题目当中给出的做法以及对又例的明白都是对的,经过变量替换以后,u确实是新的积分变量,原来的积分变量是t,对积分而言,x可看作常量,对求导而言,x是求导变量,这些都是对的。你的问题是说,题目和又例是两种情况,前者u=2x-t,x与(新)积分变量u有关,而后者x与积分变量t无关,是吧。是这样,对该变量替换来说,x与u在形式上是有关系的,但其实是常量与变量的关系(只有t与u是变量间的关系),由此,x相对于新的积分变量u看作常量就不难理解了。或者说,当变量替换的步骤完成以后,x与u的那个关系,我们已经在变量替换的过程中考虑完毕(换积分变量、换积分限、换被积函数等),此时,我们要独立地审视替换后的积分表达式,而不再关联关系u=2x-t,这也可以说是定积分换元的一个特点吧。注意一下,在本质上,替换u=2x-t中,u与t是变量替换中的一对变量,而x始终是常量(对积分而言,不是对求导)。回答你的追问“u中是含有x的也就是说与x有关” 如下:不错,“u中是含有x的也就是说与x有关”,但是是变量与常量的关系,不是变量与变量的关系。这样可以么?
积分变量改变了,积分限相应也要改变,本题具有过程如下:
上限:t=x,使用u=x-t换元后对应: u=x-t=x-x=0
下限:t=0,使用u=x-t换元后对应: u=x-t=x-0=x
设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0,在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n),作和式 。
该和式叫做积分和,设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),如果当λ→0时,积分和的极限存在,则这个极限叫做函数f(x) 在区间[a,b]的定积分,记为 ,并称函数f(x)在区间[a,b]上可积。
其中:a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。
之所以称其为定积分,是因为它积分后得出的值是确定的,是一个常数, 而不是一个函数。
扩展资料:
定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距 是相等的。但是必须指出,即使 不相等,积分值仍然相同。
我们假设这些“矩形面积和” ,那么当n→+∞时, 的最大值趋于0,所以所有的 趋于0,所以S仍然趋于积分值。
利用这个规律,在我们了解牛顿-莱布尼兹公式之前,我们便可以对某些函数进行积分。
一般定理:
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。作为推论,如果两个 上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。
如果黎曼可积的非负函数f在 上的积分等于0,那么除了有限个点以外, 。如果勒贝格可积的非负函数f在 上的积分等于0,那么f几乎处处为0。如果 中元素A的测度 等于0,那么任何可积函数在A上的积分等于0。
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。
如果两个函数几乎处处相同,那么它们的积分相同。如果对 中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。
参考资料:百度百科---定积分
国内:现如今二重积分基础理论的研究已经相当成熟,在实际应用中的研究还比较少,任何一门学问在历史发展过程中都会与时俱进,所以二重积分的发展趋势会在现有的基础上日益完善,尤其是在物理学、经济学等应用方面的研究会越来越深入,整个微积分体系会越来越完备
积分变换可以把微分方程变换为初等方程,求解方便。另外求线性系统的响应,用积分变换不用考虑初始状态,非常方便。可以实现时域和频域的变换,方便对谐波进行分析计算。使用复频域的状态变量解法可以方便的用计算机对系统进行求解。以上是复变函数,积分变换在电气工程方面最基本的一些应用。
通过拉普拉斯变换主要用于求解线性微分方程(或积分方程)。经过变换,原来函数所遵从的微分(或积分)方程变成了像函数所遵从的代数方程,代数方程比较容易求解,从而化难为易,本论文将介绍通过三步求解线性微分(或)积分方程。 拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。拉氏变换是一个线性变换,可将一个有参数实数t(t≥ 0)的函数转换为一个参数为复数s的函数。拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。
头疼啊,考试都是应用题
所谓变分法的思想,就是任选一个辅助函数,给泛函一个微扰,使得任何可能的选择都能纳入进来,由于这个辅助函数是任意的,因此最佳选择就必然与辅助函数无关。这就是变分法的基本思想。
微积分的基本思想及其在经济学中的应用
摘要: 微积分局部求近似、极限求精确的基本思想贯穿于整个微积分学体系中,而微积分在各个领域中又有广泛的应用,随着市场经济的不断发展,微积分的地位也与日俱增,本文着重研究微分在经济活动中边际分析、弹性分析、最值分析的应用,以及积分在最优化问题、资金流量的现值问题中的应用。
