数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,关于初中数学教学你有什么独到的看法呢?本文是我为大家整理的初中数学教学论文 范文 ,欢迎阅读! 初中数学教学论文范文篇一:初中数学智能教学研究 一、初中生智能 智能简单地说,就是智慧和能力。主要体现于大脑的功能,表现为大脑对外界信息加工处理的本领,它包括感知能力、记忆能力、想象能力和思维判断的能力,感知能力和记忆能力是智慧的基础,想象能力和思维判断的能力是智慧的核心。反映在数学上,就是区分形状不同的几何图形,不同变量变化的规律,从具体的形象思维——抽象概括思维—— 逻辑思维 ,对前人 总结 的定理、公示、法则的在现,洞察二维、三维空间物体相互位置关系,以及以记忆为基础的各种思维判断能力。中学生经过六年小学阶段 教育 ,已具备一定的“数学与逻辑推理能力”,从生理学角度来看,其大脑的四个功能区,即感受区、判断区、想象区已基本成熟,接近成年人这一阶段,人的认识呈“飞跃”式发展。初中生从十一、二岁进入学校,到十四、五岁初中 毕业 ,这一段时间有人把它称为人生中“黄金时段”我们就要抓住人生中的“黄金时段”,适时开发中学生智能,培养学生的创新精神,才能获得智能资源的大丰收。 二、发展智能是初中数学教学的重要任务 数学作为一门研究现实世界空间形成和数量关系的科学,是学习和研究现代科学技术必不可少的基础知识和基本工具。作为教师不能奢望每个学生都能成为一代娇子,但也完全可能让每个学生在他现有智能基础上得到充分的发展。为提高整个一代人的智能水平做出最大努力,这一出发点也可列为中学教师应尽的责任之一。中学数学的教学任务不仅要传授知识,尤其重要的是开发智力和培养能力。所以在数学教学中,传授知识和发展智能是相互影响、相互制约、不可分割的有机统一体。那种把发展智能和传授知识相对立起来,或者严重脱节的倾向,把发展智能神秘化,甚至认为高不可攀的观点都是错误的。作为一名学生教师应该清楚自己不仅是知识的传授者,而且是智能的开发者,应该把主要力量放在开发学生的智能上,在人生的最重要的“黄金时段”发掘人的最宝贵的东西——智能。 三、初中生的智能开发 开发学生的智能,要遵循客观规律。使每个学生的创造力和创造精神得到发展,凡有利于这一工作的工作,都属于开发智能的范畴。作为中学数学教师,在开发学生智能方面应该认识并做到以下几点:从人性角度看,人既是主体性与客观性的统一,又是能动性和受动性的统一,也是独立性与依赖性的统一。学生在学习活动中表现为:我要学和要我学。我要学是基于学生对学习的一种内在需要,表现为学习兴趣。学生有了学习兴趣,学习活动对他来讲就不是一种负担,而是一种享受,一种愉快的体验,学生会越学越想学,越学越爱学,有兴趣的学习事半功倍。兴趣是学生学好知识的、内在的、直接的动力,不断激发学生的学习兴趣,使学生始终处于积极的思维状态,是发展学生智能的基础。有人说:“生趣才能爱学,爱学才能增加,增加才能长智。”可见,生趣是爱学、增加、长智的起点。在实际的教学工作中,每节课都必须精心设计,以激发学生的求知欲。例如在讲“函数”时授课前让学生先计算:2的4次方是多少?2/3的三分之二次方是多少?学生在解决了第一题后,所学知识不能解出第二题,于是就有了找到解法的欲望。这时教师就顺势导出将要学习的新知识——函数。从而达到了激发学生学习兴趣的目的。 初中数学教学论文范文篇二:初中数学教学中数学思维培养 一、数学思维的特点 任何一门学科都具有其自身的特点,数学作为一门基础学科,更是具备了严谨性和抽象性的显著特点,只有牢牢把握数学的特点,在严谨性和抽象性特点的指导下开展教学工作,才能更好的培养学生严谨的数学 思维方式 。 1.