环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物。 (1)环氧基之间开环连接;(2)环氧基与带有活性氢官能团的硬化剂反应而交联;(3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联;(4)环氧基或羟基与硬化剂所带基团发生反应而交联。不同种类的硬化剂,在硬化过程中其作用也不同。有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物。具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂。多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物。1、胺类硬化剂胺类硬化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华。胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等。胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺。即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N)。 由于胺的种类不同,其硬化作用也不同: (1)伯胺和仲胺的作用 含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用。使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物。(2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子。2、酸酐类硬化剂 酸酐是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物。 酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好。但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外。绝大多数是易升华的固体,而且一般要加热固化。 酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下:酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构。 除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯。但这不是主要的反应。3、树脂类硬化剂含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂。如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等。它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用。常用的是低分子聚酰胺和酚醛树脂。(1)低分子聚酰胺不同于尼龙型的聚酰胺。它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂。由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大。它们的分子量在500~9000之间,有熔点很高,胺值很低的固态树脂,也有胺值为300的液态树脂。其中胺值是低分子聚酰胺活性的描述,胺值高的活性大,与环氧树脂反应速度快,但可使用期短,胺值低的活性小,与环氧树脂反应速度慢,但可使用期长。(2)酚醛树脂 酚醛树脂与环氧树脂的相互作用比较复杂, 热固性酚醛树脂中的羟甲基与环氧树脂中的羟基及环氧基起反应及酚醛树脂中的酚羟基与环氧基起开环醚化反应所以酚醛树脂能把环氧树脂从线型变成体型,环氧树脂也能把酚醛树脂从线型变成体型,彼此相辅相成,最后形成相互交联的不溶不熔的体型大分子。
