首页

毕业论文

首页 毕业论文 问题

微分和导数的毕业论文

发布时间:

微分和导数的毕业论文

数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文

新年好!Happy Chinese New Year !下面用我以前给别的网友的回答,解答一下你的问题,提供三个角度的认识,希望能对楼主是个启发,类似的例子举不胜举,同样,我们教学中的误导也是举不胜举、罄竹难书。第一方面:不用任何专业术语,只用日常生活的比喻来大概说明一下微积分的原理。一、微分的思想:从上海到拉萨的平均坡度是多少?(高度比上距离)从成都到拉萨的平均坡度是多少?从古玉到拉萨的平均坡度是多少?从墨脱到拉萨的平均坡度是多少?从大丁卡到拉萨的平均坡度是多少?...............................距离越来短,从大范围的平均坡度,到小范围内平均坡度,到很小很小距离内的平均坡度,.........,一直这样无止境的下去,最后得到一个点的坡度值。你的头发,在过去的十年中,平均每秒长多长?在过去的一年中,平均每秒长多长毫米?在过去的半年中,平均每秒长多长毫米?在过去的一个月中,平均每秒长多长毫米?在过去的一星期中,平均每秒长多长毫米?在过去的12小时中,平均每秒长多长毫米?在过去的10分钟内,平均每秒长多长毫米?在过去的10秒内, 平均每秒长多长毫米?在过去的秒内,平均生长速度(仍然按米每秒表示)?在过去的秒内,平均生长速度(仍然按米每秒表示)?在过去的秒内,平均生长速度(仍然按米每秒表示)?在过去的秒内,平均生长速度(仍然按米每秒表示)?..........................................................这样从平均增长速度算到了瞬时增长速度。以上两例就是微分。二、积分的思想:在一张绘图纸上,画一个圆(半径250px),绘图纸的小方格是25px×25px,估算圆的面积;绘图纸的小方格是×,估算圆的面积;绘图纸的小方格是×,估算圆的面积;绘图纸的小方格是×,估算圆的面积;绘图纸的小方格是×,估算圆的面积;绘图纸的小方格是×,估算圆的面积;绘图纸的小方格是×,估算圆的面积;..................................................................这样的估计越来越准确。将一条曲线分成10段,将每每一段的直线距离加起来;将该曲线分成100段,将每每一段的直线距离加起来;将该曲线分成10000段,将每每一段的直线距离加起来;将该曲线分成1000000段,将每每一段的直线距离加起来;将该曲线分成100000000段,将每每一段的直线距离加起来;将该曲线分成10000000000段,将每每一段的直线距离加起来;将该曲线分成1000000000000段,将每每一段的直线距离加起来;将该曲线分成100000000000000段,将每每一段的直线距离加起来;将该曲线分成10000000000000000段,将每每一段的直线距离加起来;............................................................这样算出的长度当成曲线的长度越来越准确。以上两例就是积分思想。微积分 = 微分 + 积分第二方面:微积分是什么?微积分= 微分 + 积分Calculus = Differentiation + Integration 一、微分1、微分的思想: 微分,就是微小的划分,细而微之。 思想的演化: difference(差别) ⇒differentiate (划分) ⇒differentiation(微分) 2、微分的方法: A、对任何曲线上的任意两点的连线,计算该连线的斜率,这是一个平均斜率的概念; B、将这两个点无止境地靠近,用计算极限的方法,算出图形上一个任意点处的斜率; C、因为点的选取是任意的,所以就得到了一个新的函数,通过新的函数就可以计算 原来曲线上每一个点的斜率,也就是可以得到原来函数整体变化规律的新的函数, 这个新函数我们给他起名为导函数,简称导数(derivativefunction),原来的函数 称为原函数(antiderivativefunction,意思就是originalfunction,只是鬼子不喜欢 用 original这个词),derivative是导出、派生、衍生的意思,anti-是反其道而行之、 反向追溯、追根溯源的意思; D、对这个新的函数,运用同样的方法,可以进一步得到导函数的导数,我们称它为 二阶导函数,简称二阶导数(secondderivative function)。以此类推。 3、微分的意义: 微分的意义实在太广、太普遍,写上千万本书也只是沧海一粟,挂一漏万。 下面举三个简单的例子: A、纯粹几何图形上的意义: 一阶导数可以计算图形的切线、法线的斜率(gradient); 一阶导数、二阶导数结合起来可以研究图形的极值问题(optimization,extrema); 图形的凹凸性(Concativity)、连续性(Continuity)。 B、运动学上的意义: 位置矢量的一阶导数是速度是矢量,二阶导数是加速度矢量。 C、电磁学上的意义: 电量的导数可以计算电流强度,电流强度的导数可以计算感生电动势。 二、积分1、积分的思想: 积分,就是求和,就是积而广之。 