数学思维具有严谨性 数学是一门对逻辑性思维要求十分严格的学科,它要求教学人员对概念和定义有精准的把握和透彻的理解,对于问题的结论,也应做到反复论证,以便在教学中能够完整的表达数学名词的实质意义。在实际教学过程中,不同学生对知识的理解能力也各不相同,因此在传授知识的过程中不能够向数学科学一样做到绝对精准,这就要求老师因材施教,差别化的对待不同学生,进行数学思维的培养,进而逐步走向严谨。 2.数学思维具有抽象性 所谓抽象性,就是指用数学来表示客观存在的事物的本质特征和物与物之间的关联性。所有的数学定义都是从客观事物中总结归纳而来的,并不断提升,不断探索新的规律和法则,最终形成的完整的数学体系。而在这个过程中,抽象性不断加深,概况性不断提升,人们对事物的认识程度也就不断加深。因此,与其他学科思维相比,数学学习所需的 抽象思维 更有层次性。 二、培养初中生良好思维方式的 方法 具备良好的思维方式是学好一门学科的关键,而思维的发展也需要一定的知识基础作铺垫。在初中教学中,也应掌握恰当的方式方法,综合运用不同技巧加强对学生数学思维的培养和引导。 1.不断拓展学生的思维 在教学过程中,老师的教授讲解固然重要,但也应适当给予学生独立思考的时间,并在习题练习的过程中对知识进行把握和充分理解。教师在对一些特殊概念和知识的讲解过程中应与学生深入探讨,而非停留在只教授不讨论、只讲概念不深入探究的阶段。要加强对学生自主学习能力的培养,带动学生学习的主动性,从而逐步拓宽学生的思维,增强学生数学学习的逻辑思维能力。另外,也要充分利用学生的错误,在学生错误解答题目或错误理解概念时,应当深入分析出错的原因,从根本上纠正错误的思维方式。 2.运用正确的引导方式和教学方式 教师在教学过程中,要有清晰的头脑和明确的思维逻辑方式,在讲解过程中应有步骤、有层次的进行讲解。例如,在初中数学中引入绝对值的概念,这就区别于低年级的数学教学,介绍负数的概念给学生,从而拓宽了学生对于数字的理解范围。对于|x|,x的值不是单一的+x,而是分成不同的情况。它的值可能是-x,也可能是+x,也可能是0。而教师在讲解绝对值概念时,也应结合数轴上的点来介绍绝对值的大小,即到原点零的距离。另外,对于不同版本的课本和教材,也应有不同的 教学方法 和顺序,适时调整教学活动,不拘泥于课本,才能更好的培养学生的思维能力,提升学生数学学习的整体能力。 3.培养学生的学习兴趣 学习兴趣是促进学生进步和发展的最大动力,因此,老师在教学的同时要善于培养学生的学习兴趣,有利于学生更快速的理解知识,使学生能够积极主动的学习而非被动听课。同时,应关心稍稍落后的学生,适时的给予鼓励和并加以引导,促使他们积极思考,不断发掘新问题,提出疑惑,并和学生一同思考解答。例如,在讲解“如何求解一元二次方程的根”的问题时,应带领学生尝试不同方法进行求解。详细介绍因式分解法、图象求解法、配方法等多种方法,并对应习题进行练习讲解,而不是固定的只讲解一种方法,应让学生自主选择合适的方法。 4.运用现代教学方式和技术进行课堂教学 随着科技的不断进步与发展,计算机电子技术的进步,应将其综合运用到数学教学中,对于几何学的教学,可采用动态图的演示方式,更加具体的使学生感受到图形的变化以及变化过程中的规律,及时进行归纳总结。对于没有条件的地区,教师在教授过程中,应有过硬的绘图功底,通过绘制主要的图形变化过程帮助学生理解课堂知识,拓宽思维。 三、结束语 数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,因此应当引起教学工作者足够的重视。在适当时应摒弃传统落后的教学观念,结合新的思维方式进行教学,留给学生充分的独立思考空间,激发学生学习数学的兴趣,使学生在学习过程中做到举一反三,让学生在自主学习的过程中发现数学的乐趣,并养成良好的思维方式,从而为今后的数学学习以及其他学科的学习打下扎实的基础。 