姓名:刘晓宁职称:博士, 教授,博士生导师学术兼职:江苏省生物医学工程学会生物材料分会理事江苏省生物化学与分子生物学学会理事《过程工程学报》专业审稿人《生化加工过程》编委,专业审稿人1953年生,南京大学高分子化学专业硕士并任教多年。1990年作为访问学者在德国图宾根大学化学与药物系从事研究工作,1996年获德国图宾根大学博士学位,1999年获教育部颁发的“优秀留学生”证书;1999年底回国到南京工业大学任教,2006年被评为南京工业大学教书育人先进个人;2007年度优秀研究生导师,2007年荣获制药与生命科学学院“优秀共产党员”称号;2008年年度“校优秀研究生指导教师”2009年荣获校“优秀共产党员”称号 主要研究方向:高分子材料合成,高效色谱分离材料的合成及应用。主要内容为:粒径单分散有机微球的聚合方法、功能化和应用;酶的柔性固定化;多肽固相合成载体;有毒重金属污染废水、富营养化水质吸附处理材料的合成与应用;聚乳酸的聚合、改性。先后主持及承担自然科学基金两项、863项目两项、江苏省十五攻关项目一项、江苏省科技厅、环保厅、社会发展基金项目各一项。申请专利10项(已授权3项),发表学术论文40余篇,其中被SCI/EI收录25篇。指导培养博士生/硕士生36名(其中有5人出国深造,5人获优秀硕士论文,3人发表的论文在南京市获奖)。在研项目有:环保领域中有毒重金属污染废水吸附材料的合成与应用;手性分离介质的制备与应用;酶的柔性固定化及反应分离耦合的研究;生物高分子即L-乳酸的聚合及改性。 汪海萍,魏荣卿,沈斌,刘晓宁,韦萍,周华,欧阳平凯,双醛淀粉柔性固定木瓜蛋白酶研究,生物加工过程, 2005年南京市第六届自然科学优秀学术论文奖沈 斌,魏荣卿,刘晓宁,何学军,采用低温工艺制备双醛淀粉,食品与发酵工业, 核心, 2005年南京科技学术年会优秀学术论文奖何学军,沈斌,刘晓宁,双醛淀粉的制备及应用, 生物加工过程魏荣卿,邵勇军,刘晓宁,张婷婷,姚忠,双波长法用于磺酸型离子交换树脂吸附蛋白的研究,生物加工过程,朱建星,魏荣卿,刘晓宁,卞国建,欧阳平凯,一种新型胺基树脂的制备,过程工程学报, 核心 卞国建,魏荣卿,刘晓宁,王强,欧阳平凯,Friedel-Crafts反应制备乙酰化聚苯乙烯型载体,过程工程学报, EI,核心魏荣卿,H. J. Machulla, 刘晓宁,[F]FLT:一种新的检测肿瘤增殖的显像剂,中华核医学杂志,2005,25(1),59-61,核心魏荣卿,沈 斌,刘晓宁×,汪海萍,王宇星,欧阳平凯,壳聚糖载体柔性固定化木瓜蛋白酶,过程工程学报, EI沈 斌,魏荣卿,刘晓宁,朱建星,欧阳平凯,胺化聚苯乙烯载体柔性固定化木瓜蛋白酶,化工学报 , EI魏荣卿,朱建星,刘晓宁,何学军,Mannich反应制备氨基树脂及由其制备的螯合树脂的吸附性能, 现代化工 EI魏荣卿,汪海萍,沈 斌,刘晓宁,欧阳平凯,硝基苯对傅克酰基化反应制备羧基化聚苯乙烯的影响, 化工学报,2 EI魏荣卿,王强,刘晓宁,王迷,欧阳平凯,氯乙酰化聚苯乙烯型固相载体的制备,离子交换与吸附, EI杨洋,张婷婷,魏荣卿,刘晓宁,国产聚合物型反相色谱柱HPLC法分离五种生物碱基, 制药工程科技与教育展望,华东理工大学出版社,任德权 主编王强,魏荣卿,刘晓宁,卞国建,顾秋英,新型二乙胺阴离子交换树脂制备方法的研究, 高校化学工程学报, EI, 2006年南京市第七届自然科学优秀学术论文奖周建琴,周定晖,邵勇军,魏荣卿,刘晓宁,离子交换树脂吸附蛋白质的研究, 化工/生化技术与生物质能源,化学工业出版社(北京),童张法 主编周定晖,周建琴,魏荣卿,刘晓宁,王强,十八碳键合聚苯乙烯反相色谱填料的制备, 化工/生化技术与生物质能源,化学工业出版社(北京),童张法 主编王燕芹,魏荣卿,刘晓宁,刘迎,聚苯乙烯二乙醇胺树脂对铜离子的吸附性能研究, 过程工程学报, EI沈珺,魏荣卿,刘晓宁,王燕芹,苯丙氨酸型树脂对Ni螯合性能的研究, 过程工程学报, EI魏荣卿,沈珺,王强,刘晓宁,王燕芹,L-苯丙氨酸树脂对Cu吸附性能的研究, 