大学高数论我知道怎么做
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文
导数的广泛应用,为我们解决函数问题提供了有力的工具,用导数可以解决函数中的最值问题,不等式问题,还可以解析几何相联系,可以在知识的网络交汇处设计问题。
摘要随着科学技术的迅速发展,数学建模这个词会越来越多的出现在现代人的生产、工作和社会活动中。众所周知,建立数学模型是沟通摆在面前的实际问题与数学工具之间的一座必不可少的桥梁。本文就是运用了数学建模的有关知识解决了部分生活与生产问题。例如,本文中的第一类是解决自来水供应问题,第二类是数学专业学生选课问题,第三类是饮料厂的生产与检修计划问题,这些都是根据数学建模的知识解决的问题。不仅使问题得到了解决,还进一步优化了数学模型,使数学建模问题变得可实用性!关键词: 数学建模 Lingo软件 模型正文 第一类:自来水供应问题:齐齐哈尔市梅里斯区华丰大街周围共4个居民区:园丁一号,政府六号,华丰一号,英雄一号。这四个居民区的自来水供应分别由A、B、C三个自来水公司供应,四个居民区每天需要得到保证的基本生活用水量分别为30,70,10,10千吨,但由于水源紧张,三个自来水公司每天最多只能分别提供50,60,50千吨自来水。由于管道输送等问题,自来水公司从水库向各个居民区送水所需付出的饮水管理费不同(见表1),其他管理费用都是450元/千吨。根据公司规定,各居民区用户按照统一标准900元/千吨收费。此外,四个居民区都向公司申请了额外用水,分别为每天50,70,20,40千吨。该公司应如何分配用水,才能获利最多?饮水管理费(元/千吨) 园丁一号 政府六号 华丰一号 英雄一号A 160 130 220 170B 140 130 190 150C 190 200 230 /(注意:C自来水公司与丁之间没有输水管道)模型建立:决策变量为A、B、C三个自来水公司(i=1,2,3)分别向园丁一号,政府六号,华丰一号,英雄一号四个居民区(j=1,2,3,4)的供水量。设水库i向j区的日供水量为x(ij),由题知x34=*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;约束条件:x11+x12+x13+x14=50; x21+x22+x23+x24=60; x31+x32+x33=50; x11+x21+x31<=80; x1+x21+x31>=30; x12+x22+x32<=140; x12+x22+x32>=70; x13+x23+x33<=30; x13+x23+x33>=10; x14+x24<=50;x14+x24>=10; x(ij)>=0; 用lingo软件求解:Min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;x11+x12+x13+x14=50; x21+x22+x23+x24=60;x31+x32+x33=50; x11+x21+x31<=80; x11+x21+x31>=30; x12+x22+x32<=140;x12+x22+x32>=70;x13+x23+x33<=30; x13+x23+x33>=10;x14+x24<=50;x14+x24>=10;x34=0;x11>=0;x12>=0;x13>=0;x14>=0;x21>=0;x22>=0;x23>=0;x24>=0;x31>=0;x32>=0;x33>=0;运行结果:Global optimal solution found at iteration: 14 Objective value: Value Reduced Cost X11 X12 X13 X14 X21 X22 X23 X24 X31 X32 X33 X34 Row Slack or Surplus Dual Price 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 灵敏度分析:Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X11 X12 X13 X14 X21 X22 X23 X24 X31 X32 X33 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 第二类:数学专业学生选课问题 学校规定,数学专业的学生毕业时必须至少学习过两门数学课、一门计算机课、一门运筹学课。这些课程的编号、名称、所属类别要求如下表:课程编号 课程名称 所属类别 先修课要求1 微积分 数学 2 数学结构 数学;计算机 计算机编程3 解析几何 数学 4 计算机模拟 计算机;运筹学 计算机编程5 计算机编程 计算机 6 数学实验 运筹学;计算机 微积分;线性代数模型的建立与求解:用xi=1表示选课表中的六门课程(xi=0表示不选,i=1,2…,6)。问题的目标为选课的课程数最少,即:min=x1+x2+x3+x4+x5+x6;约束条件为:x1+x2+x3>=2;x2+x4+x5+x6>=1;x4+x6>=1;x4+x2-2*x5<=0;x6-x1<=0;@bin(x1); @bin(x2); @bin(x3); @bin(x4); @bin(x5); @bin(x6);运行结果:Global optimal solution found at iteration: 0 Objective value: Value Reduced Cost X1 X2 X3 X4 X5 X6 Row Slack or Surplus Dual Price 1 2 3 4 5 6 第三类:饮料厂的生产与检修计划 某饮料厂生产一种饮料用以满足市场需要。该厂销售科根据市场预测,已经确定了未来四周该饮料的需求量。计划科根据本厂实际情况给出了未来四周的生产能力和生产成本,如下图。每周当饮料满足需求后有剩余时,要支出存贮费,为每周每千箱饮料千元。如果工厂必须在未来四周的某一周中安排一次设备检修,检修将占用当周15千箱的生产能力,但会使检修以后每周的生产能力提高5千箱,则检修应该放在哪一周,在满足每周市场需求的条件下,使四周的总费用(生产成本与存贮费)最小?周次 需求量(千箱) 生产能力(千箱) 成本(千元/千箱)1 15 30 25 40 35 45 25 20 合计 100 135 模型建立:未来四周饮料的生产量分别记作x1,x2,x3,x4;记第1,2,3周末的库存量分别为y1,y2,y3;用wt=1表示检修安排在第t周(t=1,2,3,4)。