思想的演化: Summation for finiteterms (有限项的求和)⇒ Summation for infiniteterms (无限项的求和)⇒ Summation for infiniteterms with infinitesimal values (无限项无穷小的求和)⇒ Integral / Integration /Intigrating (积分)。 2、积分的方法: A、无限分割(endlesslydividing, division with infinite process); B、求和,把无限分割出来的任意小块求和,通过计算极限的方法,得到一个 结果:如果是在确定的区间上分割求和,得到的就是一个值; 如果是在不确定的区间上分割求和,得到的是一个新的函数。 C、这个新的函数就是导函数,antiderivativefunction; D、对导函数还可以继续不断地积分。 3、积分的意义: 同样地,积分的意义充满着整个自然科学、工程科学的各个学科,无法一一罗列。 下面同样列举三个例子: A、纯粹几何图形上的意义: 计算任何曲线的长度;任何图形的面积;任何物体的体积。 B、运动学上的意义: 通过加速度计算速度,通过速度计算位移。 D、电磁学上的意义: 计算电场强度分布;计算电势分布;计算磁感应强度分布;计算电磁场能量; 计算感生电动势等等。第三方面:具体极限的例子说明为了说明清楚,下面的解答中,会有一些英文,希望不引起楼主的反感。1、极限,limit,limitation我们汉语中的翻译、汉语的理解,过于注重了“限”,把极限理解成了单纯的“限制”。例如:身体的极限,体能的极限,、、、都是在强调一个不可逾越的限制;又如:当x→∞时,y = 1 - 1/x 的极限是1。也就是说y永远超不过1的限制。汉语的这种翻译,不能算错,但是也不全对,因为我们忽略了另外一个方面,那就是“tendency”,就是趋势,一个从过程方面考虑的事情,也就是一个不断的“趋近”过程,趋近=approach。 = 1,严格来说,对吗?不对!这是大家都不假思索的回答。 = 1,严格来说,对吗?不对!这也是大家都不假思索的回答。 = 1,严格来说,对吗?不对!这还是大家都不假思索的回答。..... = 1,严格来说,对吗?不对!这仍是大家都不假思索的回答。那么1÷3 = ?绝大部分人会异口同声地说:...................欢呼雀跃的时候,很少会忧心忡忡。绝大部分人不会想到我们的运算逻辑已经出了问题!我们平时陶醉于“悠久、文明、勤劳、勇敢、聪明、、、、”,绝不会反向思考是一样的,我们的文化没有质疑精神,我们文化没有定量成分,我们的文化没有精益求精的本能。所以,就出现了上面的情况。上面的问题,可以概括起来说,就是一个问题:的循环是大约等于1?还是严格等于1,没有丝毫的误差?如果你的回答是大约等于,非常近似的等于1,那么你就是一个正常的人;如果你的回答是严格等于1,那么恭喜你,你是一个了不起的人,已经超凡脱俗!因为你认为是严格等于1,你已经不是传统中国人的思维了,如果你早生几百年,咱们中国的科学研究,就不会这么糟糕,这么落后,这么下里巴人、愚昧不堪了。可惜,你迟生了几百年。古代的中国与西方,尤其是地中海沿岸的国家,彼此彼此;现代的中国科学严重落后,就是从极限理论开始的。我们有诡辩学,他们有paradox,结果,我们摇头晃脑地几百年,没有丝毫长进,时至今时今日,我们的学者砖家们,这样的人依然是“主流”。人家由此建立了微积分,有了文艺复兴,有了工业革命。而我们,依然如斯,下里巴人一群,在现代的数学理论上、科学理论上,没有丝毫的发言权。而且摆明了不想有发言权,看看现在的教课书就明白,我们胡搅蛮缠的东西一大堆,就可以明白,我们很多人的性格是破罐子破摔,赶超国际,那是几百年后的梦想了。所以,楼主加加油,或许你能悟出什么。2、无穷大,infinity上面讲了,极限是一个过程,我们过多的强调了极限的“限”,过于眼高手低地忽略了过程的tendency,trend,approaches,所以,我们没有能力建立微积分理论。因为极限是一个过程,是无止境地趋向于一个值,这个值是定值,我们就说有极限。例一:当x→3时,x²→9。 就是说,当x无止境地趋向于3时, x²就无止境的趋向9。例二:当x→0时,sinx→0,(sinx)/x→1。就是说,当x无止境地趋向于0时, sinx也无止境的趋向0, sinx/x的比值却趋向于1。 分母虽然不能为0,但可以无止境地趋向于0,比值居然是一个非0非无穷的数! 就凭这一点,就超出了我们的集体想象能力, 那七个不定式更是超出了我们的集体的智能, 后面随之而来的一大堆理论,完全超出了我们的集体智商, 我们连理解都困难重重,更遑论从无到有地系统建立起来? 今时今日,很多被民脂民膏养得脑满肠肥的教授们,依然在竭尽误导之能事。极限存在,是指有一个固定的值,这个值是函数可能达到的,也可能是无限趋近的;无穷大,不是一个具体的数,所以,趋向于无穷大,就是不存在极限。由于我们的懒惰成性、成癖,我们依然谁说它的极限是无穷大。极限不存在,是指四个意思:1、没有一个具体的值,例如∞,是越来越大,无止境地大下去,就是极限不存在;2、虽然没有→∞,但一直在波动,如sinx,永远在±1之间波动,那么极限不存在;3、左右极限可能一则存在,一侧不存在,那么我们说极限不存在;4、两侧极限可能都存在,但两侧极限不相等,那么我们还是说极限不存在。