离子交换与吸附, EI魏荣卿,杨洋,张婷婷,刘晓宁,国产氢型阳离子交换(磺酸型)HPLC色谱柱在利巴韦林注射液分析中的应用-I,离子交换与吸附, EI魏荣卿,王燕芹,汪海萍,刘晓宁,聚苯乙烯型弱酸型离子交换树脂的制备研究,离子交换与吸附, EI魏荣卿,张婷婷,邵勇军,刘晓宁,聚合物型(苯乙烯-二乙烯基苯)高效液相色谱填料在白细胞介素-2分离中的应用, 分析化学, SCI 1、拟均相体系制备氧化淀粉,2、一种丙交酯重结晶的方法, 已获授权通知3、用乙醇重结晶丙交酯的方法, 已获授权通知 4、一种季铵型阴离子交换剂及其制备方法, ,公开5、一种氨基酸分离载体及其制备方法, 公开6、一种利用梯度浓度方式进行丙交酯重结晶的方法 ,公开7、一种羟胺型螯合吸附树脂及其制备方法 ,公开8、一种含有双键的聚苯乙烯树脂及其制备方法 ,公开9、一种脂肪族磺酸基强酸型阳离子交换树脂及其制备方法10、一种多羟基乳酸寡聚物制备丙交酯的方法
【用途】主要用于家电、自行车、仪器仪表和金属家具的涂装。【制备或来源】各种氨基化合物与甲醛缩聚制得。【其他】以氨基树脂为主要成膜物的涂料。常用的氨基树脂有三聚氰胺甲醛树脂、脲醛树脂、烃基三聚氰胺甲醛树脂、共聚树脂等。其特点是色浅,接近水白,需在90~150℃加热成膜,涂膜光亮、柔和、耐磨、耐用,但胶脆,很少单独使用,而是和其它树脂并用。氨基树脂必须与其他树脂混合使用。醇酸树脂、丙烯酸树脂、环氧树脂、有机硅树脂、乙烯基树脂等多种树脂都可与氨基树脂拼用。氨基醇酸烘漆是目前使用最广的工业用漆。氨基醇酸涂料与磷化底漆、环氧底漆等配套使用,可达到三防要求。
氨基树脂是热固性合成树脂中主要品种之一。因性脆,附着力差,不能单独配置涂料,但它与醇酸树脂并用,可以制成性能良好的涂料,这是由于氨基树脂的羟甲基与醇酸树脂的羟基在加热条件下交联固化成膜。两种树脂配合使用的结果,醇酸树脂改善了氨基树脂的脆性和附着力,而氨基树脂改善了醇酸树脂的硬度、光泽、耐酸、耐碱、耐水、耐油等性能。所以又称氨基树脂涂料为氨基醇酸烘干漆或氨基烘漆。氨基树脂涂料是目前使用最广的一种工业涂料,广泛应用于汽车、自行车、缝纫机、电风扇、钟表、热水瓶、玩具、电机、电器、仪表、仪器、五金、零件、文教用品、金属制品等。
指以氨基树脂为主要成膜物质的一类涂料,三聚氰胺甲醛树脂、脲醛树脂、烃基三聚氰胺甲醛树脂等是常用的氨基涂料树脂,涂膜较脆,故大多与其他树脂拼用。
氨基树脂主要官能团对涂膜性能的作用影响:如下图
油墨中加入聚氨酯树脂,可以提高油墨对颜料的润湿性,而且成膜性好,墨膜坚牢耐磨,多用于胶印和水性油墨的制造中,但价格较高。溶剂型聚氨酯油墨连结料具有使用简便、性能稳定、附着力强、光泽度优、耐热性好等优点,能适合各种印刷方式的要求,尤其适用于网版印刷、塑料包装和复合薄膜等方面。油墨所用聚氨酯树脂一般是由聚酯/聚醚多元醇与异氰酸酯反应而成,分子量约2万~4万。其溶剂主要以苯、酮、酯类溶剂为主要溶剂。在研发过程中可依据油墨厂及印刷厂的环保需求,采用酮酯类溶剂或醇酯类溶剂制备相应的无苯油墨用树脂。
可以找一种高光树脂,如果用液态的,可换成tpu
在油墨里加点光油试试吧。
1.合成氨的工艺流程 (1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ① 一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下: CO+H2OH→2+CO2 = 0298HΔ 由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。 ② 脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。 粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。 一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 4 ③ 气体精制过程 经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。 目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下: CO+3H2→CH4+H2O = 0298HΔ CO2+4H2→CH4+2H2O = 0298HΔ (3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下: N2+3H2→2NH3(g) =