初中数学教学论文范文篇三:初中数学教学课堂小结研究 一、进行课堂小结的方式 1.梳理课堂知识.一种常见的课堂小结方式,就是把整堂课的知识用简短的话从头到尾梳理一遍,这种梳理不是通篇的叙述,而是有重点的、分层次的总结.例如,在讲“点和圆,直线和圆的位置关系”时,课堂小结就主要是把点与圆的三种位置关系、直线与圆的三种位置关系,结合黑板上的图例再次梳理一遍.这种总结方式,可以让学生全面地复习一遍所讲内容,对新知识有整体了解,同时可以让学生形成对知识的网络式记忆,把知识延伸到整个学习系统中. 2.概括课堂知识.教师还可以对课堂内容进行几句话的概括总结,这种概括要涉及新课内容的关键点,通常用于新课内容有多个重要知识的情况下. 3.联系以前知识.有些新课的内容是在以前所学知识的基础上进一步扩展而来,或者是新课与所学知识有着一定的相似度.在课堂小结的时候,教师可以将两者进行联系,进行对照解读.这样的课堂小结,可以让学生具体形象地理解所学内容.当然,当遇到新课与旧知识有着明显反差的时候,教师也可以拿来对比解读,以避免学生对新知识和旧知识产生混淆.这样一来,学生心中的知识脉络就会更加清晰. 4.和学生共同回想课堂知识.数学教师在讲课时往往是单方面讲授课堂内容给学生,而很少有和学生进行互动的,这都是因为学科的特性和课堂时间的紧迫,而缺乏互动可能导致学生和课堂的融入度不够,容易造成开小差的现象.教师在进行课堂总结时可以有意地和学生进行互动,共同复习整堂课的知识.可以是对学生进行课堂关键内容的提问,也可以是向学生询问他们所认为的难点内容来再一次讲解以答疑和强化记忆.这样,不仅活跃了课堂气氛,拉近了教师与学生的距离,让学生更亲近课堂,让教师更了解学生的学习现状,同时让学生对难点内容有了进一步的学习和消化. 二、进行课堂小结的注意点 课堂小结不是教师一味地总结讲课知识,这里的本体应该是学生自己,是学生来回味和消化课堂所学内容,不懂的地方提出疑问,教师起到串联和辅导作用.教师可以从学生的角度考虑如何总结,才能提高复习效果. 1.课堂小结的概括性.课堂小结要简单明了,用几句概括性的话语进行总结,不宜多次重复复杂内容,这样不仅起不到总结的效果,还会让学生更加混淆,对所学知识产生过多疑问.另外,课堂小结应该用最直接的语言讲述出课堂内容,不应该加以多少修饰,以避免所述内容的冗长,导致上课时间的不够. 2.课堂小结要有重点.有的人说,一堂课里有一半的时间讲重点内容就很难得,而学生只要把这些重点听明白,他们这堂课的收益就很大.课堂小结相对于课堂上的详细讲解而言,是为大部分学生整理的要点总结,不需要对整堂课的内容都重述一遍,而要对讲课内容的要点进行有针对性的重点回顾,这样可以帮助学生理清课堂的重点内容,进行重点练习和记忆. 3.课堂小结要能引导课外学习.课堂小结是一堂课的结尾总结,也是学生课外学习的一个开始.课堂小结要注重引导学生对所学知识进行深入探究.例如,在讲解例题后,可以让学生寻找课外相似的题目进行训练,充分利用学生的课外时间进行学习拓展.同时,能使课堂与课外连接起来,促进学生的课外学习.总之,课堂小结是初中数学教学中必不可少的环节之一.做好课堂的总结是每个教师的分内之事,它不是一个可有可无的环节.做好课堂小结,不仅能让学生的学习更加轻松有效率,而且能够帮助教师进行授课总结,从而提高教学效果.
毕业论文?不会把这年头初中都流行写论文了?
论文?我觉得可以写因式分解中如何将基本解题方法引申至奥赛等级——比如从一些基本公式、方法开始,十字相乘法,换元法,主元法什么的。 顺便再加一点自己的感悟和理解应该会比较好一点。个人意见。
可以从分解的方法上去讨论,或应用上作文章也可,
毕业论文?不会把这年头初中都流行写论文了?