和导师发微信毕业论文

首先简明表达自己的来意,然后提出自己的请求,最后礼貌结尾。

×××老师,您好!

在您的帮助指导下,我的关于xxxx的毕业论文已经初步完成了,现在递上我的毕业论文给您,希望能得到您的一些指导意见,完善一些不足之处。谢谢老师,老师辛苦啦。

如果第一次发信息可以是:

×××老师,您好!我是×××,我是您毕业论文带的学生。……

首先,就是礼貌问题,注意用词,表达感谢。请教问题,请老师帮我,希望得到一些指导……用语不要太过僵硬。

其次是表达感谢,在写论文中,老师有指导要表达出来感恩;请老师帮忙修改也要表达感谢。

然后要注意直接,少说废话。要直接简单的说你为什么要打电话、发消息,直接讨论你的论文的事情,免得绕弯子耽误老师的时间。

1.要准时。尽量按照师生约定的时间提交。如果不能,要提前和老师做好沟通说明,避免出现老师来催你的情况。

2.不要有错别字。错别字是态度不端正的一种表现,你完全可以通过仔细检查避免这些错误,不要让自己的论文在“小问题”上栽跟头。

3.论文提交方式要注意。按照导师的阅读习惯,选择合适的方式提交。邮箱、qq、微信……

4.老师的修改意见应该仔细斟酌

如果不理解不要不懂装懂,一定要“刨根问底”,也可以充分探讨,在充分理解的基础上,修改完善。

加了毕业论文导师为好友,第一句话应该首先问好。 加了你的毕业论文导师为好友,首先你应该说老师好,然后向他介绍你自己的基本情况,例如姓名专业等等,然后阐述你的毕业论文主要思想和思路,并且请他提出意见。同时你还可以约他在线下进行见面,探讨论文。 总之和你的论文导师交流的时候,必须要注意礼貌和礼仪,同时你要提前想好你要问的问题。

综述:礼貌问好:老师,您好,我是您毕业论文带的学生。

和老师沟通技巧:

1、主动表面身份

有不少家长在加了老师好友之后,上来就是“老师你好,请问我们家文文最近表现怎样?”一句自我介绍都没有,老师看到这样的情况,满脸黑线。

2、尊重老师作息

老师也有自己的家庭和生活,她没有义务和你共享她的私人时间。

3、保持一定耐心

如果老师没有及时回复,不要不停重复提问,或者隔几分钟就发个问号以示催促。

4、聊天注意分寸

可能想迅速拉近和老师的距离。于是微信一直缠着老师聊天,从祖上背景到父母工作,再到小孩的成长经历、兴趣爱好,全部和老师交代一遍。

5、注意朋友圈影响

微信除了能聊天,主要的社交功能还是在朋友圈。

虽然在朋友圈发什么内容是你的自由。但是在发布前,请你务必考虑一下,还有班里其他同学也会看到这条内容,他们看了以后,对你会产生什么印象。

毕业论文怎么联系导师:加微信联系。

和老师先加个微信方便沟通,开题先做好,老师通常都是一个人负责好几个学生的论文,所以他不一定记住你是谁,但是你可以多和老师联系,写论文的时候勤快点,不要等老师催促你,如果你的写论文速度很慢就会降低你论文的质量。

