总起来看,对木霉菌的制剂加工研究较少,木霉菌的大量培养技术尚处于模仿阶段,一般采用液体或半固体生产方法,以得到大量的菌丝、厚垣孢子或分生孢子(杨合同等,1999b)。基于活跃的菌丝比分生孢子更为有效的假设,Lewis等(1989)发展了两种制剂与相应的使用技术。其中一种是,先将麦麸用水打湿,灭菌后接种木霉菌,培养2~3d(而非传统的2~3周),这种制剂可使生防菌在土壤中迅速生长,杀死或钝化土壤中的病原菌,试验证实,菌剂对于,和引起的病害有良好的防治效果。在另一种方式中,含有麦麸的蛭石作为培养基使用,接种木霉菌后任其生长,然后予以干燥。这种菌剂至少可存放24周不失效,使用前,用稀酸稀释,培养2d使菌丝呈现活跃生长状态,然后施于土壤中,对引起的甜菜和棉花立枯病有效,这种制剂的形式与加工方法的优点在于储存和活化过程不必保持无菌条件,但使用不方便,储存期短是其弱点。
为了更好地延长储存期,增加使用的方便性和有效性,需要对木霉剂型进行研究,确定其制备工艺。目前,木霉菌制剂剂型主要有可湿性粉剂、水分散颗粒剂、油悬浮剂、水悬浮剂和微胶囊剂。
可湿性粉剂
可湿性粉剂是用微生物繁殖体、惰性填料和湿润剂、分散剂等助剂(达到一定粉粒细度),按比例经充分混合后的剂型。加到水中后能被水湿润、分散,形成悬浮液,可喷洒施用。
助剂、载体筛选见下节“助剂与贮存因素”部分。木霉菌可湿性粉剂的组成如下:一定量木霉菌分生孢子、润湿剂(如十二烷基硫酸钠SDS)、分散剂和保护剂(如甲基纤维素、糊精、十二烷基硫酸钠、黄原胶和黄腐酸钠)等、载体(如高岭土、膨润土、麦饭石)等,将上述物料按比例添加至搅拌机中混合均匀即可。目前,木霉菌制剂大多采用该剂型。
水分散颗粒剂
水分散颗粒剂由微生物繁殖体、润湿剂、分散剂、崩解剂、稳定剂、黏结剂等助剂和填料组成,其制备方法参照化学农药制备方式,同时考虑木霉菌的特点,制备该制剂主要采取将润湿剂、分散剂、崩解剂、稳定剂、黏结剂等通过物理方法将其粉碎至一定细度,然后与木霉菌混合均匀,经流化床造粒干燥而成,粒度~。
油悬浮剂
油悬浮剂是由微生物繁殖体与适宜的助剂制成的稳定的非水悬浮剂。Mujtaba(2011)研究了菜籽油-甘油油剂、甘油制剂、石蜡油-豆油制剂、石蜡油-印楝油制剂对孢子的影响,表明分别在石蜡油和印楝油中保存较好,存活率达到70%以上;仅豆油或豆油-石蜡油制剂120 d后孢子保存率达到35%以上;6个月后,孢子存活率最高的是菜籽油-甘油制剂,其次是甘油制剂;12个月后只有菜籽油-甘油制剂孢子存活率达到10%,其次是石蜡油制剂。
水悬浮剂
水悬浮剂是在助剂(润湿分散剂、增稠剂、结构调节剂、消泡剂、防冻剂、防腐剂、酸碱调节剂等)作用下,将不溶于水的微生物繁殖体分散到水中形成均匀稳定的水分散体系。化学农药式的制备方式不适合微生物源农药。对于微生物源活体制剂,利用微流控技术制备水包油式的微囊,然后分散于水中,制成水悬浮剂是木霉菌水悬浮剂的发展方向。
微胶囊制剂
微胶囊技术是利用一种用天然或合成高分子成膜材料,把分散的固体、液体或气体包覆使形成微小粒子的技术,微胶囊粒径一般为2~1000μm。被包覆物通过密闭的或半透性的壁膜将目的物与周围环境隔离开来,从而达到保护和稳定芯材、屏蔽气味或颜色、控制释放芯材等目的,成为一种新型农药剂型。适合微生物活体的微胶囊壁材主要有褐藻酸钠、多孔淀粉等,固化剂采用氯化钙、壳聚糖、阿拉伯胶等,填充物主要有玉米蛋白粉、糊精等,保护剂主要有脱脂奶粉、味精、甘油等。干燥方法主要有喷雾干燥法、流化床干燥法等。
悬浮剂是农药原药和载体及分散剂混合,利用湿法进行超微粉碎而成的粘稠可流动的悬浮体。是由不溶或微溶于水的固体原药借助某些助剂,通过超微粉碎比较均匀地分散于水中,形成一种颗粒细小的高悬浮、能流动的稳定的液固态体系。悬浮剂通常是由有效成份、分散剂、增稠剂、抗沉淀剂、消泡剂、防冻剂和水等组成。
失效。微囊悬浮剂是以高分子材料作为囊壁或囊膜,通过化学、物理或物理化学的方法,将农药活性物质(囊芯)包裹起来,形成一种具有半渗透性囊膜的微型胶囊,并将它们以一定的浓度稳定地分散、悬浮在作为连续相的水中,喷雾会导致悬浮性消失,从而不能使用。
微胶囊剂(capsule suspension,CS或microcapsuls MC)。是一种新剂型,属于缓释剂,是缓慢释放有效成分的剂型,即将有效成分(芯粒)内包在囊壁物质中所得到的球体剂型。.悬浮乳剂(suspension emulsion,SE)。将固体原药和液体原药制成混合制剂,以水为介质,制成悬浮乳剂。它兼具悬浮剂或农乳剂的优点,打破了只以固体或液体原药配置的单一剂型,实现了固液体原药同时存在的混合剂型。
类似于在溶剂里加入很多类似于感冒胶囊一样的颗粒,这些颗粒极其微小,胶囊中放置活性成分
蝗虫。噻虫啉微囊悬浮剂防治蝗虫田间药效试验,噻虫啉是防治刺吸式和咀嚼式口器害虫的高效药剂之一,对人畜安全,对环境安全,对水生生物安全。噻虫啉微囊悬浮剂为吡啶类杀虫剂。具有内吸、触杀和胃毒作用。对有效成分进行微胶囊化处理,具有缓释、控制释放功能。对林木天牛有较高活性,宜在天牛羽化盛期施药。