论文?我觉得可以写因式分解中如何将基本解题方法引申至奥赛等级——比如从一些基本公式、方法开始,十字相乘法,换元法,主元法什么的。 顺便再加一点自己的感悟和理解应该会比较好一点。个人意见。
阅读小说,要把握人物的性格特点,分析人物外貌、语言、行动、心理活动的描写,了解故事的情节,理解环境描写的作用,体会作者的写作意图。略读,细读,重读,1先大概了解意思2带着问题仔细读3多读能更好的掌握书的思想感情4抓住文章主要内容,理清行文思路
把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
分解一般步骤:1、如果多项式的首项为负,应先提取负号。这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。
有提公因式法、分组分解法、待定系数法、十字分解法、双十字相乘法、对称多项式等等。1、一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。3、待定系数法是初中数学的一个重要方法。用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。4、十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。5、双十字相乘法是一种因式分解方法。对于型如 Ax²+Bxy+Cy²+Dx+Ey+F 的多项式的因式分解,常采用的方法是待定系数法。这种方法运算过程较繁。对于这问题,若采用“双十字相乘法”(主元法),就能很容易将此类型的多项式分解因式。6、一个多元多项式,如果把其中任何两个元互换,所得的结果都与原式相同,则称此多项式是关于这些元的对称多项式。x²+y²+z²,xy+yz+zx都是关于元x、y、z的对称多项式。
答:多项式分解方法如下:1、看多项式是否有公因式,如果有先提取公因式。2、十字相乘分解法。3、配方分解法。4、公式分解法。5、分组分解法。6、系数关系综合除法分解法。7、增减加项分解法。
因式分解(分解因式)Factorization,把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。在数学求根作图方面有很广泛的应用。含义因式分解的定义和主要方法常规因式分解主要公式定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高学生综合分析和解决问题的能力。分解因式与整式乘法为相反变形。同时也是解一元二次方程中因式分解法的重要步骤.高级结论在高等数学上因式分解有一些重要结论,在初等数学层面上证明很困难,但是理解很容易。1、因式分解与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。2 、所有的三次和三次以上的一元多项式在实数范围内都可以因式分解,所有的二次或二次以上的一元多项式在复数范围内都可以因式分解。这看起来或许有点不可思议。比如X4+1,这是一个一元四次多项式,看起来似乎不能因式分解。但是它的次数高于3,所以一定可以因式分解。如果有兴趣,你也可以用待定系数法将其分解,只是分解出来的式子并不整洁。(这是因为,由代数基本定理可知n次一元多项式总是有n个根,也就是说,n次一元多项式总是可以分解为n个一次因式的乘积。并且还有一条定理:实系数多项式的虚数根两两共轭的,将每对共轭的虚数根对应的一次因式相乘,可以得到二次的实系数因式,从而这条结论也就成立了。)3 、因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。因式分解很多时候就是用来提公因式的。寻找公因式可以用辗转相除法来求得。标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以但比较笨,不过能有效地解决找公因式的问题。方法因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。注意四原则:1.分解要彻底(是否有公因式,是否可用公式)2.最后结果只有小括号3.最后结果中多项式首项系数为正(例如:-3x2+x=x(-3x+1))不一定首项一定为正,如-2x-3xy-4xz=-x(2+3y+4z)归纳方法:1.提公因式法。2.运用公式法。3.拼凑法。4.组合分解法。5.十字相乘法。6.双十字相乘法。7.配方法。8.拆项补项法。9.换元法。10.长除法。11.求根法。12.图象法。13.主元法。14.待定系数法。15.特殊值法。16.因式定理法。提取公因式法:各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。(真诚为您解答,希望给予【好评】,非常感谢~~)
先提供饮食,再因式分解 刚好学到这
没听说过,还要写论文?我是高一的,我上初中的时候,怎么没写过,没这样事吧
导语:因式分解的常用方法,还有很多方法都很不错,也能对我们的数学能力进行拓展,例如十字相乘法等等。我们在学习初中数学因式分解的时候,一定要多做题,题海战术虽然饱受诟病,但是对于初中数学确实是理解和熟练知识点的最佳途径,当然要适量,不可疲劳战,这是为了保持对学习的浓厚兴趣,长此以往,养成习惯,你会发现数学这么简单。
因式分解的步骤
1、提公因式;
2、公式法(完全平方式、平方差公式)。
初中数学因式分解常用解法有哪些提公因式法
① 公因式: 各项都含有的公共的因式叫做这个多项式各项的~.
