx、fy只要当dsize=None时才起作用。 import cv2 import numpyas np img = ('') shape_img = print(shape_img) biger_img = (img,(720,480),interpolation=) smaller_img = (img,None,fx=) ('img',img) ('biger_img',biger_img) ('smaller_img',smaller_img) return_value = (0) () 在OpenCV中,图像的翻转采用函数()实现,该函数能实现水平方向、垂直方向、两个方向同时翻转。 dst = (src, flipCode) src : 表示要处理的图像; flipCode : 表示旋转类型,为0时,表示绕X轴旋转;为正数,表示绕y轴旋转;为负数,表示绕x、y轴同时旋转。 dst: 返回和原图像有相同大小和类型的目标图像。 img = ('') shape_img = print(shape_img) x_img = (img,1) xy_img = (img,-1) ('img',img) ('x_img',x_img) ('xy_img',xy_img) return_value = (0) () 仿射是指图像可以经过一系列的几何变换来实现平移、旋转等多种操作。该变换能够保持图像的平直性(变换前后,直线仍是直线)和平行性(变换前后,平行线仍是平行线)。 OpenCV中的仿射函数是(),其通过一个变换矩阵M实现变换,具体为:dst = (src,M,dsize[,flags[,borderMode[,borderValue]]]) dst: 表示输出图像,它和原始图像有相同的类型,大小由dsize决定; src: 表示原始图像; M: 代表一个2X3的变换矩阵。 dsize: 输出图像的尺寸大小; flags : 代表插值方法,默认为INTER_LINEAR。当该值是WARP_INVERSE_MAP时,意味着M是逆变换矩阵,实现从目标图像dst到原始图像src的逆变换。 borderModer : 代表边类型,默认为BORDER_CONSTANT.当该值为BORDER_TRANSPARENT时,意味着目标图像内的值不做改变,这些值对应原始图像内的异常值。 borderValue : 代表边界值,默认是0. 1)平移 平移的矩阵M: M = [[1,0,x],[0,1,y]] 将图像水平向右移动100像素,垂直向下平移150像素。 import cv2 import numpyas np img = ('') shape_img = print(shape_img) M = ([[1,0,100],[0,1,150]]) warp_img = (img,M,(shape_img[1],shape_img[0])) rut_warp_img = (img,M,(shape_img[1],shape_img[0]),borderMode=) ('img',img) ('warp_img',warp_img) ('rut_warp_img',rut_warp_img) return_value = (0) () 2)旋转 在使用wrapAffine()对图像进行旋转时,可以通过函数(center,angle,scale)获取转换矩阵。其中: center为旋转中心; angle为旋转角度; scale为变换尺度。 例如:以图像中心点为旋转中心,顺时针旋转45°,图像缩小到原来的倍。 img = ('') height,width = [:2] M = ((width/2,height/2),45,) rota_img = (img,M,(width,height)) ('img',img) ('rota_img',rota_img) 3)更复杂的仿射 对于更复杂的仿射变换,Opencv提供了函数()来生成仿射函数所需要的转换矩阵M. (src,dst) src 代表输入图像的三个点坐标 dst 代表输出图像的三个点坐标 该函数定义了两个平行四边形,src和dst中的三个点分别对应平行四边形的左上角、右上角、左下角。它确定了原图像到目标图像的映射关系。 img = ('') height,width = [:2] # 确定两个平行四边形 p1 = ([[0,0],[width-1,0],[0,height-1]]) p2 = ([[0,height*],[width**],[height**]]) M = ((width/2,height/2),45,) retval = (p1,p2) rota_img = (img,M,(width,height)) dst_img = (img,retval,(width,height)) ('img',img) ('rota_img',rota_img) ('dst_img',dst_img) 仿射变换可以将矩形变成任意平行四边形,透视变换可以将矩形映射到任意四边形。 透视变换通过()实现: dst = (src, M, dsize[,flags[,borderMode[,borderValue]]]) dsize  :决定输出图像的大小 M  :代表一个3X3的变换矩阵 flags: 代表差值方法,默认为INTER_LINEAR。当该值是WARP_INVERSE_MAP时,意味着M是逆变换类型 borderValue  :代表边界值,默认是0 与仿射变换一样,同样可以使用一个函数来生成M: (src,dst) src,dst 都是一个包含四个坐标点的数组。 例如: img = ('') height,width = [:2] # 确定两个平行四边形 p1 = ([[0,0],[100,0],[0,50],[100,50]]) p2 = ([[20,20],[50,30],[30,70],[70,60]]) retval = (p1,p2) dst_img = (img, retval, (width,height)) ('img',img) ('dst_img',dst_img) 把一幅图像的像素点放到另一幅图像的指定范围,这个过程称为图映射。OpenCV提供了多种重映射方式,其中dst = (src, map1, map2, interpolation[,borderMode[,borderValue]]) dst 和src有相同的大小和类型。 map1 参数都有两种可能的值: 1)表示(x,y)点的一个映射 2)表示CV_16SC2,CV_32FC1,CV_32FC2类型(x,y)点的x值 map1 参数同样有两种可能的值: 1)当map1表示(x,y)时,该值为空 2)当map1表示(x,y)点的x值时,该值是CV_16UC1,CV_32FC1类型(x,y)点的y值。 Interpolation代表插值方式,这里不支持INTER_AREA方法。 重映射通过修改像素点的位置得到一幅新图像。在构造新图像时,需要确定新图像中每一个像素点在原始图像中的位置,因此映射函数的作用是查找新图像在原始图像中的位置,该过程是将新图像映射到原始图像的过程,因此被称为反向映射。 在函数()中,参数map1和map2用来说明反向映射,map1针对的是坐标x,指代像素所在位置的列号,map2针对的是坐标y,指代像素所在位置的行号。map1和map2的值都是浮点数。因此目标函数可以映射回一个非整数的值,这意味着可以将目标图像“反向映射”到原始图像中两个像素之间的位置(这样的位置是不存在的)。这是采用不同的方法来插值处理。 将map1的值设为对应位置上的x轴坐标值 将map2的值设为对应位置上的y轴坐标值 假如想让图片绕X轴翻转,则图像x坐标不变,y坐标变为总行数-1-当前行号; 如果想让它绕y轴翻转,也同理:总列数-1-当前列号 将x轴的值调整为所在行的行号;将y轴的值调整为所在列的列号 注:如果行数和列数不等,可能出现存在值不能映射的情况。默认情况下,无法完成的值会被处理为0. 将图像缩小为原来的两倍,并居中处理: 结果如下:

我要是会我问你干嘛~ 几何变换 在几何的解题中,当题目给出的条件显得不够或者不明显时,我们可以将图形作一定的变换,这样将有利于发现问题的隐含条件,抓住问题的关键和实质,使问题得以突破,找到满意的解答.图形变换是一种重要的思想方法,它是一种以变化的、运动的观点来处理孤立的、离散的问题的思想,很好地领会这种解题的思想实质,并能准确合理地使用,在解题中会收到奇效,也将有效地提高思维品质. 初中图形变换包含平移、翻折和旋转,我们要通过实验、操作、观察和想象的方法掌握运动的本质,在图形的运动中找到不变量,然后解决问题.

图形学几何变换毕业论文

第一:许多图形应用涉及到几何变换,主要包括平移、旋转、缩放。以矩阵表达式来计算这些变换时,平移是矩阵相加,旋转和缩放则是矩阵相乘,综合起来可以表示为p'=p*m1+m2(m1旋转缩放矩阵,m2为平移矩阵,p为原向量,p'为变换后的向量)。引入齐次坐标的目的主要是合并矩阵运算中的乘法和加法,表示为p'=p*M的形式。即它提供了用矩阵运算把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系的有效方法。其次,它可以表示无穷远的点。n+1维的齐次坐标中如果h=0,实际上就表示了n维空间的一个无穷远点。对于齐次坐标(a,b,h),保持a,b不变,|V|=(x1*x1,y1*y1,z1*z1)^1/2的过程就表示了标准坐标系中的一个点沿直线ax+by=0逐渐走向无穷远处的过程。

数字图像,是以二维数字组形式表示的图像,其数字单元为像元,数字图像的恰当应用通常需要数字图像与看到的现象之间关系的知识,也就是几何和光度学或者传感器校准,数字图像处理领域就是研究它们的变换算法.数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。由数组或矩阵表示,其光照位置和强度都是离散的。数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用数字计算机或数字电路存储和处理的图像。像素像素(或像元,Pixel)是数字图像的基本元素,像素是在模拟图像数字化时对连续空间进行离散化得到的。每个像素具有整数行(高)和列(宽)位置坐标,同时每个像素都具有整数灰度值或颜色值。通常,像素在计算机中保存为二维整数数组的光栅图像,这些值经常用压缩格式进行传输和储存。数字图像可以许多不同的输入设备和技术生成,例如数码相机、扫描仪、坐标测量机、seismographic profiling、airborne radar等等,也可以从任意的非图像数据合成得到,例如数学函数或者三维几何模型,三维几何模型是计算机图形学的一个主要分支。数字图像处理领域就是研究它们的变换算法。