微胶囊剂(capsule suspension,CS或microcapsuls MC)。是一种新剂型,属于缓释剂,是缓慢释放有效成分的剂型,即将有效成分(芯粒)内包在囊壁物质中所得到的球体剂型。.悬浮乳剂(suspension emulsion,SE)。将固体原药和液体原药制成混合制剂,以水为介质,制成悬浮乳剂。它兼具悬浮剂或农乳剂的优点,打破了只以固体或液体原药配置的单一剂型,实现了固液体原药同时存在的混合剂型。
悬浮剂是农药原药和载体及分散剂混合,利用湿法进行超微粉碎而成的粘稠可流动的悬浮体。是由不溶或微溶于水的固体原药借助某些助剂,通过超微粉碎比较均匀地分散于水中,形成一种颗粒细小的高悬浮、能流动的稳定的液固态体系。悬浮剂通常是由有效成份、分散剂、增稠剂、抗沉淀剂、消泡剂、防冻剂和水等组成。
浮选出一吨精煤大约需用2公斤浮选剂。煤泥处理一般是吨煤泥水(含煤泥量在3%左右)需用絮凝剂40克左右。这些都是一般情况下,要是2般情况的话就不一样了。你明白的。
一般使用量为干煤总量的5‰-8‰,即每吨干煤用浮选起泡剂为。煤泥起泡剂浮选时使矿浆产生气泡的药剂浮选时使矿浆产生气泡的药剂,称为煤泥起泡剂(frothers)。一般均为表面活性剂。浮选药剂的正确添加取决于四个方面:一、药剂的种类 二、添加顺序 三、添加量 四、添加地点和方式。中文名煤泥起泡剂外文名无主要依赖于充气搅装置,一般均为表面活性剂简介浮选浮选药剂TA说简介浮选矿浆中气泡的形成,主要依赖于浮选设备中各种类型的充气搅装置,以及向矿浆中添加适量的起泡剂(frothers)。起泡剂一般均为表面活性剂,其分子结构由非极性的亲油(疏水)基团和极性的亲水(疏油)基团构成,形成既有亲水性又有亲油型的所谓的“双亲结构”分子。亲油基可以是脂肪族烃基、脂环族烃基和芳香族烃基或带O、N等原子的脂肪族烃基、脂环族烃基和芳香族烃基;亲水基一般为羧酸基、烃基、磺酸基、硫酸基、膦酸基、氨基、腈基、硫醇基、卤基、醚基等。浮选浮选简介利用矿物表面的物理化学性质差异选别矿物颗粒的过程,称作浮选。几乎所有的矿石都可用浮选分选。如金矿、银矿、方铅矿、闪锌矿、黄铜矿、辉铜矿、辉钼矿、镍黄铁矿等硫化矿物,孔雀石、白铅矿、菱锌矿、异极矿和赤铁矿、锡石、黑钨矿、钛铁矿、绿柱石、锂辉石以及稀土金属矿物、铀矿等氧化矿物的选别。石墨、硫黄、金刚石、石英、云母、长石等非金属矿物和硅酸盐矿物及萤石、磷灰石、重晶石等非金属盐类矿物和钾盐、岩盐等可溶性盐类矿物的选别。浮选的另一重要用途是降低细粒煤中的灰分和从煤中脱除细粒硫铁矿。全世界每年经浮选处理的矿石和物料有数十亿吨。大型选矿厂每天处理矿石达十万吨。浮选的生产指标和设备效率均较高,选别硫化矿石回收率在90%以上,精矿品位可接近纯矿物的理论品位。用浮选处理多金属共生矿物,如从铜、铅、锌等多金属矿矿石中可分离出铜、铅、锌和硫铁矿等多种精矿,且能得到很高的选别指标。浮选工艺浮选适于处理细粒及微细粒物料,用其他选矿方法难以回收小于10μm 的微细矿粒,也能用浮选法处理。一些专门处理极细粒的浮选技术,可回收的粒度下限更低,超细浮选和离子浮选技术能回收从胶体颗粒到呈分子、离子状态的各类物质。浮选还可选别火法冶金的中间产品,挥发物及炉渣中的有用成分,处理湿法冶金浸出渣和置换的沉淀产物,回收化工产品(如纸浆,表面活性物质等)以及废水中的无机物和有机物。浮选工艺各种浮选工艺的理论基础大体相同,即矿粒因自身表面的疏水特性或经浮选药剂作用后获得的疏水(亲气或油)特性,可在液-气或水-油界面发生聚集。目前应用最广泛的是泡沫浮选法。矿石经破碎与磨碎使各种矿物解离成单体颗粒,并使颗粒大小符合浮选工艺要求。向磨矿后的矿浆加入各种浮选药剂并搅拌调和,使与矿物颗粒作用,以扩大不同矿物颗粒间的可浮性差别。调好的矿浆送入浮选槽,搅拌充气。矿浆中的矿粒与气泡接触、碰撞,可浮性好的矿粒选择性地粘附于气泡并被携带上升成为气-液-固三相组成的矿化泡沫层,经机械刮取或从矿浆面溢出,再脱水、干燥成精矿产品。不能浮起的脉石等矿物颗粒,随矿浆从浮选槽底部作为尾矿产品排出,图1为泡沫浮选过程示意图。有时,将无用矿物颗粒浮出,有用矿物颗粒留在矿浆中,称为反浮选,如从铁矿石中浮出石英等。常规泡沫浮选适于选别至5μm的矿粒,具体的粒限视矿种而定。当入选的粒度小于5μm 时需采用特殊的浮选方法。如絮凝-浮选是用絮凝剂使细粒的有用矿物絮凝成较大颗粒,脱出脉石细泥后再浮去粗粒脉石。载体浮选是用粒度适于浮选的矿粒作载体,使微细矿粒粘附于载体表面并随之上浮分选。还有用油类使细矿粒团聚进行浮选的油团聚浮选和乳化浮选;以及利用高温化学反应使矿石中金属矿物转化为金属后再浮选的离析浮选等。用泡沫浮选回收水溶液中的金属离子时,先用化学方法将其沉淀或用离子交换树脂吸附,然后再浮选沉淀物或树脂颗粒。处理呈分子、离子及胶体大小的物料,采用浮沫分离。其特点是利用某些物料的疏水性,缓慢搅拌及少量充气,使成浮沫聚集于水面上刮出。如从水中回收油脂、蛋白质、纸浆以及化工产品等。