思想要统一,从专题,数据收集,数据分析,得出结论,每一步都要好好沟通的。

遇到问题先思考自己找答案,实在不行的话就去问下导师的意见。

论文写作过程中一定要多和老师进行沟通这样才能毕业

老师您好,仰慕您很久了,非常喜欢您的授课方式,不知是否有荣幸加入您的论文指导组里。联系技巧:1、首先礼貌问好:老师,您好,我是您毕业论文带的学生。2、简单介绍自己的论文:我的论文水平还不是很好,有很多的缺陷,我会努力改进的!3、虚心问教:以后可能经常会麻烦老师,还请别介意,最后就是感谢老师的指导!

论文是一个汉语词语,拼音是lùn wén,古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。

微分的毕业论文

论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!

1. 圆锥曲线的性质及推广应用

2. 经济问题中的概率统计模型及应用

3. 通过逻辑趣题学推理

4. 直觉思维的训练和培养

5. 用高等数学知识解初等数学题

6. 浅谈数学中的变形技巧

7. 浅谈平均值不等式的应用

8. 浅谈高中立体几何的入门学习

9. 数形结合思想

10. 关于连通性的两个习题

11. 从赌博和概率到抽奖陷阱中的数学

12. 情感在数学教学中的作用

13. 因材施教因性施教

14. 关于抽象函数的若干问题

15. 创新教育背景下的数学教学

16. 实数基本理论的一些探讨

17. 论数学教学中的心理环境

18. 以数学教学为例谈谈课堂提问的设计原则

1. 网络优化

2. 泰勒公式及其应用

3. 浅谈中学数学中的反证法

4. 数学选择题的利和弊

5. 浅谈计算机辅助数学教学

6. 论研究性学习

7. 浅谈发展数学思维的学习方法

8. 关于整系数多项式有理根的几个定理及求解方法

9. 数学教学中课堂提问的误区与对策

10. 中学数学教学中的创造性思维的培养

11. 浅谈数学教学中的“问题情境”

12. 市场经济中的蛛网模型

13. 中学数学教学设计前期分析的研究

14. 数学课堂差异教学

15. 一种函数方程的解法

16. 积分中值定理的再讨论

17. 二阶变系数齐次微分方程的求解问题

18. 毕业设计课题(论文主题等)

19. 浅谈线性变换的对角化问题

1. 浅谈奥数竟赛的利与弊

2. 浅谈中学数学中数形结合的思想

3. 浅谈中学数学中不等式的教学

4. 中数教学研究

5. XXX课程网上教学系统分析与设计

6. 数学CAI课件开发研究

7. 中等职业学校数学教学改革研究与探讨

8. 中等职业学校数学教学设计研究

9. 中等职业学校中外数学教学的比较研究

10. 中等职业学校数学教材研究

11. 关于数学学科案例教学法的探讨

12. 中外著名数学家学术思想探讨

13. 试论数学美

14. 数学中的研究性学习

15. 数字危机

16. 中学数学中的化归方法

17. 高斯分布的启示

在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考

微分数值解法毕业论文

■ 有些微分方程求不出函数解(解析解),只能求数值解,MMA软件的函数命令 tt=NDSolve[微分方程],然后 ▲赋值ⅹ=2,求出 y=? ▲赋值 x=3,求出 y=? ··· 赋值ⅹ=n,求出 y=?,这些就是微分方程的数值解。虽然解不出未知函数y(ⅹ)表达式,但MMA可画出它的函数图像,很复杂的图像都能画出来。也碰到过特例,从(ⅹ0)向左图像就没了,对y(x)赋值后发现,x≤xo时,函数值y(ⅹ)变成复数了,包括( 1、ⅰ )二个维度,MMA当然无法画图了。多数工程技术出现的微分方程组,总求不出函数解析式,所以数值解的意义和作用不言而喻。■ 从数值分析来看,偏微分方程及微分方程数值解常用二种方法。① 差分法~原理是用《差商》替代微商(导数)。②有限元法~原理是泛函变分法。将微分方程边值问题→泛函求极值问题→线性代数方程求解。MMA求解数值解时在各种方法中选择最优法。