输入形式:min=*x1+*x2+*x3+*x4+*(y1+y2+y3);x1-y1=15;x2+y1-y2=25;x3+y2-y3=35;x4+y3=25;x1+15*w1<=30;x2+15*w2-5*w1<=40;x3+15*w3-5*w2-5*w1<=45;x4+15*w4-5*(w1+w2+w3)<=20;w1+w2+w3+w4=1;x1>=0;x2>=0;x3>=0;x4>=0;y1>=0;y2>=0;y3>=0;@bin(w1);@bin(w2);@bin(w3);@bin(w4);运行结果:Global optimal solution found at iteration: 0 Objective value: Value Reduced Cost X1 X2 X3 X4 Y1 Y2 Y3 W1 W2 W3 W4 Row Slack or Surplus Dual Price 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 参考文献【1】 杨启帆,边馥萍。数学建模。浙江大学出版社,1990【2】 谭永基,数学模型,复旦大学出版社,1997【3】 姜启源,数学模型(第二版)。高等教育出版社,1993【4】 姜启源,数学模型(第三版)。高等教育出版社2003
浅谈数学中的研究性学习 (转,供参考)找个自己感兴趣的题目去写,参考范文! 现代社会知识更新的速度不断加快,在高中阶段,对学生传授的知识是有限的,学校教育不可能让学生学的知识用上一辈子。人们在获得生存与发展中所面临的问题越来越具有社会性、复杂性和不可预见性,人们所必需的知识范围与能力素养的范围急剧扩大。而作为一名数学教师我们有责任引导学生从数学的角度分析社会生活和实践活动中的问题、开展探究活动,让学生在获得必要的数学知识与技能的同时,认识知识探究与问题探索的基本方法和途径,提高参与社会生活的探究、发现和改造等一切活动中进行决策的基本能力。 一、 正确的认识是开展数学研究性学习的基础 弄清概念:什么是数学研究性学习 数学研究性学习是培养学生在数学教师指导下,从自身的数学学习和社会生活、自然界以及人类自身的发展中选取有关数学研究专题,以探究的方式主动地获取数学知识、应用数学知识解决数学问题的学习方式。它同社会实践等教育活动一样,从特定的数学角度和途径让学生联系社会生活实例,通过亲身体验进行数学的学习。数学研究性学习强调要结合学生的数学学习和社会生活实践选择课题,学生从自身数学学习实践出发,找到他们感兴趣的、有探究价值的数学问题。开展数学研究性课题学习将会转变学生的数学学习方式,变传统的“接受性、训练性学习”为新颖的“研究性学习”,它有利于克服当前数学教学中注重教师传授而忽视学生发展的弊端,有利于调动学生的研究热情,激发学生的求知欲和进取精神,从而有效提高学生对数学的探究性学习能力、实践能力、创造能力和创新意识。 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学和现实问题的一种有意义的主动学习,是以学生动手动脑,主动探索实践和相互交流为主要学习方式的学习研究活动。 二、如何进行数学研究性学习 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。古希腊哲学家德谟克利特曾经指出:“教育力图达到的目标不是完备的知识,而是充分的理解。”我国古代教育家说得更精辟且形象:教学中应“授之以‘渔’”,而不仅是“授之以‘鱼’”。数学研究性学习更加关注学习过程,然而老师又如何让学生在数学课堂上进行研究性学习呢? (一) 从教材切入让学生在数学家探索数学规律的研究思维过程中体验研究性学习 ?在高中数学教材中有大量的材料可切入研究性学习的探索。在课堂教学中,教师应把握住“遵循大纲、教材,但又不拘泥于大纲、教材”的原则,结合生产、生活实际适当地加深、加宽,选出探究的切入点,对学生创新意识和能力进行初步培养。如:在讲复数的概念的引入时,告诉学生数的发展是由生产与生活的需要和解方程的需要推动的,是科学实际和生产、生活相结合的产物,然后要学生:解方程: 。学生一定会说无解或无实数解,教师引导学生分析“无解”和“无实数解”的区别,要学生探讨是不是有什么新的东西?如果有应该是怎样的?学生会通过探求及讨论发现此方程的解有但不是实数从而就会想到是虚的,教师要求学生用已有的方法求出方程的解,学生往往会感觉困难,教师就要问学生为什么困难?学生会说无法求,教师要求学生探求一个新的东西出来解决。 通过问题的层层揭示,并通过联系数的开方知识、解方程知识等手段来突破难点。这一过程使学生亲历数学研究之中,是学生主动地获取知识、应用知识、解决问题的学习活动。这一过程能充分调动学生的参与意识,培养学生的探索精神,启迪学生的思维,使学生能自然地掌握知识。 教师引导学生把提出的新东西进行归纳、总结,上升到理论。然后提出新的问题。如上面这节课对要求学生:解方程:x3-1=0.这样处理能再次将理论和实践结合起来,使学生感悟到在数学学研究中理论和实践之间的辩证关系。课后教师可以再布置几个探究性思考题,让学生在课外进一步巩固课堂上的探究方法和思路,拓展和活跃学生思维。 指导学生进行一题多解和一题多变也是一种研究性学习的方法。 这样以数学教材为载体渗透研究性学习,有一定的灵活性能更好的培养学生探求规律的能力。数学知识探索是数学学习的核心,用类似科学的研究方式,让学生置于探索和研究的气氛之中,亲身参与研究,体会知识及规律的探索方法,提高学生发现和解决问题的能力。 (二) 把握教材例、习题的潜在功能,有效培养学生的研究性学习能力 数学知识由纷繁复杂的客观世界抽象而来,研究性学习能力是学习数学知识的必要条件。很多教师都有一个发现:在学习单个知识时,学生似乎学得不错,但学完了多个知识或一个系统后,却变成简单的题目都不会,这除了综合能力不高外,还与平时没有养成研究性学习有关。像二倍角公式的理解就不能只知道2α是α的二倍角,类似的:4α是2α的二倍,α是的二倍, 例如:已知Sin= ,? ?, 求4的三角函数值。 分析:由,两次运用二倍角公式;又如:Cosα=2Cos 2? ?- 1 = 1 – 2Sin2 ???????? ?Cos 2? ??=? ,? Sin2 ?= ?????? ????tan2 ?= 这实际上是二倍角公式的逆向运用,得到的半角公式(或降幂公式)。