离子浮选是在能与离子发生沉淀或络合的表面活性剂的作用下,使反应生成物进入浮沫,完成分选。无泡沫浮选是使浮选物料在水-气、有机液-水、水-油界面(或表面)萃取聚集后分离。例如早期使用的薄膜浮选,全油浮选;正在发展中的液-液萃取浮选等。油球团筛分是用油将已疏水化了的有用矿物颗粒形成选择性球团后,再行筛分。浮选所需的气泡最早由煮沸矿浆或化学反应产生;目前常用机械搅拌以吸入空气或导入压缩空气起泡,还有减压或加压后再减压起泡以及电解起泡等。与浮选效果有关的因素很多,除矿石性质外以浮选药剂,浮选机和浮选流程最为重要。浮选机是浮选工艺的主要设备。由单槽或多槽串联组成,浮选中矿浆的搅拌充气,气泡与矿粒的粘附,气泡上升并形成泡沫层被刮出或溢流出等过程,都在浮选槽内进行。按搅拌和充气方式的不同,可分 5种:①机械搅拌式。搅拌和充气都由机械搅拌器实现。有离心叶轮、星形转子和棒形转子等类型。搅拌器在浮选槽内高速旋转,驱动矿浆流动,在叶轮腔内产生负压而吸入空气。②充气机械搅拌式。除机械搅拌外,再向浮选槽中充入低压空气。③充气式。靠压入空气进行搅拌并产生气泡,如浮选柱和泡沫分离装置等。④气体析出式。用降低压力方法或先加压后降至常压的方法,使矿浆中溶解的空气析出,形成微泡。⑤压力溶气式。利用高压将充入的空气预溶于水,然后在常压下于浮选槽内析出,形成大量微泡。浮选流程包括磨矿,分级,调浆及浮选的粗选、精选、扫选作业。有一段磨浮流程;分段磨矿-浮选的阶段磨浮流程;精矿或中矿再磨再选流程。浮选产出粗精矿的作业称粗选;粗精矿再选作业称精选;尾矿再选作业称扫选。回收矿石中多种有用矿物时,不同矿物先后浮选的流程称优先浮选或选择浮选;先将有用矿物全部浮出后再行分离的流程,称混合-分离浮选。工业生产时必须针对矿石的性质和对产品的要求,采用不同的药方和浮选流程。铜矿浮选 硫化铜矿物常用黄药(捕收剂),松醇油(起泡剂)和石灰(调整剂)等药剂处理后浮选,以与脉石及共生的硫化铁矿物分离。大多采用优先浮选。氧化铜矿一般用硫化钠活化后再加黄药浮选,或直接用脂肪酸作捕收剂浮选。铅锌矿浮选 采用优先浮选流程时,用硫酸锌、氰化物抑制闪锌矿,用黄药浮选方铅矿;然后用硫酸铜活化并再加黄药浮选闪锌矿。采用混合浮选流程时,先用黄药将铅、锌矿物一并浮出;再对混合精矿用硫酸锌、氰化物抑制锌矿物,浮出铅矿物。现在许多选矿厂采用亚硫酸及其盐类代替氰化物。铁矿浮选 常用油酸、塔尔油、氧化石蜡皂或石油磺酸盐为捕收剂(兼起泡剂),浮选赤铁矿、褐铁矿等矿物,称铁矿正浮洗;或用阳离子胺类捕收剂浮选石英,或用阴离子捕收剂浮选经钙离子活化的石英,称铁矿反浮选。可用絮凝-脱泥-反浮选工艺处理细粒浸染铁矿石。钨、锡矿泥浮选 对含有黑钨矿或锡石的细泥,用油酸或甲苯胂酸或苯乙烯磷酸作捕收剂,用水玻璃作脉石抑制剂浮选回收。有时还需用硝酸铅等作活化剂。萤石及磷灰石浮选 常用油酸或氧化石蜡皂或塔尔油作捕收剂,用水玻璃、栲胶、磺化粗菲等作脉石抑制剂进行浮选。煤泥和石墨浮选 一般用醇类作起泡剂,用煤油等中性油作捕收剂浮选。发展趋势由于需浮选处理的矿石中的有用成分含量越来越低,浸染粒度越来越细,成分越来越复杂难选,同时,浮选领域不断扩大,包括其他选矿方法难于奏效的细泥物料的处理,老选矿厂尾矿的再处理,各种废旧金属材料的回收以及各种废料的处理、利用,以及污水的净化等。因此必须:①继续发展新的浮选工艺和大型高效的浮选设备;②研究作用力强,选择性好,用量少,无毒或毒性小的浮选药剂;③研究浮选数学模型以及过程的自动控制,使过程最佳化,达到最好的分选效果,以提高经济效益;④进一步从矿物工艺学、化学、物理学、表面化学、流体动力学、概率统计等方面深入研究浮选机理,以指导浮选生产实践,进一步发展浮选理论体系。浮选药剂浮选时使用各种药剂来调节浮选物料和浮选介质的物理化学特性,以扩大浮选物料间的疏水-亲水性(即可浮性)差别,提高浮选效率。常用的浮选药剂分捕收剂、起泡剂和调整剂三大类。捕收剂 自然界中除煤、石墨、硫黄、滑石和辉钼矿等矿物颗粒表面疏水,具有天然可浮性外,大多数矿物颗粒的表面是亲水的。为改善可浮性,需添加使矿物颗粒疏水的捕收剂,即极性捕收剂和非极性捕收剂。极性捕收剂由能与矿物颗粒表面发生作用的极性基团和起疏水作用的非极性基团两部分组成。当这类捕收剂吸附于矿物颗粒表面时,其分子或离子呈定向排列,极性基团朝向矿物颗粒表面,非极性基团朝外形成疏水膜,使矿粒具有可浮性(图2)。选别铜、铅、锌、铁、镍与锑等硫化矿物时,常用各种有机硫代化合物作为捕收剂。具代表性的是:①烷基(乙、丙、丁、戊基等)二硫代碳酸钠(或钾),如CH3CH2OCSSNa,又称黄原酸盐,俗称黄药;②烷基二硫代磷酸或其盐类,如(RO)2PSSH,式中R为烷基,俗称黑药。烷基二硫代氨基甲酸盐以及黄药的酯类衍生物等,也是硫化矿物常用的捕收剂。非硫化矿物捕收剂多为各种有机含氧酸及其盐类,如脂肪酸及其皂类(常用的有油酸、塔尔油、氧化石蜡皂)以及烃基磺酸钠等。用于浮选铁矿石、磷灰石及萤石等。浮选钨、锡矿泥时,则用甲苯胂酸、苯乙烯磷酸等捕收剂。