完全可以的 主要看你的内容

几何变换的性质毕业论文

图像几何变换和图像变换的区别为:性质不同、包括不同、原始图像不同。

一、性质不同

1、图像几何变换:图像几何是从具有几何结构之集合至其自身或其他此类集合的一种对射。

2、图像变换:图像变换将原定义在图像空间的图像以某种形式转换到另外的空间,利用空间的特有性质方便地进行一定的加工,最后再转换回图像空间以得到所需的效果。

二、包括不同

1、图像几何变换:图像几何变换包括翻折变换、平移变换、旋转变换。

2、图像变换:图像变换包括傅里叶变换、沃尔什-阿达玛变换。

三、原始图像不同

1、图像几何变换:图像几何变换的原始图像为平面域图像。

2、图像变换:图像变换的原始图像为空间域图像。

qnmlgb

几何变换是指将一幅图像映射到另一副图像内的操作,根据映射关系的不同,有缩放、翻转、仿射变换、透视、重映射等。 在OpenCV中使用函数()实现对图像的缩放: (src, dsize[,fx[,fy[, interpolation]]]) src  :代表要缩放的原始图像; dsize : 代表输出图像大小,第一个值为目标图像的宽度,第二个值为目标图像的高度 fx  : 代表水平方向的缩放比 fy  : 代表垂直方向的缩放比 interpolation: 代表插值方式。插值是指在对图像进行几何处理时,给无法直接通过映射得到值的像素点赋值。当缩小图像时,使用区域插值方式( INTER_AREA)能够得到最好的效果;当放大图像时,使用三次样条插值(INTER_CUBIC)方式和双线性插值(INTER_LINEAR)方式都能得到较好的效果。三次样条插值方式速度较慢,双线性插值方式速度相对较快且效果并不逊色。 【注】:fx、fy只要当dsize=None时才起作用。 import cv2 import numpyas np img = ('') shape_img = print(shape_img) biger_img = (img,(720,480),interpolation=) smaller_img = (img,None,fx=) ('img',img) ('biger_img',biger_img) ('smaller_img',smaller_img) return_value = (0) () 在OpenCV中,图像的翻转采用函数()实现,该函数能实现水平方向、垂直方向、两个方向同时翻转。 dst = (src, flipCode) src : 表示要处理的图像; flipCode : 表示旋转类型,为0时,表示绕X轴旋转;为正数,表示绕y轴旋转;为负数,表示绕x、y轴同时旋转。 dst: 返回和原图像有相同大小和类型的目标图像。 img = ('') shape_img = print(shape_img) x_img = (img,1) xy_img = (img,-1) ('img',img) ('x_img',x_img) ('xy_img',xy_img) return_value = (0) () 仿射是指图像可以经过一系列的几何变换来实现平移、旋转等多种操作。该变换能够保持图像的平直性(变换前后,直线仍是直线)和平行性(变换前后,平行线仍是平行线)。 OpenCV中的仿射函数是(),其通过一个变换矩阵M实现变换,具体为:dst = (src,M,dsize[,flags[,borderMode[,borderValue]]]) dst: 表示输出图像,它和原始图像有相同的类型,大小由dsize决定; src: 表示原始图像; M: 代表一个2X3的变换矩阵。 dsize: 输出图像的尺寸大小; flags : 代表插值方法,默认为INTER_LINEAR。当该值是WARP_INVERSE_MAP时,意味着M是逆变换矩阵,实现从目标图像dst到原始图像src的逆变换。 borderModer : 代表边类型,默认为BORDER_CONSTANT.当该值为BORDER_TRANSPARENT时,意味着目标图像内的值不做改变,这些值对应原始图像内的异常值。 borderValue : 代表边界值,默认是0. 1)平移 平移的矩阵M: M = [[1,0,x],[0,1,y]] 将图像水平向右移动100像素,垂直向下平移150像素。 import cv2 import numpyas np img = ('') shape_img = print(shape_img) M = ([[1,0,100],[0,1,150]]) warp_img = (img,M,(shape_img[1],shape_img[0])) rut_warp_img = (img,M,(shape_img[1],shape_img[0]),borderMode=) ('img',img) ('warp_img',warp_img) ('rut_warp_img',rut_warp_img) return_value = (0) () 2)旋转 在使用wrapAffine()对图像进行旋转时,可以通过函数(center,angle,scale)获取转换矩阵。