数值分析第七章常微分方程初值问题的数值解法读书报告应该包含以下内容:1、引言:简要介绍什么是常微分方程初值问题,它在什么领域中的应用以及数值解法的重要性。2、常微分方程的数值解法:介绍7章中涉及的不同数值解法,如欧拉法、龙格-库塔法等,并解释它们是如何工作的以及它们的优缺点。3、数值解法的误差分析:解释误差及误差来源, 如截断误差、舍入误差等,并提供如何减少误差的方法。4、例题分析:给出几个简单的例子,介绍如何使用不同数值解法来求解常微分方程初值问题。详细讨论每个数值解法的优缺点,并比较它们的精度和稳定性。5、结论和建议: 总结数值分析第七章讨论的常微分方程初值问题数值解法,指出每种方法的优缺点,并给出适用于不同应用场景下的建议。6、参考文献 :列出用于研究数值分析第七章常微分方程初值问题的数值解法的参考文献。

要:常微分方程作为微分方程的基本类型之一,在自然界与工程界有很广泛的应用。很多问题的数学表述都可以归结为常微分方程的定解问题,实际生活中很多问题的数学模型都是微分方程。但在许多情况下,首先找到问题的解析解,然后再进行相关的计算往往非常困难,有时甚至是行不通的,基于此理由,我们可以避免求解析解而直接求相应的数值解。本论文就是对目前已有的常微分方程的数值方法进行研究,并大胆地提出一种新的数值方法——欧拉-牛顿法。 关键词:常微分方程 解析解 数值解 研究 新的数值方法 欧拉-牛顿法 0 引言 在生产实践和科学研究过程中,我们经常会遇到求解常微分方程的定解问题,虽然我们已经知道不少类型的常微分方程的解法。但工程技术人员在工程和科学研究中所关心的往往只是常微分方程的近似数值解,而非从事数学研究的技术人员所注重的“过程”。采用常规的人工推导、求解无疑是效率非常低下的,而且工程上的常微分方程往往结构非常复杂,要给出一般方程解的表达式也是非常困难的。实际上到目前为止,我们只能对有限的几种特殊类型的方程求精确解,这远不能满足工程需要,对那些不能用初等函数来表达的方程就只能去求其近似的数值解,而且这样还可以借助于运算速度快的计算机来进行辅助求解,大大提高求解的速度和精度。我们考虑一阶常微分方程初值问题在区间[a,b]上的解,其中f(x,y)为x,y的已知函数,y0为给定的初始值,将上述问题的精确解记为y(x)。数值方法的基本思想是:在解的存在区间上取n+1个节点,这里差hi=xi+1-xi,i=0,1,…,n称为由xi到xi+1的步长。这些hi可以不相等,但一般取成相等的,这时,在这些节点上采用离散化方法,(通常用数值积分、微分,泰勒展开等)将上述初值问题化成关于离散变量的相应问题。把这个相应问题的解yn作为y(xn)的近似值。这样求得的yn就是上述初值问题在节点xn上的数值解。一般说来,不同的离散化导致不同的方法。本文在对目前已有的常微分方程的数值方法进行深入研究的基础上,对改进的欧拉方法进行再次改进并提出一种新的数值方法(本文命名为欧拉-牛顿法),并能够以具体实例来验证方法的有效性和实用性。 1 欧拉—牛顿法 改进的欧拉方法的公式是 先研究求的近似值,其中是步长。对于递推格式 由此所确定的可以看成是下面关于的(非线性)函数 在y=yk-1附近的零点。虽然上面(2)式定义的F(y)还与k以及xk-1,xk,yk-1有关,但这个问题还可以在求数值解时予以考虑,对于理论分析来说则无需顾及。如果我们直接利用牛顿法求F(y)在y=yk-1附近的零点,当然可以利用yk-1作为z的初值z0,利用 由于zi-1到zi的区间很小,所以在每一个小区间内设已知方程F(z)=0有近似根zi-1,将函数F(z)在点zi-1展开,有 于是方程F(z)=0可近似地表示为: 这是个线性方程,记其根为zi,则有 从而得到欧拉—牛顿法的递推格式为: f(x,y)关于y的偏导数的绝对值通常特别大,由此可以得出 的值也特别大,再加之初始解yk-1已经很靠近F(y)的零点,所以采用牛顿法求F(y)在y=yk-1附近的零点实现了问题与方法之间的完美结合。事实上,在一般情况下利用(4)式迭代一次即可得到满意的结果。考虑到f(x,y)的凸凹性可能会对迭代格式(4)产生一定的影响,所以保险起见,也可以利用(4)式迭代两次,至少可以增强算法的稳定性。 例1.求解下述初值问题 上面(5)式的理论解为 表中符号说明:X[k]是x的值;Y[k]是对应每一个x的y精确值(理论值);YX[k]是利用欧拉-牛顿法计算出的y近似值;E[k]是y精确值和近似值之间的误差。利用欧拉—牛顿法求解的计算结果的精度至少达到了小数点后13位,甚至有的达到了小数点后15位,表1中y精确值和计算值之间的误差E[k]的值非常的小,几乎达到了零值,即用欧拉—牛顿法得到的结果几乎达到了人们所企盼的结果,它很明显地优越于改进的欧拉方法,所以实例证明欧拉—牛顿法还是值得推广的。 2 总结 对于求一般的常微分方程初值问题的数值解来说,已经有很多的方法。在实际应用中,我们当然希望能够结合具体问题的特点,充分利用不同方法的差异,选择一种更为合适的方法,力争得到尽可能好的结果。对于求解实际问题来说,我们通常并不能立即得出所得到的结果到底有几位有效数字。虽然可以通过理论分析来估计误差,但这样做一是劳神费力,二是所得到的结果也未必靠的住,这中间不确定的因素太多。在现代计算机条件下,采用基于试验的方法一般比理论分析的结果更为直观,更为具体。在这个基础上再辅之以理论分析,结论当然更可靠一些。求解一阶常微分方程的新的数值求解方法(欧拉—牛顿法)是改进的欧拉方法和牛顿法的完美结合,从而为求解一阶常微分方程的数值解提供了方便,并且结果的精度也比较高。