以上药剂均为离子型化合物,有效部分为阴离子,称阴离子捕收剂。常用的阳离子捕收剂有脂肪胺及醚胺,用于氧化锌矿及硅酸盐等矿物的浮选。非离子型极性捕收剂的分子不解离,如含硫酯类,非极性捕收剂为烃油(也称中性油),如煤油、柴油等,用于天然可浮性矿物如石墨、辉钼矿及煤的浮选;与极性捕收剂共用,可进一步增大矿物颗粒的疏水性。起泡剂 具有亲水基团和疏水基团的表面活性分子,定向吸附于水-空气界面,降低水溶液的表面张力,使充入水中的空气易于弥散成气泡,并产生稳定的泡沫。起泡剂与捕收剂有联合作用,共同吸附于矿物颗粒表面,促进矿物上浮。常用的起泡剂有松醇油(中国俗称二号油)、甲酚酸、混合脂肪醇、异构的己醇或辛醇、醚醇类以及各种酯类等。调整剂按用途不同分:①pH值调整剂。通过调节矿浆酸碱度,控制矿物表面特性、矿浆化学组成以及各种药剂的作用条件,改善浮选效果。常用的有石灰、碳酸钠、氢氧化钠和硫酸等。②活化剂。能增强矿物同捕收剂的作用能力,使难浮矿物受到活化而被浮起。如用硫酸铜处理难于同黄药作用的闪锌矿,在矿物表面形成硫化铜覆盖薄膜,能被捕收浮选;或用硫化钠活化铅、铜氧化矿后,再用黄药浮选等。③抑制剂。提高矿物亲水性或阻止矿物同捕收剂作用,使其可浮性受到抑制。如用石灰抑制黄铁矿,用硫酸锌及氰化物抑制闪锌矿,用水玻璃抑制硅酸盐脉石等。利用淀粉,栲胶(单宁)等有机物作抑制剂,可使多种矿物浮选分离。④絮凝剂。使矿物细颗粒聚集成较大颗粒,以加快其在水中的沉降速度;利用选择性絮凝可进行絮凝-脱泥及絮凝-浮选。常用的絮凝剂有聚丙烯酰胺和淀粉等。⑤分散剂。阻止细矿粒聚集,使之处于单体分散状态,作用与絮凝剂相反,常用的有水玻璃、磷酸盐等。浮选药剂的用量随药剂种类、矿石性质、浮选条件及流程特点等因素而变化。一般每吨矿石只用几克、数十克至数百克,也有多至数千克的。浮选药剂如何正确添加浮选药剂的正确添加有四个方面的问题一、药剂的种类 二、添加顺序 三、添加量 四、添加地点和方式原则上说这四种方法的问题均须通过浮选实验研究来确定。如果笼统地讲,浮选药剂分为捕收剂、起泡剂、调整剂、抑制剂等。一般的情况下,先加调整剂,再加抑制剂和起泡剂、捕收剂。捕收剂用于捕收目的矿物,起泡剂用于产生能浮起矿物的泡沫层,调整剂用于调整矿浆的酸碱度,活化剂用于活化目的矿物,增强其可浮性。抑制剂则是用来抑制矿浆中某些不希望浮起的矿物。添加量一般需试验确定,有经验的选矿专业人士及好的浮选工能确定出大致的用量范围。(不含特殊情况)添加地点及添加方式:调整剂,抑制剂和部分捕收剂(如煤油)加在球磨机中以便尽早的造成一个适宜的浮选环境。捕收剂和起泡剂多加在浮选第一搅拌桶中。如果浮选作业有两个搅拌桶,则应在第一个搅拌桶中加活化剂,而第二搅拌桶中加捕收剂和起泡剂。(如锌浮选作业)药剂的添加方式:水溶性的药剂如黄药、白药、胺黑药、水玻璃、碳酸钠、硫酸铜、硫化钠等均配成水溶液添加(浓度2%—10%不等)不溶药剂有些可直接滴加如2#油以及31号黑药、油酸等。有些须事先用溶剂溶解。再配成水溶液添加,如胺类捕收剂。石灰可配成石灰乳,添加,也可直接以干粉型式加入球磨及搅拌桶中,通常捕收剂、起泡剂、搅拌1—2分钟即可。而有些药剂,需要长时间搅拌,如铜铅分离时用于抑制铅的重铬酸钾。常用浮选药剂的种类与市场价格:(因调整剂与抑制剂用量均较少,且有些矿质无需添加,因此,浮选药剂成本主要指捕收剂与起泡剂的用量成本)煤泥浮选起泡剂(S-104)性能介绍:S-104煤泥浮选起泡剂是专业用于煤泥浮选的一种表面活性剂复合型起泡剂,表面活性剂在气-水界面吸附能力大,而在煤炭表面不发生或很少发生吸附,能大大地降低表面张力,增大了空气在煤浆中的弥散,改变气泡在煤浆中的大小和运动状态,降低向矿浆中充气搅拌的动力消耗,并能在矿浆面上形成浮选需要的泡沫层。该起泡剂泡沫丰富而稳定,精煤收率高,无毒、无刺激性气味,对环境无任何污染,属绿色环保型产品。使用量根据具体煤质而定,一般使用量为干煤总量的5‰-8‰,即每吨干煤用浮选起泡剂为。技术指标如下:名称 煤泥浮选起泡剂型号 s-104外观 无色或淡黄色液体密度 ~ g/cm起泡能力(ml) ≥450泡沫半衰期(min) ≥250精煤产 ≥80%精煤灰分 ≤10%尾煤灰分 ≥40%
摘要]本文主要介绍了超声波的特点,超声波传感器的原理与应用等多个方面。文中阐述了超声波与可听声波的区别,超声波传感器在医疗,工业生产,液位测量,测距系统等多个领域中得到了广泛的应用。因超声波具有的独特的特性,使得超声波传感器越来越在生产生活中体现了其重要性,具有一定的研究价值。 [关键词]超声波 传感器 疾病诊断 测距系统 液位测量 一、超声波传感器概述 1.超声波 声波是物体机械振动状态的传播形式。超声波是指振动频率大于20000Hz以上的声波,其每秒的振动次数很高,超出了人耳听觉的上限,人们将这种听不见的声波叫做超声波。超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵向振荡(纵波)。在工业中应用主要采用纵向振荡。超声波可以在气体、液体及固体中传播,其传播速度不同。