德国化学家哈伯(, 1868-1934)从1902年开始研究由氮气和氢气直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。合成氨反应式如下:N2+3H2≒2NH3(该反应为可逆反应,等号上反应条件为:"高温 高压",下为:"催化剂")合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。
化学化工环境1.喜树发根培养及培养基中次生代谢产物的研究2.虾下脚料制备多功能叶面肥的研究3.缩合型有机硅电子灌封材料交联体系研究4.棉籽蛋白接枝丙烯酸高吸水性树脂合成与性能研究5.酶法双甘酯的制备6.硅酸锆的提纯毕业论文7.腐植酸钾/凹凸棒/聚丙烯酸复合吸水树脂的合成及性能研究8.羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究9.铝合金阳极氧化及封闭处理10.贝氏体白口耐磨铸铁磨球的研究等离子喷涂设备的调试与工艺试验高温旋风除尘器开发设计13.玻纤增强材料注塑成型工艺特点的研究14.年处理30万吨铜选矿厂设计15.年处理60万吨铁选厂毕业设计16.广东省韶关市大宝山铜铁矿井下开采设计17.日处理1750吨铅锌选矿厂设计聚氯乙烯乙炔工段初步工艺设计19.年产50万吨焦炉鼓冷工段工艺设计20.年产25万吨合成氨铜洗工段工艺设计装置异构化单元反应器进行自动控制系统设计装置异构化单元脱庚烷塔自动控制系统设计23.金属纳米催化剂的制备及其对环己烷氧化性能的影响24.高温高压条件下浆态鼓泡床气液传质特性的研究25.新型纳米电子材料的特性、发展及应用26.发达国家安全生产监督管理体制的研究27.工伤保险与事故预防28.氯气生产与储存过程中危险性分析及其预防29.无公害农产品的发展与检测30.环氧乙烷工业设计31.年产21000吨乙醇水精馏装置工艺设计32.年产26000吨乙醇精馏装置设计33.高层大厦首层至屋面消防给水工程设计34.某市航空发动机组试车车间噪声控制设计35.一株源于厌氧除磷反应器NL菌的鉴定及活性研究36.一株新的短程反硝化聚磷菌的鉴定及活性研究37.广州地区酸雨特征及其与气象条件的关系38.超声协同硝酸提取城市污泥重金属的研究39.脱氨剂和铁碳法处理稀土废水氨氮的研究40.稀土超磁致伸缩材料扬声器研制41.纳米氧化铋的发展42.海泡石TiO2光敏催化剂的制备及其研究43.超磁致伸缩复合材料的制备44.钙钛矿型无铅压电陶瓷的制备和性能研究毕业论文法在硅基板上制备硅化钛纳米线46.浅层地热能在热水系统中的利用初探及其工程设计47.输配管网的软件开发
合成氨工业是基础化学工业之一,其产量居各种化工产品的首位,氨本身除了是主要的氮肥原料外,亦是重要的化工原料,可制成各种炸药。同时氨,尿素和硝酸也是氨基树脂,聚酰胺树脂,硝化纤维素等高分子化合物的原料。以其为原料可以制得塑料,合成纤维,油漆,感光材料等产品。对于一氧化碳,氢气合成气等生产氨的原料,可进行综合利用,以联产甲醇及羧基合成甲醇,醋酸,酸酐等一系列碳一化工产品,减少废物的排放,减轻对对环境的污染。提高企业经济效益,实现可持续发展已成为当今合成氨工业生产技术发展方向。国际上随着人口的增长对农作物增长的需求和环境绿化面积的扩大而不断增加对合成氨的需求量[1]。 据资料统计:1997 年世界合成氨年产量达。预计2000 年产量将达。其化肥用氨分别占氨产量的和。我国1996 年合成氨产量已达,专家预测2000 年将达36Mt,2020 年将增加至45Mt。即今后20 年间将增加到现在的 倍。因而合成氨的持续健康发展还有相当长的路要走。