② 提公因式法 :一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③ 具体方法: 当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
初中数学因式分解常用解法有哪些
运用公式法
①平方差公式:.a^2-b^2=(a+b)(a-b)
②完全平方公式:a^2±2ab+b^2=(a±b)^2
※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
分组分解法
分组分解法:把一个多项式分组后,再进行分解因式的方法.
分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.
拆项、补项法
拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.
※多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
配方法: 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
换元法 :有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
待定系数法: 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
扩展资料:
因式分解(英语:factorization,factorisation或factoring)是指把一个多项式分解为两个或多个的因式的过程,分解过后会得出一堆较原式简单的多项式的积。例如多项式x-4可被分解为(x+2)(x-2)。
基本概念
定义
把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力工具。
因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。
相关结论
基本结论:分解因式与整式乘法为相反。
高级结论:在高等数学上因式分解有一些重要结论,在初等数学层面上证明很困难,但是理解很容易。
1)因式分解与解高次方程有密切的.关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。
2)所有的三次和三次以上的一元多项式在实数范围内都可以因式分解,所有的二次或二次以上的一元多项式在复数范围内都可以因式分解。这看起来或许有点不可思议。比如x+1,这是一个一元四次多项式,看起来似乎不能因式分解。但是它的次数高于3,所以一定可以因式分解。也可以用待定系数法将其分解,只是分解出来的式子并不整洁。(这是因为,由代数基本定理可知n次一元多项式总是有n个根,也就是说,n次一元多项式总是可以分解为n个一次因式的乘积。并且还有一条定理:实系数多项式的虚数根两两共轭的,将每对共轭的虚数根对应的一次因式相乘,可以得到二次的实系数因式,从而这条结论也就成立了。)
3)因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。因式分解很多时候就是用来提公因式的。寻找公因式可以用辗转相除法来求得。标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以但比较笨,不过能有效地解决找公因式的问题。
4)因式分解是很困难的,初中所接触的只是因式分解很简单的一部分。
分解一般步骤
1、如果多项式的首项为负,应先提取负号;
这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;
要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。
原则
1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。
2、分解因式的结果必须是以乘积的形式表示。
3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;
5、结果的多项式首项一般为正。在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;
6、括号内的首项系数一般为正;
7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b+c)a要写成a(b+c);
8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。
口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。
分解方法
因式分解主要有十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法等方法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。