另外,它也有折射和反射现象,并且在传播过程中有衰减。超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。与可听声波比较,超声波具有许多奇异特性:传播特性──超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。在相同强度下,声波的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用──当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。 超声波的特点:(1)超声波在传播时,方向性强,能量易于集中;(2)超声波能在各种不同媒质中传播,且可传播足够远的距离;(3)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应)。 2.超声波传感器 超声波传感器是利用超声波的特性研制而成的传感器。以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。有的超声波传感器既作发送,也能作接收。 超声波传感器由发送传感器(或称波发送器)、接收传感器(或称波接收器)、控制部分与电源部分组成。发送器传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中幅射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测。控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。二、超声波传感器的应用 1.超声波距离传感器技术的应用 超声波传感器包括三个部分:超声换能器、处理单元和输出级。首先处理单元对超声换能器加以电压激励,其受激后以脉冲形式发出超声波,接着超声换能器转入接受状态,处理单元对接收到的超声波脉冲进行分析,判断收到的信号是不是所发出的超声波的回声。如果是,就测量超声波的行程时间,根据测量的时间换算为行程,除以2,即为反射超声波的物体距离。把超声波传感器安装在合适的位置,对准被测物变化方向发射超声波,就可测量物体表面与传感器的距离。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 2.超声波传感器在医学上的应用 超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。 3.超声波传感器在测量液位的应用 超声波测量液位的基本原理是:由超声探头发出的超声脉冲信号,在气体中传播,遇到空气与液体的界面后被反射,接收到回波信号后计算其超声波往返的传播时间,即可换算出距离或液位高度。超声波测量方法有很多其它方法不可比拟的优点:(1)无任何机械传动部件,也不接触被测液体,属于非接触式测量,不怕电磁干扰,不怕酸碱等强腐蚀性液体等,因此性能稳定、可靠性高、寿命长;(2)其响应时间短可以方便的实现无滞后的实时测量。 4.超声波传感器在测距系统中的应用 超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压 (其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔 t,故被测距离为 S=1/2vt。如果测距精度要求很高,则应通过温度补偿的方法加以校正。超声波测距适用于高精度的中长距离测量。 三、小结 文章主要从超声波与可听声波相比所具有的特性出发,讨论了超声波传感器的原理与特点,并由此总结了超声波传感器在生产生活各个方面的广泛应用。但是,超声波传感器也存在自身的不足,比如反射问题,噪声问题的等等。因此对超声波传感器的更深一步的研究与学习,仍具有很大的价值。 参考文献: [1]单片机原理及其接口技术.清华大学出版社. [2]栗桂凤,周东辉,王光昕.基于超声波传感器的机器人环境探测系统.2005,(04). [3]童敏明,唐守锋.检测与转换技术.中国矿业大学出版社. [4]王松,郑正奇,邹晨祎.超声定位车辆路径监测系统的设计.2006,(10). [5]俞志根,李天真,童炳金.自动检测技术实训教程.清华大学出版社. 转贴于 中国论文下载中心
1、实现无接触操作:超声波悬浮可以让物体在空气中悬浮,不需要与其他物体接触,避免了传统机械悬浮中因接触而产生的摩擦和磨损,从而实现了更加精细和稳定的操作。2、降低能耗:超声波悬浮不需要外部能源输入,只需要利用超声波的声波压力即可实现物体的悬浮,因此可以大大降低能耗,省电省力。3、应用广泛:超声波悬浮技术可以应用于各个领域,例如制造业、医疗、航空航天等,可以用于气浮轴承、精密加工、医学诊断、飞行控制等多种领域。
超声波检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,这是我为大家整理的超声波检测技术论文,仅供参考!