有了对例题的深刻理解和研究性学习就能解决一类问题,如求的值;化简等。 通过变式、逆用、一题多解等训练思维的深度,引导学生不满足表面知识,能深入钻研问题,探求各种知识的联系,从而找到解决问题的本质和规律。 在教学上要鼓励学生敢于主动、独立的发现问题、探讨问题,敢于提问,敢于发表自己的不同观点,例如:在△ABC中 ,,求CosC值,可我在批改作业时,没有考究教材参考资料提供的答案(实际上只有),结果把正误答案颠倒。发现错误后,我主动向全班同学道歉,并表扬了善于研究思考、敢于坚持真理的同学。并及时提出新问题:(1)在△ABC中若 ,,求CosC值。有几个解?(2)在△ABC中,成立吗?作为留给学生的课外研究性学习题。学习了正弦定理后,再回头证明。通过这一问题的深刻探讨,不但使学生牢固掌握知识,更大大提升了学习的自信心和学习的热情,在潜移默化中培养了学生的科学态度和研究性学习精神。在学习等比数列前n项和知识时,有一题是:在等比数列中:已知 。在求解过程中学生得到了:? ,进一步发现:成等比数列 ,这就是研究性学习所得的成果,继续引导这一结论并推广就就可完成下面一题。证明:等比数列的也成等比数列。学生们总结前面的学习也较顺利地完成了证明,心理充满了成功的喜悦。真的没有漏洞吗?鼓励学生进行研究性学习探讨其严谨性,有学生举出了反例:数列 1,-1,1,-1……是公比q= -1等比数列,但 ,并不是等比数列;这一发现令人吃惊,因为在课本和其他所有的课外书都没有此说法。从理论上讨论:当,显然当n为偶数且q= -1时, ,不可能为等比数列。由此可见数学研究性学习的重要。 (三) 数学开放题与研究性学习 ??? 研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。 自70年代日本、美国在中小学教学中较为普遍地使用数学开放题以来,数学开放题已逐渐被数学教育界认为是最富有教育价值的一种数学问题,因为数学开放题能够激起学生的求知欲和学习兴趣,而强烈的求知欲望浓厚的学习兴趣是创新能力发展的内在动力。80年代介绍到我国后,在国内引起了广泛的关注,各类刊物发表了大量的介绍、探讨开放题的理论文章或进行教学实验方面的文章,并形成了一个教育界讨论研究的亮点。 高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,近几年在全国和各地的高考试题中连续出现具有开放性的题目。 数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 21、浅谈中学数学中的反证法 22、数学选择题的利和弊 23、浅谈计算机辅助数学教学 24、数学研究性学习 25、谈发展数学思维的学习方法 26、关于整系数多项式有理根的几个定理及求解方法 27、数学教学中课堂提问的误区与对策 28、中学数学教学中的创造性思维的培养 29、浅谈数学教学中的“问题情境” 30、市场经济中的蛛网模型 31、中学数学教学设计前期分析的研究 32、数学课堂差异教学 33、浅谈线性变换的对角化问题 34、圆锥曲线的性质及推广应用 35、经济问题中的概率统计模型及应用 36、通过逻辑趣题学推理 37、直觉思维的训练和培养 38、用高等数学知识解初等数学题 39、浅谈数学中的变形技巧 40、浅谈平均值不等式的应用 41、浅谈高中立体几何的入门学习 42、数形结合思想 43、关于连通性的两个习题 44、从赌博和概率到抽奖陷阱中的数学 45、情感在数学教学中的作用 46、因材施教与因性施教 47、关于抽象函数的若干问题 48、创新教育背景下的数学教学 49、实数基本理论的一些探讨 50、论数学教学中的心理环境 51、以数学教学为例谈谈课堂提问的设计原则 52、不等式证明的若干方法 53、试论数学中的美 54、数学教育与美育 55、数学问题情境的创设 56、略谈创新思维 57、随机变量列的收敛性及其相互关系 58、数字新闻中的数学应用 59、微积分学的发展史 60、利用几何知识求函数最值 61、数学评价应用举例 62、数学思维批判性 63、让阅读走进数学课堂 64、开放式数学教学
数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。 2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
论文框架由以下几部分组成:
1、介绍
简要地总结论文主题,说明为什么这个主题有价值,也许还可以概述一下你的主要结果。
2、背景信息(可选)
简短地介绍背景信息是必要的,特别是当你的论文涉及两个或多个传统领域时。
3、新技术回顾
这部分回顾了与论文相关的研究现状。
4、研究问题或问题陈述
工程论文倾向于提到一个需要解决的“问题”,而其他学科则是用一个需要回答的“问题”来表述。在这两种情况下,有三个主要部分:
5、描述你如何解决问题或回答问题
论文的这一部分形式更加自由,可以有一个或几个部分和子部分。
6、结论
结论部分通常涵盖三件事,并且每一件事都应该有一个单独的小节:
7、参考文献
参考文献的列表与第3部分中给出的技术现状综述紧密相关。所有的参考文献都必须在论文正文中提及。参考书目可能包括论文中没有直接引用的作品。
8、附录
一般来说,太过具体的材料不适合在论文主体中出现,但可供考官仔细阅读,以充分说服他们。
毕业论文撰写结构要求
1、题目应简洁、明确、有概括性,字数不宜超过20个字。
2、摘要要有高度的概括力,语言精练、明确,中文摘要约100-200字;
3、关键词从论文标题或正文中挑选3~5个最能表达主要内容的词作为关键词。
4、目录写出目录,标明页码。
5、正文
专科毕业论文正文字数一般应在3000字以上。
毕业论文正文:包括前言、本论、结论三个部分。
前言(引言)是论文的开头部分,主要说明论文写作的目的、现实意义、对所研究问题的认识,并提出论文的中心论点等。前言要写得简明扼要,篇幅不要太长。
本论是毕业论文的主体,包括研究内容与方法、实验材料、实验结果与分析(讨论)等。在本部分要运用各方面的研究方法和实验结果,分析问题,论证观点,尽量反映出自己的科研能力和学术水平。结论是毕业论文的收尾部分,是围绕本论所作的结束语。其基本的要点就是总结全文,加深题意。
学位论文
学位申请者为申请学位而提出撰写的学术论文叫学位论文。这种论文是考核申请者能否被授予学位的重要条件。