有个未知数u怎么用数值来做啊

微分方程数学毕业论文

matlab在微分方程中的应用毕业论文大纲书写方法为1、先写前言。2、第一部分解释matlab的基本概念。3、第二部分描述其在微分方程中的应用。

列几个题目引导一下你吧,呵呵,我不是学这能帮助你的也只能这样了。抽象代数中的若干问题[数学专业论文]复变函数积分方法探究[数学专业论文]高阶微分方程解的分布问题[数学专业论文]几类函数的留数定理[数学与应用数学]与复积分有关的几个定理[数学与应用数学]证明等边三角形的几种复数方法[数学与应用数学]浅谈新课标下小学数学应用题的改革对了,要查更多的内容的话,在网站关键字输入“数学”就可以如果对你有帮助,请加分哦。

论文发表写作指导:

数学毕业论文参考范文1.论文题目:四次带参数PH曲线的构造方法关键词: m-Bézier曲线;形状参数;PH曲线;几何特征摘要: 针对四次带参数PH曲线,讨论其几何特征和几何构造方法。首先,定义了一类含一个形状参数的四次m-Bernstein基函数,进而得到四次m-Bézier曲线。然后通过引入辅助控制顶点给出四次m-Bézier曲线成为PH曲线的几何特征条件,最后提出一种新的四次带参数PH曲线的几何构造方法,并给出误差分析,通过数值例子,验证了方法的有效性和可行性。文章引用:杨雪, 彭兴璇, 段卓. 四次带参数PH曲线的构造方法[J]. 理论数学, 2023, 13(3): 395-404. .一类分数阶微分方程初值问题解的存在唯一性关键词: 分数阶微分方程;初值问题;Picard迭代法;存在性;唯一性摘要: 分数阶微积分在数学和工程方面已经成为人们特别熟知的概念,其是整数阶微积分的推广。分数阶微积分有好多种形式,譬如,Riemann-Liouville、Caputo分数阶微积分,带有一个函数的分数阶微积分是Riemann-Liouville分数阶微积分的推广形式。在本文中,基于带有一个函数的分数阶微积分的基本性质和Picard迭代方法,我们将讨论一类以带有一个函数的分数阶导数表示的微分方程初值问题解的存在唯一性。同时通过本文的研究,我们不仅将Picard迭代法应用于一类以带有一个函数的分数阶导数表示的微分方程初值问题解的存在唯一性的论证中,还提供了求解此类分数阶微分方程初值问题近似解的一种思路。文章引用:杨钰翎, 梁俊玮, 李健. 一类分数阶微分方程初值问题解的存在唯一性[J]. 理论数学, 2023, 13(3): 476-485.

相关百科

热门百科

首页
发表服务