关于超声波无损检测技术的应用研究
摘要:超声波无损检测技术是现代科学技术发展的产物,其检测的过程会很好的保护试件的质量和性能,从而获取物品的性质和特征对其进行检测。超声波无损检测技术通过结合高科技的技术来完成检测的过程,检测的结果真实可靠,可以体现出超声波无损检测技术的应用性,同时超声波无损检测技术在检测时,也存在一些缺点。
关键词:超声波无损检测;脉冲反射式技术;检测技术
中图分类号:P631 文献标识码:A 文章编号:1009-2374(2014)05-0029-02
超声波无损检测技术在检测的过程中,会使用到很多的技术,这些技术既满足了检测的需要,又能有效的解决检测中出现的问题。经过技术人员的不断探索,通过人工神经网络的技术来减少检测的缺陷,并实现了降低噪音的效果,满足了超声波无损检测的更高要求。在检测的过程中,要合理科学的利用技术手法,来提高检测结果的准确性。
1 超声波无损检测技术的发展趋势和主要功能
超声波无损检测技术的发展趋势
在超声波无损检测技术应用的过程中,需要很多理论知识的支持,检测时也对检测的方法和工艺流程有严格的要求,这些规范的检测方式使超声波无损检测的结果可以更准确。发现检测缺陷时,技术人员应用非接触方式的检测技术,运用激光超声来提高检测的效果,所以未来超声波无损检测技术一定会向着自动化操作的水平去发展。自动化的检测方法可以简化检测工作,实现专业检测的目标,扩大超声波无损检测技术应用的范围,同时随着超声技术的应用,在检测的过程中,也会实现数字化检测的目标,利用超声信号来处理技术的应用,使检测技术可以实现统一使用的要求,同时数字化操作的检测过程也会提高检测的准确性,有利于检测技术的发展。所以超声波无损检测技术将会实现全面的现代化操作要求,利用现代化科学技术的发展,来规范超声波无损检测的检测行为,也具备了处理缺陷的功能,提高了检测的效率。
超声波无损检测技术系统的主要功能
目前,我国超声波无损检测主要应用的技术是脉冲反射式的检测方法,这种技术的应用可以准确的定位缺陷出现的位置和形式,具有非常高的灵敏度,简化了技术人员检查缺陷的工作,完善了技术标准。脉冲反射式的检测技术还具有非常高的灵活性和适用性,可以适应超声波无损检测的要求,并实现一台仪器检测多种波形的检测工作。根据脉冲反射式的检测技术要求,可以实现缺陷检查的功能、操作界面切换显示的功能、显示日历时钟的功能,在实际的检测过程中功能键的使用也非常方便,简化了技术人员的操作过程,并且脉冲反射式技术具有灵敏度高的功能,使其可以及时的发现检测过程中出现的缺陷,有利于技术人员进行检修的工作,提高了检测工作的工作效率。
系统主要功能的技术指标
脉冲反射式技术在使用的过程中有很多的要求,其中要满足功能使用的技术指标,从而实现规范化的操作标准。反射电压的电量要控制在400伏,实现半波或者射频的检波方式,检测的范围要在4000-5000毫米之间,只有满足了这些技术标准才能合理的设置出技术应用的框架。同时在超声波无损检测技术应用的过程中有严格要求的电路设计,如果不能满足技术的指标要求,那么在实际检测的过程中,会存在很大的风险,会对技术人员造成严重的生命安全威胁。所以在检测工作实施之前,必须要按照相关的技术指标来合理的构建检测的环境,提高检测工作的安全性,保障检测工作可以顺利的进行。
2 超声波无损检测技术检测的方法和缺陷的显示
超声波无损检测技术检测的主要应用方法
超声波无损检测技术的检测方法按照具体的分类可以分为很多种,从检测的原理进行分析,超声波无损检测技术应用的主要方法是穿透法、脉冲反射法、共振法,按照检测探头来分类,检测的主要方法有单探头法、双探头法、多探头法,按照检测试件的耦合类型来分类,检测的主要方法有液浸法、直接接触法。这些具体的方法可以满足很多情况下的检测工作,并且提高了检测结果的准确性,完善了超声波无损检测技术的检测要求,所以技术人员要根据具体的检测环境和试件的类型来选择正确的检测方法,通过方法的应用要提高检测工作的效率,降低缺陷出现的可能。随着我国现代化科学技术的不断发展,人们对检测技术的应用也提出了更高的要求,检测工作的检测范围也越来越广,同时要求在对试件检测的过程中,不可以损坏试件的质量和性能,同时还要保准检测结果的准确性,所以技术人员要严格的按照检测标准,完成检测的工作,要对检测的方法进行改善,使其可以满足时代发展的要求。
缺陷的显示
在超声波无损检测技术检测的过程中,会出现不同类型的缺陷,主要分为A、B、C三种类型的显示,在工业检测的过程中,A类显示是应用最广泛的一种类型,在显示器上以脉冲的形式显示出来,对显示器上的长度和宽度进行标记,从而当超声波返回缺陷信号时,可以在屏幕上明确的显示出缺陷出现的位置。B类显示是通过回波信号来完成显示的过程,回波信号发出时会点亮提示灯,通过显示器的显示可以观察到缺陷出现的水平位置,这种类型的显示比较直观,有利于技术人员的观察和分析。C类显示是通过反射的回波信号来调制显示的内容,通过亮灯和暗灯来显示接收的结果,检测到缺陷时会出现亮灯,因此技术人员只需要观察灯的变化,就可以判断缺陷出现的情况。所以在实际检测的过程中,技术人员一定要认真观察缺陷出现的位置和内容,从而制定出科学合理的改善方案,来降低缺陷出现的可能,提高超声波无损检测技术检测的效果。
缺陷的定位
对于脉冲反射式超声检测技术来说,显示器的水平数值变化就是缺陷出现的位置,这时技术人员要对缺陷出现的位置进行定位,从而可以分析在检测过程中出现缺陷的环节。根据反映出的缺陷声波,经过计算,得出准确的缺陷产生的位置。
3 结语
科学技术的发展会带动我国的生产力水平的提高,同时也会促进技术的研发,超声波无损检测技术就是因为科学技术的不断发展,才实现了检测的目标,在检测的过程中,可以结合现代化的技术来提高检测的效率和结果的准确性。超声波无损检测技术实现了无损试件的检测要求,提高了检测的质量和水平,应该得到社会各界的关注,扩大检测的范围。
参考文献
[1] 耿荣生.新千年的无损检测技术――从罗马会议看无损检测技术的发展方向[J].无损检测,2010,23(12):152-156.