学位申请者如果能通过规定的课程考试,而论文的审查和答辩合格,那么就给予学位。如果说学位申请者的课程考试通过了,但论文在答辩时被评为不合格,那么就不会授予他学位。
有资格申请学位并为申请学位所写的那篇毕业论文就称为学位论文,学士学位论文。学士学位论文既是学位论文又是毕业论文。
摘要(Abstract)标准摘要五句话,包含五个层次的内容: 介绍:为什么要进行本项研究,现状中本项研究的缺失或者做了但是存在不足; 方法:用什么方法做这个研究; 数据:用什么样的数据来验证你的方法; 结论:从研究中得出什么结论; 意义:得出的结论对研究领域和实践有什么意义(理论与实践意义)2引言(Introduction) 研究背景(Research background):目的是证实该研究问题的重要性。如这一类问题造成的损失很严重,因此研究这一问题很重要。研究问题(Research problem):在上述的这一大研究背景下,要做什么问题(或者方面)的研究;在上述的这一大研究背景下,这一研究可以在哪些方面解决现存的实际问题。 研究现状:别人已经做了哪些东西,别人已经做过什么,发现了什么样的问题? 现存的研究有什么问题与不足:别人有什么没有做过?为什么别人没有做得更好?并说明这些研究不足会带来严重后果。 本研究的目标(objective)和研究范围(scope):本研究弥补这些问题中(这些没做过或者做过没做好的问题中)的哪些不足,采用什么研究方法去弥补不足。陈述本项研究的范围局限,并高度概括本论文研究结论。 文章结构:本论文的后续部分的基本内容架构。3文献综述(Literature review)Literature review证明与说明两件事情:一是研究目标的设定是有意义的;二是你在本研究中采用的方法是可靠的、有效的。包括三个层次的内容: 对选题(你找到的研究问题)的理由:即对做过没做好或者没做过的研究问题,在这个研究领域,针对research problem而言,让读者明白本项研究是有意义的; 现存文献中对本文值得参考并可借鉴的东西,包括分析工具和成果; 非相关或者相邻研究领域值得借鉴的东西,侧重于可借鉴的研究方法。与就确定了研究方法。补充说明:注意introduction 中的研究目的与研究范围的区别。Scope:如洪水发生后带来10个后续问题,本研究只考虑了6个关键问题。在Literature review 与中应该对scope进行说明和辨析,即说明我为什么留下这6个问题,去掉其他4个问题。小结:文献综述不是综述文献,而是去找到问题,不是为了综述而述。并不在于对所有的相关文献作详尽描述和总结,应该是对相关研究现状的高度概括。至此,已经把研究问题、研究目标、研究方法明确了,并且对它们已经证明了、辩护了。4方法(Method)此部分主要是对方法的描述。包含三个方面的内容: 研究策略(Research strategy):总概研究过程。要做这样的一个研究采用一个什么样的研究策略:即所采用的研究思路。 数据采集的方法:建立在对研究问题深入认识的基础上,需要采集什么样的数据(变量)。这里的数据的概念是泛泛的,不是指具体的数据,而包括数据结构、变量(考虑的因素)。 数据的分析方法:如数学分析、逻辑分析(推理)、统计模型等数据分析方法。统计模型(模型的建立、模型校验(模型计算)、模型推断(在算的过程中所推断出的一些结果)、模型评价与对比)。5数据(Data)主要围绕data,对你所收集的数据做一个简要的描述,描述所收集的数据的特点。如从哪个机构得到一个数据,有什么样的特征、变量的期望值、方差、中位数、最大与最小值等。包含两个层次的内容: 数据的来源、采集数据的时间周期、描述性的统计值 对所收集的数据的初步的处理方法。6结果(Results)运用所采用的数据分析方法(即模型的建立、模型校验(模型计算)、模型推断(在算的过程中所推断出的一些结果)、模型评价与对比)得到的模型分析结果。应该着重对所得出的重要结果进行描述,不需要对所有的结果进行描述。7讨论(Discussion)Discussion就是针对所得出的结果做横向或者纵向的对比和讨论,包括自己的结果之间的比较、自己结果与别人结果之间的比较;如果结果存在差异性,并对结果之间的差异性的成因作讨论分析。这样的差异性分析进一步加强了本研究的重要性。可以进一步地验证:对所提出的观点做数据方面的支持。注意6和7的区别:Results强调清楚地陈述研究结果,受制于数据分析方法(模型建立、模型校验、模型推断、模型评价)的框架制约。而Discussion强调把结果打乱,提出最值得讨论和有意义的结果,是对本项研究所得出结果(results)高度抽象的产物。写discussion的三重境界:一是得出与人家相同的结果(意义不大);二是得出不同结果,但是不讨论差异性成因(需要升华);三是得出不同结果,并作差异性成因分析(较高水平)。8结论(Conclusion)标题可以叫conclusion,但是实际包含四个内容: 结论(Conclusion)研究过程:对研究过程的综述。在期刊论文中可以不写,但是在学位论文中一定要写。该研究得出的结论:这个研究成果不是Results和Discussion的复述,而是对Results和Discussion的更进一步的抽象和概括。 意义(Implication):从研究结论中所反映出来的对该研究领域的贡献以及启示,更侧重于启示。 局限性(Limitation):所得出的研究结果(该研究结果)的局限性。Limitation与scope是两回事,但两者相关,有差异性,其差异性体现在scope针对的是研究范围,在该研究范围内,你的研究结论是成立的,有效的,在scope内是绝对不能被人家挑毛病的;limitation要承认即使在scope内,由于数据的有限性和方法的不完备性所导致的局限性。总之,limitation的成因包括两个方面,一是scope所造成的limitation;另一方面是由于数据、方法所造成的limitation。 未来展望(Future study):基于两个认识(一是对limitation的认识,二是对本文结论的implication的认识)所提出的后续研究课题。