关键词:微分 积分 基本思想 应用
微积分是人类智慧最伟大的成就之一,局部求近似、极限求精确的基本思想是进一步学习高等数学的基础。随着市场经济的不断发展,利用数学知识解决经济问题显得越来越重要,运用微分和积分可以对经济活动中的实际问题进行量化分析,从而为企业经营者的科学决策提供依据。
1. 微积分的产生、发展及其作用
微积分思想的萌发出现的比较早,中国战国时代的《庄子·天下》篇中的“一尺之锤,日取其半,万事不竭”就蕴涵了无穷小的思想。经查阅文献《晏能中.微积分——数学发展的里程牌》得知:到了十七世纪,欧洲许多数学家也开始运用微积分的思想来写极大值与极小值,以及曲线的长度等等。帕斯卡在求曲边形面积时,用到“无穷小矩形”的思想,并把无穷小概念引入数学,为后来莱布尼兹的微积分的产生奠定了基础。
随着数学科学的发展,微积分得到了进一步的发展,其中欧拉对于微积分的贡献最大,他的《无穷小分析引论》、《微分学》、《积分学》三部著作对微积分的进一步丰富和发展起了重要的作用。之后,洛必达、达朗贝尔、拉格朗日、拉普拉斯、勒让德、傅立叶等数学家也对微积分的发展作出了较大的贡献。由于这些人的努力,微分方程、级数论得以产生,微积分也正式成为了数学一个重要分支。
微积分的创立改变了整个数学世界。微积分的创立,极大的推动了数学自身的发展,同时又进一步开创了诸多新的数学分支,例如:微分方程、无穷级数、离散数学等等。此外,数学原有的一些分支,例如:函数与几何等等,也进一步发展成为复变函数和解析几何,这些数学分支的建立无一不是运用了微积分的方法。在微积分创设后这三百年中,数学获得了前所未有的发展。
2. 微积分的基本思想———局部求近似、极限求精确
微积分是微分学和积分学的总称,它的基本思想是:局部求近似、极限求精确。以下我们具体阐述微分学与积分学的思想。
微分学的基本思想
微分学的基本思想在于考虑函数在小范围内是否可能用线性函数或多项式函数来任意近似表示。直观上看来,对于能够用线性函数任意近似表示的函数,其图形上任意微小的一段都近似于一段直线。在这样的曲线上,任何一点处都存在一条惟一确定的直线──该点处的“切线”。它在该点处相当小的范围内,可以与曲线密合得难以区分。这种近似,使对复杂函数的研究在局部上得到简化。
积分学的基本思想
积分学的最基本的概念是关于一元函数的定积分与不定积分。蕴含在定积分概念中的基本思想是通过有限逼近无限。因此极限方法就成为建立积分学严格理论的基本方法。微分与积分虽然是微观和宏观两种不同范畴的问题,但它们的研究对象都是“非均匀”变化量,解决问题的基本思想方法也是一致的。可归纳为两步:a.微小局部求近似值;b.利用极限求精确。微积分的这一基本思想方法贯穿于整个微积分学体系中,并且将指导我们应用微积分知识去解决各种相关的问题。
3.微分在经济学中的应用
随着经济的发展及数学理论的完善,数学与经济学的关系越来越密切,应用越来越广泛.微积分作为数学知识的基础,介绍微积分与经济学的书也越来越多,然而大部分书或者着重介绍经济学概念或者着重介绍数学理论,很少有主要介绍微积分在经济学中的应用的书.本文将通过对一些简单的微积分知识在经济学中的应用,以使人们意识到理论与实际结合的重要性.
弹性分析
在文献《蔡芷.财会数学》中,某个变量对另一个变量变化的反映程度称为弹性或弹性系数。在经济工作中有多种多样的弹性,这决定于所考察和研究的内容,如果是价格的变化与需求反映之间有关系,那么这个反映就称为需求弹性。由于具体商品本身属性的不同以及消费需求的差异,同样的价格变化给不同商品的需求带来的影响是不同的。有的商品反应灵敏,弹性大,涨价降价会造成剧烈的销售变动;有的商品则反应呆滞,弹性小,价格变化对其没什么影响。
4.积分在经济学中的应用
积分学是微分学的逆问题,利用积分学来研究经济变量的变化问题是经济学中的一个重要方法,不定积分是求全体原函数,定积分是求和式的极限。由边际函数求原函数,或求一个变上限的定积分,一般都采用不定积分来解决;如果求原函数在某个范围的改变量,则采用定积分来解决。对企业经营者来说,对其经济环节进行定量分析是非常必要的,不但可以给企业经营者提供精确的数值,而且在分析的过程中,还可以给企业经营者提供新的思路和视角。
5.总结:
微积分局部求近似、极限求精确的基本思想方法贯穿于整个微积分学体系中,在经济日益发展的今天,微积分的地位也与日俱增,贷款、养老金、医疗保险、企业分配、市场需求等等金融问题越来越多地进入普通人的生活,利用微积分的知识有利于我们去解决各种相关的问题。
参考文献:
[1] 祁卫红,罗彩玲.微积分学的产生和发展[J].山西广播电视大学学报,2003,(02). [2] 晏能中.微积分——数学发展的里程牌[J].达县师范高等专科学校学报,2002,(04). [3] 同济大学数学教研室.高等数学(第四版)[M].北京:高等教育出版社,1993. [4] [美]托·道林.数学在经济中的应用[M].福州:福建科学技术出版社,1983,4. [5] 蔡芷.财会数学[M].上海:知识出版社,1982,12.