[2] 中国机械工程委员会无损检测分会编.超声波检测第二版(无损检测Ⅱ级培训教材)[M].北京:机械工业出版社,2012.
[3] 李洋,杨春梅,关雪晴.基于AD603的程控直流宽带放大器设计[J].重庆文理学院学报(自然科学版),2010,29(16):202-203.
[4] 段灿,何娟,刘少英.多小波变换在信号去噪中的应用[J].中南民族大学学报(自然科学版),2012,28(12):320-325
[5] 张梅军,石文磊,赵亮.基于小波分析和Kohonen神经网络的滚动轴承故障分析[J].解放军理工大学学报,2011,12(10):14-15.
作者简介:李新明(1992―),男,湖北人,大连理工大学学生。
长输管道超声波内检测技术现状
【摘要】超声波内检测技术是长输管道的主要检测技术。本文介绍了长输管道超声波内检测的技术优势、国内外的发展现状,以供参考。
【关键词】长输管道 超声波 内检测 优势 现状
一、前言
长输管道是石油、天然气重要的运输手段,要保证管道的稳定运行,就要加强日常的检测和维护,及时发现问题,防止重大事故发生。
二、管道内检测主要技术及优势
管道内检测是涵盖检测方案决策、管道检测、检测数据解释分析和管道安全评价等过程的系统工程。利用智能检测器进行管线内检测是目前较为普遍的方式,该方法是通过运行在管道内的智能检测器收集、处理、存储管道检测数据,包括管道壁厚、管道腐蚀区域位置、管道腐蚀程度、管道裂纹和焊接缺陷,再将处理数据与显示技术结合描绘管道真实状况的三维图像,为管道维护方案的制定提供决策依据。超声波内检测技术和漏磁检测技术是现在最常用的海管内检测技术。
超声波内检测技术是在检测器中心安放一个水平放置的超声波传感器,传感器沿着平行于管壁的方向发射声波,声波沿着平行于管壁的方向行进直至被一个旋转镜面反射后,垂直穿透管道壁,声波触碰管道外壁后按照原路径反射回传感器,计算机计算声波发射及反射回传感器的时间,该时间就被转换为距离及管道壁厚的测量值。声波反射镜面每秒旋转2周,检测器每米可以采集3万个左右的测量值。超声波内检测技术可以原理简单,数据准确可靠,该方法可以精确测量管道的壁厚,不仅可以测量金属管线,对于非金属管线,如高密度聚乙烯管也能够有效测量,并且可测管道管径的尺寸范围较大,甚至能够测量壁厚等级80以上的大壁厚管道,对于变径管道同样适用。
管道漏磁检测技术利用磁铁在管壁上产生的纵向回路磁场来探测管道内外壁的金属损失以及裂纹等缺陷,确定上述缺陷的准确位置,检测器所带磁铁将检测器经过的管壁饱磁化,使管壁周圈形成磁回路。若管道的内壁或外壁有缺陷,围绕着管道缺陷,管道壁的磁力线将会重新进行分布,部分磁力线会在这个过程中泄露从而进入到周围的介质中去,这就是所谓的漏磁场。磁极之间紧贴管壁的探头检测到泄漏的磁场,检测到的信号经过滤波、放大、转换等处理过程后会被记录到存储器中,通过数据分析系统的处理对信号进行判断和识别。管道的漏磁检测技术具有准确性高的优点,通过在气管线中低阻力和低磨损的设计取得较高质量的数据,可以在没有收球和发球装置的情况下完成检测,对于路径超过200公里的长输管道能够以每分钟200米左右的速度进行检测。
三、长输管道建设工艺技术发展现状
1、管道焊接
管道焊接是管道建设的最重要的一个方面,现场焊接的效率高,安全性和可靠性在每个管道的建设是重要的角色。从国内长途管道工程在1950年的第一条运输管道建设以来,管道现场焊接施工在我国发展的半个世纪里主要经历了有四个发展过程,分别是:手工电弧焊上向焊、手工电弧焊下向焊、半自动焊和自动焊。
(1)手工电弧焊上向焊和手工电弧焊下向焊。90年代初手工电弧焊下向焊和手工电弧焊下向焊作为当时国内传输管道的一种焊接方法,得到了广泛的应用,突出的优点是高电流、焊接速度高,根焊接速度可达20到50厘米/分钟,焊接效率高。目前在进行焊接位置相对困难的位置和焊接设备难进入的位置时采用手工电弧焊焊接。
(2)半自动焊。电焊工通过半自动焊枪进行焊接,由连续送丝装置送丝焊接的一种方式叫做半自动焊。半自动焊是长输管道焊接的主要方式,因为在焊接送丝比较连续,就省了换焊条和其他辅助工作时间,同时熔敷率高、减少焊接接头,减少焊接电弧,电弧焊接缺陷、焊接合格率提高,
(3)自动焊。自动焊方法使整个焊接过程自动化,人工主要从事监控操作。国内开始从西到东的天然气管道项目,就是大面积的自动焊接的应用程序。自动焊接技术在新疆,戈壁等地区比较适合。