1、题目:题目是论文内容的概括,向读者说明研究的主要问题。一个好的学术论文题目应当是准确概括论文内容,文字简练、新颖,范围明确,便于分类的2、前言:前言又或者序言、导言、绪论,写在正文之前,用于说明写作目的、问题的提出、研究的意义等。3、正文:正文部分占全文大部分篇幅。这部分必须对研究内容进行全面的阐述和论证。写作时以观点为轴心,贯穿全文用材料说明观点,使观点与材料相统一,用观点去表现主题,使观点与主题相一致。4、结论:结论是经反复研究后形成的总体论点。结论应指出所得的结果是否支持假设,或指出哪些问题已经解决了,还有什么问题尚待进一步探讨。5、参考文献:这部分包括参考的文章、书目等,附在论文的末尾。论文结构框架,主要包括题目、摘要、关键词、引言、正文、致谢、参考文献。(1)题目的写作技巧①题目应简明、确切,不要太长太笼统;②题目可省去定冠词和不定冠词;③题目中不应列入非公知公用的符号、代号,以及数学公式、化学 结构式等。(2)摘要的写作技巧①使用短而简单的句子,表达要准确、简洁、清楚;②注意表述的逻辑性,尽量使用指示性的词语来表达论文的不同部 分(层次);③不应出现公式、图表、参考文献的序号;④用过去时态叙述自己的工作,用现在时态叙述自己的结论;⑤尽量用主动语态代替被动语态。(3)关键词的写作技巧①论文所属科学名称②成果名称③所用方法名称④研究对象⑤便于文献检索利用的名称(4)引言的写作技巧①采取适当的方式强调研究中最重要的发现或贡献,让读者顺着逻 辑的演进阅读论文。②解释或定义专门术语或缩写词,以帮助编辑、审稿人和读者阅读 稿件。③适当地使用“I”,“We”或“Our”,以明确地指示自己的工作。④叙述前人工作的欠缺以强调自己研究的创新时,应慎重且留有余地。(5)正文的写作技巧①思路清晰,逻辑性强,层次清晰。②引用已有的方法及结论要标明所出文献及其编号。③推导及论证过程简洁而准确,实验数据及结论准确无误。④力求避免中国式英语和论证思路,多参看外文文献及相关外文教材。(6)致谢的写作技巧致谢是对整个过程中给予帮助的个人或团体的感谢,内容应尽量具体、用词要恰当、格式要遵从拟投稿期刊的习惯和相关规定。(7)参考文献的写作技巧①参考文献要精选;②参考文献的所在期刊、出版的年月及卷期要准确无误,确保与文中引用参考文献的一一对应,其书写格式应参考
分类: 社会民生 >> 军事 解析: 一、初识Windows功能增强“插件”MSI 我们经常可以看到许多软件只有一个扩展名为MSI的文件,双击这个文件运行,就会出现和Windows应用软件安装非常相似的安装过程,MSI文件到底是什么?为什么许多软件开始用MSI格式来发行呢?请听我慢慢说来。 文件的由来 说到MSI文件,不得不先说说Windows Installer,它不只是安装程序,而是可扩展的软件管理系统。Windows Installer的用途包括:管理软件的安装、管理软件组件的添加和删除、监视文件的复原以及使用回滚技术维护基本的灾难恢复。另外,Windows Installer还支持从多个源位置安装和运行软件,而且可以由想要安装自定义程序的开发人员自定义。要想使用这些功能,就必须通过MSI文件。MSI文件是Windows Installer的数据包,它实际上是一个数据库,包含安装一种产品所需要的信息和在很多安装情形下安装(和卸载)程序所需的指令和数据。MSI文件将程序的组成文件与功能关联起来。此外,它还包含有关安装过程本身的信息:如安装序列、目标文件夹路径、系统依赖项、安装选项和控制安装过程的属性。 的优势 Windows Installer技术就是合并在一起发挥作用的两个部分:客户端安装程序服务() 和Microsoft软件安装(MSI)软件包文件。 程序是 Windows Installer 的一个组件。 当 被安装程序调用时,它将用 读取软件包文件 (.msi)、应用转换文件 (.mst) 并合并由安装程序提供的命令行选项。 Windows Installer 执行所有与安装有关的任务:包括将文件复制到硬盘、修改注册表、创建桌面快捷方式、必要时显示提示对话框以便用户输入安装首选项。 当双击MSI文件的时候,与之关联的Windows Installer 的一个文件 被调用,它将用读取软件包文件(.msi)、应用转换文件(.mst)进行进一步处理,然后 Windows Installer 执行所有与安装有关的任务:包括将文件复制到硬盘、修改注册表、创建桌面快捷方式,必要时显示提示对话框以便用户输入安装需要的信息,就这样,一个程序安装到了你的电脑上。 采用MSI安装的优势在于你可以随时彻底删除它们,更改安装选项,即使安装中途出现意想不到的错误,一样可以安全地恢复到以前的状态,正是凭着此强大功能,越来越多的软件开始使用MSI作为发行的方式了。 如果你对MSI文件感兴趣,可以用WinRAR等压缩软件打开,看一下里面的内容,满足一下好奇心。 3、MSI格式文件安装支持程序:WinMe和WinXP对MSI支持得很好,但其他版本的Windows就需要安装一个插件才能使用MSI格式的文件。 点这里下载InstMsiW插件 二、定制自己的MSI文件 前面我们介绍了很多MSI文件的内容,其实MSI并不神秘、复杂,我们自己都能制作,并且制作MSI文件的工具已经在Windows的安装盘上了。 首先,找到Windows2000的安装光盘,双击下边的这个位置的文件:valueadd\3rdparty\Mgmt\, 很快软件就自动安装到了电脑中。在开始菜单的所有程序里边就多了“VERITAS sofare”组,点击运行里边的“VERITAS discover”就可以开始制作MSI文件了。 制作MSI文件的基本原理就是,在我们安装一个软件以前,先给电脑的磁盘拍个“快照”。然后将要安装的软件安装到电脑中,并对注册表等内容做修改,等到确认这个软件能正确运行后,再给电脑的磁盘拍个“快照”。Discover软件会自动找出两次“快照”的不同,并且生成一个MSI文件。最后,如果你愿意,可以使用VERITAS sofare组中的另一个工具:Veritas Sofare Console对这个MSI文件进行进一步的包装、调整,这样一个MSI文件包就生成了。 下面,我们具体通过一个例子来介绍一下如何使用Discover生成一个MSI文件,假定我们的软件my的安装过程是:将文件安装到C:\programmeme files\myprog下,将放到windows\system里,在注册表的HKEY_LOCAL_MACHINE的sofare项中建立一个myprom项,并且在其中添加一个值为OK的value项目。 第一步:运行Discover,弹出程序界面,可以直接点“Next”按钮继续。 第二步:在图3的对话框中,首先在第一文本框为你的程序起个名字,比如这里用的“My programmeme”;第二个对话框是输出MSI文件的存放位置和文件名,这里选择保存为E:\;第三个框为压缩包的语言,可以使用其默认值。