[6] 赵树嫄.经济应用数学基础(一).微积分.中国人民大学出版社,2002. [7] 杨学忠.微积分[M].中国商业出版社,2001.
[8] 向菊敏.微积分在经济分析活动中的应用[J].科技信息,2009(26). [9] 髙哲.浅谈微积分在经济中的应用[J].中国科技博览,2009(7). [10] 王志平.高等数学大讲堂[M].大连:大连理工大学出版社,2004. [11] 吴赣昌.微积分[M].中国人民大学出版社,2004.
[12] 谭瑞林,刘月芬.微积分在经济分析中的应用浅析[J].商场现代化,2008(4). [13] 张先荣.谈微积分在经济分析中的应用[J].濮阳职业技术学院学报,2009,22(4) [14] 明清河.数学分析的思想与方法[M].山东大学出版社,2004.
[15] Elizabeth George State University Analysis of Diagram Modification and Construction in Students’Solutions to Applied calculus for Research in Mathematics Education,.
[16]Sandra Nicol(2006).Challenging Pre-serviceteachers’Mathematical Understanding:The case of Division by .
有人向你求助啦,看看这些问题,有没有你能帮忙解答的?
1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法: 含参问题的定义域要分类讨论; 对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。(3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;②逆求法(反求法):通过反解,用y来表示x,再由x的取值范围,通过解不等式,得出y的取值范围;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域函数的性质:函数的单调性、奇偶性单调性:定义:注意定义是相对与某个具体的区间而言。判定方法有:作差比较和图像法。应用:比较大小,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。例:已知f(x)为奇函数,当x>0时,f(x)=x(1-x),则x<0时,f(x)=_______ 解:设x<0,那么-x>0代入f(x)=x(1-x),得f(-x)=-x(1+x), f(x)为奇函数 所以f(-x)=-f(x) 得f(x)=x(1+x),
看完图片你就会知道捷径的!
关于“谈谈微分方程中的变量代换思想”如下:
变量代换法是一种非常有效的解题方法,尤其是处理一些复杂的不等式问题,效果明显。合理代换往往能简化题目的信息,凸显隐含条件,沟通量于量之间的关系,对发现解题思想,优化解题过程有着重要的作用。
1、变量代换
首先,什么是变量代换?变量代换是指将微分方程中的自变量或因变量替换成新的变量,从而得到一个新的等价微分方程。当我们在解微分方程的时候,有些微分方程可能不好直接求解,但是可以通过变量代换转化为已知的形式来求解。
其次,变量代换思想的原理是什么?变量代换思想是利用变换后的新变量来重新描述原问题,如果变换成功,这会给问题的解法带来很大的便捷,因为新的方程形式会更加简单。
2、微分方程
按照不同的分类标准,微分方程可以分为线性或非线性,齐次或非齐次。一般地,微分方程的不含有任意常数的解称为微分方程的特解,含有相互独立的任意常数,且任意常数的个数与微分方程阶数相等的解称为微分方程的通解(一般解)。
3、常微分方程和偏微分方程
一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方晃冲程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程。
4、一阶线性常微分方程
对于一阶线性常微分方程,常用的方法是常数变易法:对于方程:y'+p(x)y+q(x)=0,可知其通解,然后将这个通解代回到原式中,即可求出C(x)的值。
摘要: 在历届高考试题解析与应注意的问题中,一元二次函数占有重要的地位,不管在代数中,解析几何中,利用此函数的机会特别多,同时各种数学思想如函数的 ...
那就说明你这个问卷设计不合理嘛。两个办法:
当研究问题涉及到多个自变量、因变量和中介变量时,确实会产生大量的假设。这可能会导致问题过于复杂,难以建立可靠的模型或得到有意义的结果。为了解决这个问题,你可以考虑以下几个方面:
不可以的。自变量和因变量,它们是相互对应的,一个因变量对应一个自变量,不可以自变量去对应多个因变量的。函数中一个自变量只能对应一个因变量,否则就不是函数了。