所谓主元法分解因式就是在分解含多个字母的代数式时,选取其中一个字母为主元(未知数),将其它字母看成是常数,把代数式整理成关于主元的降幂排列(或升幂排列)的多项式,再尝试用公式法、配方法、分组法等分解因式的方法进行分解!例如:x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2=x^4-2(y^2+z^2)x+y^4+z^4-2y^2z^2=x^4-2(y^2+z^2)x+y^4+z^4+2y^2z^2-4y^2z^2=x^4-2(y^2+z^2)x^2+(y^2+z^2)^2-4y^2z^2=[x^2-(y^2+z^2)]^2-(2yz)^2=[x^2-(y^2+z^2)+2yz][x^2-(y^2+z^2)-2yz]=[x^2-(y-z)^2][x^2-(y+z)^2]=[x+(y-z)][x-(y-z)][x+(y+z)][x-(y+z)]=(x+y-z)(x-y+z)(x+y+z)(x-y-z) 主元法 所谓主元法分解因式就是在分解含多个字母的代数式时,选取其中一个字母为主元(未知数),将其它字母看成是常数,把代数式整理成关于主元的降幂排列(或升幂排列)的多项式,再尝试用公式法、配方法、分组法等分解因式的方法进行分解。 较为简单的例用 1.因式分解 (ab+bc+ca)(a+b+c)-abc. 分析:如果懂得因式定理的话,解此题自然会流畅很多,但是用主元法的话,也十分简便。 拆开原式,并按a的降幂排列得: (b+c)a^2+(b^2+c^2+2bc)^2+b(bc+c^2) =(a+c)(b+c)(a+b)------------------------------【十字相乘法】 十字相乘图为 x--------------- b (b+c)x -----bc+c^2 对于低次因式分解,主元法与十字相乘法的配合是卓有成效的。 2.因式分解16y+2x^2(y+1)^2+(y-1)^2*x^4 分析:本题尚且属于简单例用,只是稍加难度,以y为主元会使原式极其烦琐,而以x为主元的话,原式的难度就大大降低了。 原式=(y-1)^2x^2+2(y+1)^2x^2+16y---------------------【主元法】 =(x^2y^2-2x^2y+x^2+8y)(x+2)---------------------【十字相乘法】 十字相乘图为 (y-1)^2x ----8y x ------------2 如果能很好地利用主元法,低次因式分解就不会太难了。 高难度的主元法例用 1.因式分解2x^3+6y^3+15z^3-9x^2y+7xy^2-x^2z-16xz^2-37y^2z+32yz^2+13xyz 分析:本题属于高难度因式分解中的中档题,如果不假思索就上别的方法,就会处处碰壁。 1.原式=2x^3-(9y+z)x^2+(13yz+7y^2-16z^2)x+6y^3+15z^3-37y^2z+32yz---------------【主元法】 这样本题的条理就清晰多了,现抛开x,只看6y^3+15z^3-37y^2z+32yz, 这是一个2元三次因式分解,难度简单多了。 原式=6y^3-9zy^2-(28y^2z-32yz^2-15z^3)-------------------------【拆项法】 =(2y-3z)(y-5z)(3y+z) 再代入原题目,接下来的工作就简单了。 由于首项x系数为2,所以本题难度综合来讲不是太难,算出系数2是与(y-5z)结合的。 所以原式=(x-2y+3z)(2x+y-5z)(x-3y-z)------------------------【拆项法及十字相乘法】 接下来的部分,有兴趣的人可以看看。 旷世难题型的因式分解 竞赛类的学生,因式分解的高手可以演算一下,这是个很好的练习,对你们会很有帮助。 因式分解: 6x^4+18mx^3-6x^3y+30x^2yz-42x^2y^2+6mx^2y-6x^2mz-6x^2z+12x^2m^2+5px^3+5yx^3+15pm-5py+25pyz+25y^2z-30py^2-30y^3+5mpy+5my^2-5pmz-5myz-5pz^2-5yz^2+10pm^2+10m^2y+10yzx^2+30myzx-10xy^2z+50y^2z^2-60y^3z+10my^2z- 10myz^2-10yz^3+20m^2yz-18my^2x+6xy^3-30y^3z+36y^4-6my^3+6my^2z+6y^2z^2-12y^2m^2+10x^2zp+30zpmx-10zpyx +50yz^2p-60y^2zp-2zpmy-10z^2pm-10z^3p-12x^2zp-36mypx+12y^2px-60y^2pz+72y^3p-12my^2p+12ypmz+12ypz^2-24m^2yp-6p^2x^2-18mxp^2+6xyp^2-30yzp^2+36p^2y^2-6myp^2+6p^2mz+6p^2z^2-12P^2m^2+24x^2z^2+72mz^2x-24yz^2+120yz^3-144y^2z^2+24myz^2-24mz^3+24z^4+48m^2z^2 终于,在其他方法都几乎失效时,主元法的威力体现了出来。 分析:看题目的确很长,但仔细观察也能发现其弱点。 1.没有常数项。 2.