填好后点“Next”按钮。 第三步:为Discover存放快照文件选择一个临时的空间,可以选一个磁盘空间比较大的磁盘。 第四步:在接下来如图4的对话框中要选择Discover需要扫描并拍“快照”的磁盘,你的程序要装到哪个盘就选择哪个盘,并且点一下“Add”按钮加到要扫描文件的列表中,你可以选择几个或者所有的磁盘,不过这样会在扫描的过程中浪费更多的时间,所以应该尽量少选择磁盘。这里只选择C盘,因为我们的软件是装到C盘的。然后点“Next”。 第五步:在如图5所示的对话框中为上一步选择的每个磁盘选择需要扫描的文件夹或文件,因为我们上一步只选择了C盘,所以为C盘选择就可以了。另外,Discover自动加入了一些特殊的文件和目录,我们可以根据需要决定是否将它们移出要扫描的文件列表,不过最好保留它们。这里我们把“C:\programmeme files”和Windows文件夹添进去,先在左边的文件框中点中文件或文件夹,然后点Add按钮就可以了。对于注册表的扫描,Discover为了加快扫描速度,只扫描部分注册表,可以扫描到大部分程序对注册表的修改,如果不放心的话,也可以将下边的“Enhanced Registry Scan”点中,这样速度可能会慢很多,临时文件也大大增加,不过能对注册表所有的改动加以记录。由于我们的软件对注册表只是小改动,所以没必要选择扫描所有注册表。然后点“Next”继续。 第六步:接下来Discover将对系统进行扫描生成“快照”,要耐心的等待,可能要几分钟的时间才行。 第七步:在扫描完成后,会弹出一个对话框,大概意思就是告诉你扫描已经完成,问你是否要选择一个程序来运行,从而自动安装你的软件,我们正要制作安装程序,没有程序可运行,所以要点“取消”按钮。 第八步:接下来,我们就要手动安装自己的软件了,先将文件拷贝到C:\programmeme files\myprog下,再把拷贝到windows\system里,然后用注册表编辑器在注册表的HKEY_LOCAL_MACHINE的sofare项中建立一个myprom项,并在其中添加一个值为OK的value键。注意,除了这些改动,应尽量避免其他无关的改动。然后我们试着运行一下刚刚安装的文件,测试一下是否正确安装。 第九步:确认安装没有问题了,要再次运行Discover程序,这次运行Discover时,出现的是如图6所示的一个界面,有两个选项,第一项是生成安装后的快照,用于与前一次的快照比较生成MSI文件,第二个选项是放弃上一次的扫描,当然要选第一项了,然后点“Next”。这时Discover又开始重新对电脑进行扫描,生成“快照”,并自动生成了安装文件。 第十步:如果你愿意,可以启动与Discover程序在一起的VERITAS Sofare console对MSI文件的信息进一步更改,过程比较简单,只要先打开一个MSI文件,然后就可以进行改动了,这里就不介绍了。 就这样,我们就生成了一个自己的MSI文件了。
SSI小规模集成电路可以直接实现组合逻辑函数,并且用的组合逻辑电路元件少,连线简单,省时省力,可靠性也高,是进行组合逻辑电路设计的一种重要方法。MSI电路也可以用的,但是要用的组合电路元件多,所以连线复杂,操作起来麻烦,其稳定性和可靠性不高,主要用来设计较小规模集成电路,应用没有MSI广泛。
微卫星( Microsatellite )序列是遍布于人类基因组上数百万个基因座( loci )中的短串联重复( short tandem repeats , STR )序列。
通常由 1-6 个重复(如单核苷酸、双核苷酸重复等)的碱基串联重复排列 10-50 次。
微卫星不稳定( MSI/MSI-H ),由于在 DNA 复制时错配修复 ( MMR ) 基因的功能缺陷,导致串联序列发生插入和缺失突变,引起 MS 序列长度改变的现象。
这种类型的体细胞突变会导致抑癌基因失活或破坏其他非编码调控序列,从而起到致癌作用。
MSI 作为可作为一种独特的分子表型,存在于多种癌症中,包括结直肠癌,子宫内膜癌,胃癌,前列腺癌,卵巢癌和成胶质细胞瘤等。
并且 MSI 能够预测免疫检查点封锁疗法在实体瘤中的疗效。因此,检测 MSI 状态在肿瘤临床诊断和预后治疗上具有重要意义
目前, MSI 检测方法主要有三种:
IHC 方法使用相应的抗体,通过对 4 种 DNA 错配修复蛋白( MLH1 , PMS2 , MSH2 , MSH6 )在细胞核内的表达情况,来确定细胞内是否存在错配修复功能缺陷。
如果其中任何一个蛋白出现表达缺失,则会被判定为错配修复缺陷( dMMR ),相当于 MSI-H ;如果四个蛋白全部表达,则判断为错配修复功能正常( pMMR ),即 MSI-L 或 MSS 。
其优势在于应用性广泛,并且能确定哪些 MMR 蛋白在肿瘤中细胞中表达缺失。
但是, IHC 本身存在主观性,同时受抗体质量和实验因素等影响,有时无法检出某些定性蛋白的变化,导致 MMR 结果偶有报错。
主要采用多重荧光 PCR 结合毛细管电泳的方法,通过 PCR 扩增特定的微卫星序列,然后通过毛细管电泳比较肿瘤组织与正常组织微卫星序列长度的差异来判断该位点是否存在 MSI 现象。
这种检测方法是公认的 MSI 检测的金标准,也是使用最广泛的方法。
最开始使用的是 National Cancer Institute ( NCI )推荐的 5 个位点:
通过如下方式来判断结直肠癌的 MSI 状态:
有研究表明, MSS 和 MSI-L 之间没有明显的肿瘤生物学特征差异,因此,临床上将 MSI-L 也归类为 MSS 。
后来有研究指出,二核苷酸重复较单核苷酸重复的位点敏感性更低,且存在高度的个体多态性,需要配对的肿瘤和正常样本对照才能得出结果。因此,降低了检测的灵敏度。
因此,有人提出 pentaplex panel ,包含五个单核苷酸重复的位点:
无需配对正常的样本,且性能更高,但是在 MSH6 缺陷型肿瘤中性能不高
目前使用更多的是 Promega 系统,包含:
PCR 检测方法不仅弥补了 IHC 在因非截断式错义突变导致的 MSI 无法检出的漏洞,同时还具备良好的可重复性。
但是,其检测的基因( panel )的位点较少、通量较低、无法提供具体的基因突变信息,而且实验周期较长。
随着高通量测序技术的发展,使用全基因组测序( WGS )、全外显子测序( WES )或靶向基因测序( TGS )进行 MSI 检测的已经越来越普遍了。