其中: center为旋转中心; angle为旋转角度; scale为变换尺度。 例如:以图像中心点为旋转中心,顺时针旋转45°,图像缩小到原来的倍。 img = ('') height,width = [:2] M = ((width/2,height/2),45,) rota_img = (img,M,(width,height)) ('img',img) ('rota_img',rota_img) 3)更复杂的仿射 对于更复杂的仿射变换,Opencv提供了函数()来生成仿射函数所需要的转换矩阵M. (src,dst) src 代表输入图像的三个点坐标 dst 代表输出图像的三个点坐标 该函数定义了两个平行四边形,src和dst中的三个点分别对应平行四边形的左上角、右上角、左下角。它确定了原图像到目标图像的映射关系。 img = ('') height,width = [:2] # 确定两个平行四边形 p1 = ([[0,0],[width-1,0],[0,height-1]]) p2 = ([[0,height*],[width**],[height**]]) M = ((width/2,height/2),45,) retval = (p1,p2) rota_img = (img,M,(width,height)) dst_img = (img,retval,(width,height)) ('img',img) ('rota_img',rota_img) ('dst_img',dst_img) 仿射变换可以将矩形变成任意平行四边形,透视变换可以将矩形映射到任意四边形。 透视变换通过()实现: dst = (src, M, dsize[,flags[,borderMode[,borderValue]]]) dsize  :决定输出图像的大小 M  :代表一个3X3的变换矩阵 flags: 代表差值方法,默认为INTER_LINEAR。当该值是WARP_INVERSE_MAP时,意味着M是逆变换类型 borderValue  :代表边界值,默认是0 与仿射变换一样,同样可以使用一个函数来生成M: (src,dst) src,dst 都是一个包含四个坐标点的数组。 例如: img = ('') height,width = [:2] # 确定两个平行四边形 p1 = ([[0,0],[100,0],[0,50],[100,50]]) p2 = ([[20,20],[50,30],[30,70],[70,60]]) retval = (p1,p2) dst_img = (img, retval, (width,height)) ('img',img) ('dst_img',dst_img) 把一幅图像的像素点放到另一幅图像的指定范围,这个过程称为图映射。OpenCV提供了多种重映射方式,其中dst = (src, map1, map2, interpolation[,borderMode[,borderValue]]) dst 和src有相同的大小和类型。 map1 参数都有两种可能的值: 1)表示(x,y)点的一个映射 2)表示CV_16SC2,CV_32FC1,CV_32FC2类型(x,y)点的x值 map1 参数同样有两种可能的值: 1)当map1表示(x,y)时,该值为空 2)当map1表示(x,y)点的x值时,该值是CV_16UC1,CV_32FC1类型(x,y)点的y值。 Interpolation代表插值方式,这里不支持INTER_AREA方法。 重映射通过修改像素点的位置得到一幅新图像。在构造新图像时,需要确定新图像中每一个像素点在原始图像中的位置,因此映射函数的作用是查找新图像在原始图像中的位置,该过程是将新图像映射到原始图像的过程,因此被称为反向映射。 在函数()中,参数map1和map2用来说明反向映射,map1针对的是坐标x,指代像素所在位置的列号,map2针对的是坐标y,指代像素所在位置的行号。map1和map2的值都是浮点数。因此目标函数可以映射回一个非整数的值,这意味着可以将目标图像“反向映射”到原始图像中两个像素之间的位置(这样的位置是不存在的)。这是采用不同的方法来插值处理。 将map1的值设为对应位置上的x轴坐标值 将map2的值设为对应位置上的y轴坐标值 假如想让图片绕X轴翻转,则图像x坐标不变,y坐标变为总行数-1-当前行号; 如果想让它绕y轴翻转,也同理:总列数-1-当前列号 将x轴的值调整为所在行的行号;将y轴的值调整为所在列的列号 注:如果行数和列数不等,可能出现存在值不能映射的情况。默认情况下,无法完成的值会被处理为0. 将图像缩小为原来的两倍,并居中处理: 结果如下:

相关百科

热门百科

首页
发表服务