未来我国合成氨氮肥的实物产量将会超过石油和钢铁。合成氨工业是农业的基础。它的发展对我国国民经济的发展有重大影响。因此,我国现有众多的化肥生产装置应成为改造扩建增产的基础。我国七十至九十年代先后重复引进30 多套大化肥装置,耗费巨额资金,在提高了化肥生产技术水平的同时,也受到国外的制约。今后我国应在引进国外先进技术的基础上着力国内开发研究自力更生,走出一条具有中国特色的社会主义民族工业的发展道路。过去引进建设一套大型化肥装置,耗资数十亿元。当今走改造扩建增产的道路,可使投资节省1/2—2/3的巨额资金用于农田水利建设和农产品深加工,这一举措将在加快农村经济发展,提高农民生活水平,缩小城乡差距发挥重要作用[2]。 国内外研究现状及发展前景 以煤为原料制氨是今后我国合成氨工业发展方向。现今世界煤探明储量相当于石油储量。世界煤可开采资源为×1014t预计可开采年限在65年以上,我国地域辽阔,矿藏丰富,煤将会成为我国未来的主要资源。 利用廉价水电电解水制氨开发[3]。我国水利资源丰富,潜在的水利资源达数亿万千瓦的水力发电,开发利用能提供廉价的电能,用以电解分离出氢气和氧气,再用氧气同水煤浆汽化生产合成氨、甲醇及碳一化工产品。合成氨和碳一化学品在水力资源丰富地区,开发建设水电同煤炭生产化肥、动力燃料及化工产品,亦是可靠的能源基础,可作为今后开发利用的方向[4],LCA技术合成氨[5]。 未来我国合成氨工业发展方向目前国外合成氨生产规模发展趋势是提高单系列生产能力[6]。未来氨装置单系列生产能力为日产2kt,尿素装置相应为。新建单系列投资相比双系列可降低20%。目前我国合成氨日产2kt 大型系列应走老厂改扩道路,在现有日产1kt合成氨装置上采用在二段转化炉加氧,使合成气生产能力加翻,达日产2kt,再进行氨合成配套,同时采用高压变换气气提法将氨加工成尿素,这种方法可代替脱除CO2 装置,以平衡增产氨和氨的加工产品的生产能力。这种改造投资还不到新建的1/2。同时随着将来天然气的成网配置,对30多套大型合成氨装置改扩后,每年就能够增产合成氨近10Mt,同时提高了天然气原料制氨的比重。在产品多样化的当代,从制氨用合成气出发,在制取合成氨的同时,联产甲醇和碳一化工产品,已成为资源综合利用的有效途径。随着深度加工产品的不断开发,化学应用领域不断开拓,其在国民经济中的地位将愈显重要。在我国新疆地区每年将烧掉近109m3天然气,这些烧掉的天然气都未能得到充分的利用,而这些天然气若回收利用可生产尿素 或甲醇1Mt/a,这是一个具有重大经济和环境意义的工程,需要统筹规划,开发建设移动撬装式回收装置,以灵活地进行油田伴生气的回收利用[7]。
2NH4Cl+Ca(OH)2=(条件加热)CaCl2+2H2O+2NH3↑
如果我没记错,是甲烷受强热分解,CH4=C+2H2
在自然条件下将氮气转化为可用作化肥的氨一直是科学家的梦想。近日,美国俄勒冈大学的化学家宣布找到一种新方法,使常温常压下用氮气合成氨成为可能。相关论文将发表在7月27日的美国化学学会会刊上。 合成反应中使用氢气作为氨的还原剂,也就是电子供体。此外还使用了一种名为trans-Fe(DMeOPrPE)2Cl2的铁化合物。 这种化合物的制作并不困难。整个反应在醚溶液中完成,但是研究人员已经证明,除了其中一步之外都可以在水中进行。论文通讯作者、俄勒冈大学化学教授大卫·泰勒说:“在化学家眼中,常温常压下用氮气和氢气在水中合成氨是固氮领域的圣杯,我们的下一个挑战就是找出在水中完成整个反应的步骤。” 氮气在空气中表现出惰性,但当它被转换为氨后,就可以用作氮肥促进植物生长。目前工业合成氨普遍采用哈伯—博施法,它的原理是让氮气和氢气在高温高压下发生催化反应,这种已使用近一个世纪的方法目前仍是最经济的合成氨方法。俄勒冈大学的方法与哈伯—博施法非常类似,也使用氢分子的电子作为固氮反应的电子源。泰勒说:“这是最简单的反应方法,其他方法要么需要使用不稳定的电子供体,要么需要高温以完成化合反应。” 但泰勒同时也强调:“尽管新方法是一种非常吸引人的解决方案,但要投入经济可行的工业生产可能还会需要几十年。”
一般用碳与水蒸气反应的方法C+H20=高温=H2+CO