与 PCR 相比, NGS 方法通量大,涉及基因范围广、灵敏度和特异性更高,可与靶点的突变检测、肿瘤突变负荷( TMB )等检测共用一份测序数据。
在目前已发表的 NGS 方法中,一般都是以 PCR 检测结果作为金标准,通过比较二者结果一致性作为评价 NGS 检测性能的标准。
NGS 检测方法种类繁多,且大多数需要配对正常样本,我们可以将这些方法分为两大类
在这里,可能需要讲解一下何为 repeat count
在上面的图中,我们假设微卫星位点为 10 个连续的 A ,且该位点比对上了 10 条 reads ,每条 read 比对上的长度长短不一。由此,我们可以计算出 repeat count
repeat 为所有 reads 的长度, count 为各长度对应的 reads 支持数
其分析流程与原理大致可以用如下流程图来描述
包括 MSIsensor 、 mSINGs 、 MANTIS 、 Cortes-Ciriano 、 MSI-ColonCore 等
其分析流程与上面类似
包括 MSIseq Index 、 MSIseq/NGS classifier 、 Nowak 等
MSIsensor 是通过 MS 位点两端各 5bp 的侧翼序列来定位的,算法原理为
mSINGs 方法也是通过计算每个位点的不稳定性,并以不稳定位点的比例作为样本的 score 值,大于阈值的认为是不稳定状态。
MANTIS 也是根据肿瘤及其配对正常样本的 repeat count 的分布计算样本的不稳定状态。
它将每个位点在样本中的 repeat count 分布看成是一个向量,通过对这两个向量计算欧氏距离、余弦相似度等度量分数,并将所有位点的均值作为样本的不稳定分数。
具体计算方式如下:
可以看到,该方法进行了比较严格的质控
该方法是基于 RNA-seq 数据,通过计算两个指标的比值 PI/PD ,如果该比值小于 则认为该样本为 MSI
其中, PI 表示微卫星位点区域发生插入突变占所有插入突变的比例, PD 表示微卫星位点区域发生缺失突变占所有缺失突变的比例。
该方法通过计算样本中单核苷酸替换率和小片段的碱基插入删失率等突变信息构建特征,然后应用机器学习算法构建分类器。
具体的特征包括:
该方法使用的是 WES 数据,且选择了线性回归,决策树,随机森林和朴素贝叶斯四种算法。其中最优的算法是决策树,该方法不需要配对的正常样本。
from: 生信学习手册
目前我们正在与世界各职业联赛赛区合作来形成一个统一的体系,包括持续进行的两个分赛季赛程。我们发现在赛季中期为全球职业赛区组织一个全新的赛事对抗是一个很好的机会,我们称之为季中邀请赛(MSI)。
在数学中,群是一种代数结构,由一个集合以及一个二元运算所组成。要具有成为群的资格,这个集合和运算必须满足一些被称为“群公理”的条件,也就是结合律、单位元和逆元。尽管这些对于很多数学结构比如数系统都是很熟悉的,例如整数配备上加法运算就形成一个群,但将群公理的公式从具体的群和其运算中抽象出来,就使得人们可以用灵活的方式来处理有着非常不同的数学起源的实体,而同时在抽象代数之上保留很多对象的本质结构体貌。群在数学内外各个领域中是无处不在的,使得它们成为当代数学的中心组织原理。[1][2]群与对称概念共有基础根源。对称群把几何物体的对称特征定为:它由保持物体不变的变换的集合,和通过把两个这种变换先后进行来组合它们的运算构成。这种对称群,特别是连续李群,在很多学术学科中扮演重要角色。例如,矩阵群可以用来理解在狭义相对论底层的基本物理定律和在分子化学中的对称现象。群的概念引发自多项式方程的研究,由埃瓦里斯特•伽罗瓦在 1830 年代开创。在得到来自其他领域如数论和几何的贡献之后,群概念在 1870 年左右形成并牢固建立。现代群论是非常活跃的数学学科,它以自己的方式研究群。 为了探索群,数学家发明了各种概念来把群分解成更小的、更好理解的部分,比如子群、商群和单群。除了它们的抽象性质,群理论家还从理论和计算两种角度来研究具体表示群的各种方式(群表示)。对有限群已经发展出了特别丰富的理论,这在1983年完成的有限简单群分类中达到顶峰。
ahiusf as ahsfkugsdta zjvhsdg
多项式的对称假设 是未知数, 是 的二次方程, ,它的两个根 有如下关系: , 和 都有这样的性质:把 和 对换,结果仍然不变,因为 , 凡是有这样性质的 和 的多项式叫做对称多项式。例如, , 也是对称多项式,但是 就不是对称多项式。并且我们习惯上把 和 叫做初等对称多项式。我们来看一般情况,设n∈Z+, a0,a1,……an∈C,a0≠0设现在有一元n次多项式方程: 著名的代数基本定理告诉我们,这样的方程有n个根,假设为 ,那么: 和二次的情形相仿,韦达定理给出: 像如上左边各式: 等这样的多项式,不论我们对 ,作怎样的排列,都是不会变的。也就是说我们把 , 是一个n排列,那么以上的式子是不会变的。这样的式子我们称为 的对称多项式,并且以上的几个对称多项式为初等对称多项式。定义6:设 是C上的一个n元多项式,如果对这n个文字 的指数集{1,2,…n}施行任一个置换后, 都不改变,那么就称 是C上一个n元对称多项式。例如: 是对称多项式,而 就不是,如果把:1→2,2→3,3→1那么 初等对称多项式的重要性在于定理(对称多项式基本定理):每一个n元对称多项式都可以唯一地表示成初等对称多项式的多项式。现在我们用群的语言去描述n元多项式的对称性。令 ,Sn是M的变换群,即前面提到的n次对称群。如果我们略去字母 而只记下标,这时Sn中的元素可以记为: 是一个n排列。令F 记数域F上n元多项式的全体。对 ,利用 可以定义F 到F 的一个映射, 那么 是集合F 的一个一一变换。为什么? 令 Tn中 那么(Tn,o)满足 ,称之为F 的置换群。如果把n元多项式和平面图形类比,把F 和平面类比,则F 的置换群相当于平面的运动群,(平面的所有保距变换)。即所有不变 的那些 ,那么我们 满足性质 ,称之为n 元多项式 的对称群。例1: ,那么 ,即四次对称群是 的对称群。例2: 例3: ——Klein 4元群例4: 单位元群例5: 是3阶循环解。定义 : 的一个多项式 称为对称多项式,如果 。即对称群是整个置换群。就这样我们用群来刻划了多项式的对称。如何去构造对称多项式,可见《近世代数》P55。四、数域的对称数域的概念在大学一年级高等代数中就讲过了。一个非空数集F,至少含有一个非零的数,如果F对+,-,×,÷封闭,那么F称为一个数域。