首项x的系数很小,预计其能分解成(x+d)(2x+o)(3x+h)(x+j)的形式。 3.自开始起,一部分是6的倍数,紧接着是5的倍数,直到至-2zpmy这一项时,这个特点断掉了。 解题开始: 令x,y,z,p都为0,原式变成了--------2m^2 令x,y为0,原式变成了---------------12p^2m^2 令x为0,原式=-12y^3............................+12p^2m^2,此时正是用主元法的时候, 解得原式=(3y+4z+3p)(-2y+6z-2p)(2y-z+m)(-3y+z+2m)-----【主元法,拆项法,十字相乘法,提取公因式法】 解下来抱歉的是本人实在无能为力,通过把上述的四项依次填入(x+d)(2x+o)(3x+h)(x+j)中,实际上还是要用主元法, 原式=(2x+3y+4z+3p)(3x-2y+6z-2p)(x+2y-z+m)(x-3y+z+2m) 对于这题,硬碰硬是不行的。
因式分解 (factorization) 多项式有时可以有不同的写法,如(a+b)(b+c)和ab+b²+ac+bc均表达同一个多项式。 (a+b)(b+c)=(a+b)b+(a +b)c =ab+b2+ac+bc (a+b)(b+c)表达了两个一次式相乘的结果,我们称a+b和b+c为(a+b)(b+c)的因式。在小学阶段,我们也学过把整数进行因子分解。例如, 120 = 23×3×5 及108 = 22×32。 把一个代数式如ab+b2+ac+bc化为(a+b)(b+c),称为因式分解。 因式分解一个多项式可以有多种不同的技巧。最基本的步骤是观察各项之间有没有相同的因子或共同的因式(公因式)。例如: (a)2x+2y+2z = 2(x+y+z) 2是多项式中3项的公因子。 (b)3x²+4x+5x2 = x(3x+4+5x) x是多项式中3项的公因式。 因式分解多项式就是展开多项式的相反过程。 → 3x2+4x+5x² x(3x+4+5x) ← 以下的网址有详细教你十字相乘同因式分解,你可以上去: ymca-coll .edu/maths/powerp oint/ 因式与因式分解: (1)设A、B为两多项式,若A可被B整除,则称A为B的 倍式,B为A的因式。 (2)把一多项式分解成质因式的连乘积,这种运算叫做因式分 解。 2、因式分解的方法(一): 提出公因式法 (1)原则:ma+mb-mc=m(a+b-c) (2)各项提公因式法:把各项的公因式提出 3、因式分解的方法(二): 利用乘法公式因式分解 (1)完全平方式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 (2)平方差:a2-b2=(a+b)(a-b) (3)立方和:a3+b3=(a+b)(a2-ab+b2 ) (4)立方差:a3-b3=(a-b)(a2+ab+b2) 4、因式分解的方法(三): 二次三项式的因式分解法-十字交乘法 (1)x2+px+q=(x+a)(x+b ),其中p=a+b q=ab (2)mx2+px+q=(ax+b)(c x+d),其中m=ac p=ad+bc q=bd 举例或说明 1如果多项式A能被多项式B整除,商式为多项式C,可以写成A ÷ B = C,也可以写成A = B × C。这个时候,我们说多项式B和多项式C是多项式A的因式,而多项式A是多项式B和多项式C的倍式。因为x2+4x+3能被x+1整除,商式是x+3,所以x+1和x+3是x2+4x+3的因式,而x2+4x+3是x+1和x+3的倍式。 2将一个x的二次式写成两个x的一次式的乘积,叫做这个二次式的因式分解。x2+4x-5 的因式分解是 (x+5)( x-1) 我们把它写成 x2+4x-5=(x+5)( x-1) 谢 你系指 将一条2次方程 转做最初个form...? 如果系既...应该系分解后既formula 乘开最后会变番你未分解条formula既 参考: me
分解因式的方法有什么?
十字相乘法十字相乘法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。如:a²x²+ax-42首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(ax+?)×(ax+?),然后我们再看第二项, +ax这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2。首先,21和2无论正负,通过任意加减后都不可能是1,只可能是-19或者19,所以排除后者。然后,再确定是-7×6还是7×-6。(ax-7)×(ax+6)=a²x²-ax-42(计算过程省略)得到结果与原来结果不相符,原式+ax 变成了-ax。再算:(ax+7)×(ax+(-6))=a²x²+ax-42正确,所以a²x²+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式。公式法公式法,即运用公式分解因式。公式一般有1、平方差公式a²-b²=(a+b)(a-b)2、完全平方公式a²±2ab+b²=(a±b)²对应的还可以有一个口诀:“首平方,尾平方,首尾积的二倍在中央”