2、非开挖穿越施工技术
遇到埋管道的建设,跨越河流,道路,铁路等障碍时,有许多问题如果使用传统开挖方法则会比较难实施,而“非开挖”铺设地下管道是当前国际管道项目进行了先进的施工方法,已广泛应用于这个国家。我国近年来建设大量的长输管道采用了盾穿越技术,有许多大河流使用了盾构穿越。顶管穿越通过短距离管道穿越技术在1970年代后期开始得到使用。传统意义上的顶管施工是以人工开采为主。后来当使用螺旋钻开采和输送管顶土,后来又派生出了土压力平衡方法,泥水平衡方法,通过顶管技术,可以达到超过1千米以上的距离。通过液压以控制管切割前方的覆土,以保证顶管的方向正确,和顶采用继电器,激光测距,头部方位校正方法顶推的施工工作,长距离顶管的问题和方向问题得到了解决。
3、定向穿越技术
我国从美国引进的定向钻是在1985年首次应用于黄河的长输管道建设。在过去的20年里,非开挖定向穿越管道技术在我国得到了迅速的发展。定向钻井在非开挖管道穿越技术已广泛应用于管道业。定向钻用于铺设管道取得了巨大的成就。我国在2002年2月以2308米和273米直径的长度穿越了钱塘江,是世界上最长的穿越长度,被载入吉尼斯世界纪录。定向穿越管道施工技术是一个多学科,多技术,根据于一体的系统工程,任何部分在施工过程中存在的问题的设备集成,并可能导致整个项目的失败,造成了巨大的损失。而被广泛使用,由于定向钻井,通过建设,使技术已经取得了长足的进步和发展的方向。硬石国际各种施工方法,如泥浆马达,震荡的顶部,双管钻进的建设。广泛采用PLC控制,电液比例控制技术,负荷传感系统,具有特殊的结构设计软件的使用。
四、管道超声内检测技术现状
1、相控阵超声波检测器
美国GE公司研制的超声波相控阵管道内检测器于2005年开始应用于油气管道内检测,目前已检测管道长度4700km,该检测器包括两种不同的检测模式:超声波壁厚测量模式和超声腐蚀检测模式,适用于管径610~660mm的成品油管道。该检测器有别于传统检测器的单探头入射管道表面检测的方法,采用探头组的形式来布置探头环,几个相邻并非常靠近(间距左右)的探头组成一个探头组,一个探头组内的探头按照一定的时间顺序来激发并产生超声波脉冲,而该激发顺序决定了产生的超声波脉冲的方向和角度,因此控制一个探头组内不同探头的激发顺序就可以产生聚焦的超声波脉冲。检测器包括3个探头环、44个探头组,每个探头环提供一种检测模式,可根据不同的管道检测需求来确定探头环。
该检测器与其他内检测器相同,包括清管器、电源、相控阵传感器、数据处理和储存模块4部分。清管器位于整个检测器的头部并装有聚氨酯皮碗,一方面负责清管以确保检测精度,另一方面起密封作用,使得检测器可以在前后压力差的作用下驱动前进。探头仓由3个独立的探头环组成,每个探头环的探头布置都能实现超声波信号周向全覆盖。检测器能够实现长25mm、深1mm的裂纹检测,检测准确率超过90%;最小检测腐蚀面积10×10mm ,检测精度大于90%。
2、弹性波管道检测器
安桥管道公司管理着世界上最长和最复杂的石油管道网络。其研发的内检测器已经在超过15000km的管道中开展检测。其中基于声波原理的检测器主要有弹性波检测器和超声波管道腐蚀检测器。弹性波检测器的弹性波信号可以在气体管道中传播,主要用于检测管道的焊缝特征,尤其是对长焊缝和应力腐蚀裂纹有较好的检测效果。最新的MKIII弹性波检测器最多可以装备96个超声波传感器,用于在液体祸合条件下发射接收超声波信号,进行管道检测。MKIII弹性波检测器的最大运行距离为150km,相对于二代产品的45km有了很大程度的提高。
五、结束语
综上所述,随着科技水平的快速发展和进步,超声波内检测技术也将更加完善,对于长输管道的检测也将更加准确,为管道的正常使用和安全运行发挥更大的作用。
参考文献
[1]宋生奎,宫敬,才建,等.油气管道内检测技术研究进展[J].石油工程建设,2013,31(2):10-14.
[2]石永春,刘剑锋,王文军.管道内检测技术及发展趋势[J].工业安全与环保,2012,32(8):46-48
[3]丁建林.我国油气管道技术和发展趋势.油气储运,2013,22(9):22-25.
[4]宋生奎,宫敬,才建等.油气管道内检测技术研究进展.石油工程建设,2014,31(2):11-13.
[5]高福庆.管道内检测技术及发展.石油规划设计,2010,11(1):78