Q,R,C都是数域,最小的数域是Q, 也是一个数域。平面图形是一个几何结构,即是把一个点集M(图形由点组成)连同此点集M中任意两点间的距离作为一个整体来考虑,而其对称群就是M的保持其任两点间的距离不变的变换的全体,这些保持M的几何结构(即距离)的变换的全体,就刻画了几何结构的对称。完全类似地,数域F是一个代数结构,也就是把一个数集F连同此数集F中加、减、乘、除的运算作为一个整体一起来考虑。所以数域F的对称也同样地可以用F的保持代数结构(即运算)的变换的全体来刻画。定义7数域F的自同构 是指:(1) 是F的一个一一变换(2) 定理1若 是F的自同构,那么 有以下系列的性质:(1) (2) ;(3) (4) .和我们前面讨论平面有限图形K的对称一样两个对称变换的乘积仍是K的一个对称变换,类似地我们有:性质1设 和 是数域F的两个自同构,那么 和 也是F的一个自同构.性质2令Aut(F)表示F的所有自同构的全体,令o表示变换的乘法,则(Aut(F),o)满足G1)—G4)。定义8 称(Aut(F),o)为数域F的自同构群。我们可以这样来类比:数域F的自同构群相当于图形K的对称群,后者刻画了图形K的对称,前者则刻画了数域的“对称”,——它是图形对称在数域上的一个类比概念。定理2有理数域 的自同构群只有一个元素——恒等自同构I。由此可知,若任意数域F,F ,且 ,那么 。即 , 限制在 上是恒等变换。例1令 是一个数域,是把 添加到 做成的代数扩域。考察F的自同构群。设 ,由定理1知, ,故 ,变换的结果取决于 令 最多只有2个数值 和 ,故F的自同构群只有可以验证I、 确为F上的自同构。o I φI I φφ φ I这是一个2元循环群, ,同构于 ,即 的对称群。例2令 这也是一个数域。设 ,同上例, 的作用决定于 和 ,知 和 只有4种组合方式。故Aut(E)只有4个元素 o I φ1 φ2 φ12I I φ1 φ2 φ12φ1 φ1 I φ12 φ2φ2 φ2 φ12 I φ1φ12 φ12 φ2 φ1 Io (1) (12) (34) (12)(34)(1) (1) (12) (34) (12)(34)(12) (12) (1) (12)(34) (34)(34) (34) (12)(34) (1) (12)(12)(34) (12)(34) (34) (12) (1)Aut(E)与Klein 4元群同构 : ,即 的对称群。我们把上面说的推广到一般情况,定义9给定两个数域F和E,如果F E,则称F是E的子域,而称E为F的扩域。令 即 是使得F中元素不动的E的自同构,Aut(E:F)就是由所有这样的 组成。F就相当于平面图形的对称中的对称轴或是旋转中心。命题(Aut(E:F),o)满足 ,称为数域E在F上的对称群。例3 和 都不能使到a+b 保持不变。设 , 为n次多项式,n个根为 , 在F上的分裂域为E, ,那么称(Aut(E:F),o)为F上多项式 的根的对称群,也称为F上一元多项式 的Galois群。这个群在解决五次以上多项式方程不可能有根式解的问题上起了关键作用。五、关于“对称与群”的教学(1) 认识运算的广泛性,不只是数可以运算,其他的一些数学对象也可以运算,并且满足一些数的运算所具有的性质。(2) 乘法不一定是可以交换的。(3) 代数结构的概念:一个集合,加上这个集合中的运算,构成一个代数系统,其结构体现在运算关系上。(4) 群的概念:对称群是一个具体的群。满足G1)—G4),就称为群。(5) 数学语言是刻画自然现象的一个极好工具,数学是模式的研究。数学来源于实际问题。
论题:置换群运算与证明的数学机械化目录摘要ABSTRACT' 科学计算和计算机代数系统.' 论文的主要结果及安排第二章群论知识背景' 置换群' 置换群的运算及其在集合上的作用' 小结第三章置换群运算与证明的计算机实现置换群上运算的实现 置换群证明的计算机实现小结第四章计算对称群的子群数据表示和计算方法对称群中的交换子群.例子第五章结束语杯.1群论和算法对A。为单群的计算机证明的展望.计算机代数系统的局限性致谢参考文献附录A置换群运算的Mathematics程序群论的算法是一个很有意义的问题。在实际应用中遇到的群大都十分复杂,需要借助于计算机来实现其运算。本文用计算机代数系统Mathematica实现了置换群上的运算和证明问题。针对置换群上的基木运算、子群的运算和生成以及群对集合的作用等问题,我们设计了相应的算法并用Mathematica实现了这些算法。把交代群A。的元素按共扼分类,将除单位元所在共扼类之外的其它共辘类的阶数进行所有可能的组合相加,对所得的每个数加上单位元所在共扼类的阶数1,然后用所得结果依次去除{An,如果其中存在某个数k,使得k能够整除{An I,则只有阶数相加为k的那些共扼类的并集所生成的群才有可能成为A。的非平凡的正规子群。从这个理论出发,我们设计了用计算机代数的方法判断A。是否为单群的算法,当n< 10时都能很快地得出An (n } 4)为单群的结论。Caley定理揭示了一个抽象群G和一个具体的群Sn的关系。如果能把Sn中所有不同构的n阶子群都找出来,那么也就能把所有可能存在的n阶群都找出来了。本文讨论了计算对称群的所有子群并对其进行共扼分类的算法,作为例子,我们完成了}S(n_7)的所有子群的共扼分类。论题:置换群_PSL_3_p_PSL_2_7_的次轨道结构目录摘要Abstract .1.引言2.预备知识3.主要定理证明长为7的自阮挤寸次轨道长为8的自配对次轨道长为14的自配对次轨道长为21的自配对次轨道长为24的自配对次轨道长为28的自配对次轨道长为42的自配对次轨道长为56的自瓦织寸次轨道长为84的自配对次轨道参考文献致谢摘要设群G是有限集合几上的传递置换群,对任意aES2,令G。二{9〔G}as二a}是G关于点a的稳定子群.我们称G。在几上作用的轨道为G关于a的次轨道,而次轨道的个数称为G的秩.对任一次轨道△,设as E△,则把as_,所在的次轨道△,称为与△配对的次轨道.当二者重合时,称其为自配对的.决定一个置换群的次轨道结构是置换群理论的基本间题之一,它在组合结构的研究中有着重要的应用.在文!21】中,作者决定了PSL(3,川关于极大子群 PSL(2, 7)的本原置换表示的次轨道,其中p三1(mod 168),但未研究其次轨道的瓦妞寸情况.而在多数情况下,群在组合结构方面的应用要求决定次轨道的配对情况.本文将决定该置换表示的全体非正则自配对的次轨道.